| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wnefimgd | Structured version Visualization version GIF version | ||
| Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| wnefimgd.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| wnefimgd.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| wnefimgd | ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | wnefimgd.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | fdmd 6661 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 4 | 1, 3 | sseqtrrid 3973 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| 5 | sseqin2 4170 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝐴) = 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) = 𝐴) |
| 7 | wnefimgd.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 8 | 6, 7 | eqnetrd 2995 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ≠ ∅) |
| 9 | 8 | imadisjlnd 6029 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 dom cdm 5614 “ cima 5617 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fn 6484 df-f 6485 |
| This theorem is referenced by: imo72b2lem0 44268 imo72b2lem2 44270 imo72b2lem1 44272 imo72b2 44275 |
| Copyright terms: Public domain | W3C validator |