| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wnefimgd | Structured version Visualization version GIF version | ||
| Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| wnefimgd.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| wnefimgd.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| wnefimgd | ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3986 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | wnefimgd.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | fdmd 6721 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 4 | 1, 3 | sseqtrrid 4007 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| 5 | sseqin2 4203 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝐴) = 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) = 𝐴) |
| 7 | wnefimgd.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 8 | 6, 7 | eqnetrd 3000 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ≠ ∅) |
| 9 | 8 | imadisjlnd 6073 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2933 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 dom cdm 5659 “ cima 5662 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fn 6539 df-f 6540 |
| This theorem is referenced by: imo72b2lem0 44156 imo72b2lem2 44158 imo72b2lem1 44160 imo72b2 44163 |
| Copyright terms: Public domain | W3C validator |