| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imaexi | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by SN, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| imaexi.1 | ⊢ 𝐴 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| imaexi | ⊢ (𝐴 “ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaexi.1 | . . 3 ⊢ 𝐴 ∈ 𝑉 | |
| 2 | 1 | elexi 3503 | . 2 ⊢ 𝐴 ∈ V |
| 3 | 2 | imaex 7936 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3480 “ cima 5688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 |
| This theorem is referenced by: smfpimbor1lem1 46813 |
| Copyright terms: Public domain | W3C validator |