Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaexi Structured version   Visualization version   GIF version

Theorem imaexi 45202
Description: The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by SN, 27-Apr-2025.)
Hypothesis
Ref Expression
imaexi.1 𝐴𝑉
Assertion
Ref Expression
imaexi (𝐴𝐵) ∈ V

Proof of Theorem imaexi
StepHypRef Expression
1 imaexi.1 . . 3 𝐴𝑉
21elexi 3461 . 2 𝐴 ∈ V
32imaex 7854 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3438  cima 5626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636
This theorem is referenced by:  smfpimbor1lem1  46783
  Copyright terms: Public domain W3C validator