Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaexi | Structured version Visualization version GIF version |
Description: The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
imaexi.1 | ⊢ 𝐴 ∈ 𝑉 |
Ref | Expression |
---|---|
imaexi | ⊢ (𝐴 “ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaexi.1 | . 2 ⊢ 𝐴 ∈ 𝑉 | |
2 | imaexg 7842 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3443 “ cima 5633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pr 5382 ax-un 7662 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-xp 5636 df-cnv 5638 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 |
This theorem is referenced by: smfpimbor1lem1 44729 |
Copyright terms: Public domain | W3C validator |