Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wnefimgd Structured version   Visualization version   GIF version

Theorem wnefimgd 41661
Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
wnefimgd.1 (𝜑𝐴 ≠ ∅)
wnefimgd.2 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
wnefimgd (𝜑 → (𝐹𝐴) ≠ ∅)

Proof of Theorem wnefimgd
StepHypRef Expression
1 ssid 3939 . . . . 5 𝐴𝐴
2 wnefimgd.2 . . . . . 6 (𝜑𝐹:𝐴𝐵)
32fdmd 6595 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrrid 3970 . . . 4 (𝜑𝐴 ⊆ dom 𝐹)
5 sseqin2 4146 . . . 4 (𝐴 ⊆ dom 𝐹 ↔ (dom 𝐹𝐴) = 𝐴)
64, 5sylib 217 . . 3 (𝜑 → (dom 𝐹𝐴) = 𝐴)
7 wnefimgd.1 . . 3 (𝜑𝐴 ≠ ∅)
86, 7eqnetrd 3010 . 2 (𝜑 → (dom 𝐹𝐴) ≠ ∅)
98imadisjlnd 41660 1 (𝜑 → (𝐹𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2942  cin 3882  wss 3883  c0 4253  dom cdm 5580  cima 5583  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fn 6421  df-f 6422
This theorem is referenced by:  imo72b2lem0  41665  imo72b2lem2  41667  imo72b2lem1  41669  imo72b2  41672
  Copyright terms: Public domain W3C validator