Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wnefimgd | Structured version Visualization version GIF version |
Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
wnefimgd.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
wnefimgd.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
wnefimgd | ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
2 | wnefimgd.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6595 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrrid 3970 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
5 | sseqin2 4146 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝐴) = 𝐴) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) = 𝐴) |
7 | wnefimgd.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
8 | 6, 7 | eqnetrd 3010 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ≠ ∅) |
9 | 8 | imadisjlnd 41660 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 dom cdm 5580 “ cima 5583 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fn 6421 df-f 6422 |
This theorem is referenced by: imo72b2lem0 41665 imo72b2lem2 41667 imo72b2lem1 41669 imo72b2 41672 |
Copyright terms: Public domain | W3C validator |