Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wnefimgd | Structured version Visualization version GIF version |
Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
wnefimgd.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
wnefimgd.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
wnefimgd | ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3943 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
2 | wnefimgd.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6611 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrrid 3974 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
5 | sseqin2 4149 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝐴) = 𝐴) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) = 𝐴) |
7 | wnefimgd.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
8 | 6, 7 | eqnetrd 3011 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ≠ ∅) |
9 | 8 | imadisjlnd 41771 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2943 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 dom cdm 5589 “ cima 5592 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fn 6436 df-f 6437 |
This theorem is referenced by: imo72b2lem0 41776 imo72b2lem2 41778 imo72b2lem1 41780 imo72b2 41783 |
Copyright terms: Public domain | W3C validator |