Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wnefimgd Structured version   Visualization version   GIF version

Theorem wnefimgd 44123
Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
wnefimgd.1 (𝜑𝐴 ≠ ∅)
wnefimgd.2 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
wnefimgd (𝜑 → (𝐹𝐴) ≠ ∅)

Proof of Theorem wnefimgd
StepHypRef Expression
1 ssid 4031 . . . . 5 𝐴𝐴
2 wnefimgd.2 . . . . . 6 (𝜑𝐹:𝐴𝐵)
32fdmd 6757 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrrid 4062 . . . 4 (𝜑𝐴 ⊆ dom 𝐹)
5 sseqin2 4244 . . . 4 (𝐴 ⊆ dom 𝐹 ↔ (dom 𝐹𝐴) = 𝐴)
64, 5sylib 218 . . 3 (𝜑 → (dom 𝐹𝐴) = 𝐴)
7 wnefimgd.1 . . 3 (𝜑𝐴 ≠ ∅)
86, 7eqnetrd 3014 . 2 (𝜑 → (dom 𝐹𝐴) ≠ ∅)
98imadisjlnd 6110 1 (𝜑 → (𝐹𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wne 2946  cin 3975  wss 3976  c0 4352  dom cdm 5700  cima 5703  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fn 6576  df-f 6577
This theorem is referenced by:  imo72b2lem0  44127  imo72b2lem2  44129  imo72b2lem1  44131  imo72b2  44134
  Copyright terms: Public domain W3C validator