Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wnefimgd Structured version   Visualization version   GIF version

Theorem wnefimgd 42903
Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
wnefimgd.1 (𝜑𝐴 ≠ ∅)
wnefimgd.2 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
wnefimgd (𝜑 → (𝐹𝐴) ≠ ∅)

Proof of Theorem wnefimgd
StepHypRef Expression
1 ssid 4004 . . . . 5 𝐴𝐴
2 wnefimgd.2 . . . . . 6 (𝜑𝐹:𝐴𝐵)
32fdmd 6728 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrrid 4035 . . . 4 (𝜑𝐴 ⊆ dom 𝐹)
5 sseqin2 4215 . . . 4 (𝐴 ⊆ dom 𝐹 ↔ (dom 𝐹𝐴) = 𝐴)
64, 5sylib 217 . . 3 (𝜑 → (dom 𝐹𝐴) = 𝐴)
7 wnefimgd.1 . . 3 (𝜑𝐴 ≠ ∅)
86, 7eqnetrd 3008 . 2 (𝜑 → (dom 𝐹𝐴) ≠ ∅)
98imadisjlnd 42902 1 (𝜑 → (𝐹𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wne 2940  cin 3947  wss 3948  c0 4322  dom cdm 5676  cima 5679  wf 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fn 6546  df-f 6547
This theorem is referenced by:  imo72b2lem0  42907  imo72b2lem2  42909  imo72b2lem1  42911  imo72b2  42914
  Copyright terms: Public domain W3C validator