![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wnefimgd | Structured version Visualization version GIF version |
Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
wnefimgd.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
wnefimgd.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
wnefimgd | ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4004 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
2 | wnefimgd.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6728 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrrid 4035 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
5 | sseqin2 4215 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝐴) = 𝐴) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) = 𝐴) |
7 | wnefimgd.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
8 | 6, 7 | eqnetrd 3008 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ≠ ∅) |
9 | 8 | imadisjlnd 42902 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ≠ wne 2940 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 dom cdm 5676 “ cima 5679 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fn 6546 df-f 6547 |
This theorem is referenced by: imo72b2lem0 42907 imo72b2lem2 42909 imo72b2lem1 42911 imo72b2 42914 |
Copyright terms: Public domain | W3C validator |