Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wnefimgd Structured version   Visualization version   GIF version

Theorem wnefimgd 44179
Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
wnefimgd.1 (𝜑𝐴 ≠ ∅)
wnefimgd.2 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
wnefimgd (𝜑 → (𝐹𝐴) ≠ ∅)

Proof of Theorem wnefimgd
StepHypRef Expression
1 ssid 4005 . . . . 5 𝐴𝐴
2 wnefimgd.2 . . . . . 6 (𝜑𝐹:𝐴𝐵)
32fdmd 6745 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrrid 4026 . . . 4 (𝜑𝐴 ⊆ dom 𝐹)
5 sseqin2 4222 . . . 4 (𝐴 ⊆ dom 𝐹 ↔ (dom 𝐹𝐴) = 𝐴)
64, 5sylib 218 . . 3 (𝜑 → (dom 𝐹𝐴) = 𝐴)
7 wnefimgd.1 . . 3 (𝜑𝐴 ≠ ∅)
86, 7eqnetrd 3007 . 2 (𝜑 → (dom 𝐹𝐴) ≠ ∅)
98imadisjlnd 6098 1 (𝜑 → (𝐹𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2939  cin 3949  wss 3950  c0 4332  dom cdm 5684  cima 5687  wf 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-fn 6563  df-f 6564
This theorem is referenced by:  imo72b2lem0  44183  imo72b2lem2  44185  imo72b2lem1  44187  imo72b2  44190
  Copyright terms: Public domain W3C validator