Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaexi Structured version   Visualization version   GIF version

Theorem imaexi 43144
Description: The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
imaexi.1 𝐴𝑉
Assertion
Ref Expression
imaexi (𝐴𝐵) ∈ V

Proof of Theorem imaexi
StepHypRef Expression
1 imaexi.1 . 2 𝐴𝑉
2 imaexg 7842 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2ax-mp 5 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3443  cima 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382  ax-un 7662
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-xp 5636  df-cnv 5638  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643
This theorem is referenced by:  smfpimbor1lem1  44729
  Copyright terms: Public domain W3C validator