| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
| Ref | Expression |
|---|---|
| imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6063 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
| 2 | rnexg 7903 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 3 | ssexg 5298 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 ran crn 5660 “ cima 5662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 |
| This theorem is referenced by: imaex 7915 imaexd 7917 ecexg 8728 fopwdom 9099 gsumvalx 18659 gsum2dlem1 19956 gsum2dlem2 19957 gsum2d 19958 xkococnlem 23602 qtopval 23638 ustuqtop4 24188 utopsnnei 24193 fmucnd 24235 metustel 24494 metustss 24495 metustfbas 24501 metuel2 24509 psmetutop 24511 restmetu 24514 cnheiborlem 24909 itg2gt0 25718 shsval 31298 nlfnval 31867 fnpreimac 32654 ffsrn 32711 pwrssmgc 32985 gsummpt2co 33047 gsummpt2d 33048 qusima 33428 elrspunidl 33448 ply1degltdimlem 33667 algextdeglem8 33763 locfinreflem 33876 zarcmplem 33917 rhmpreimacnlem 33920 qqhval 34008 esum2d 34129 mbfmcnt 34305 sitgaddlemb 34385 eulerpartgbij 34409 eulerpartlemgs2 34417 orvcval 34495 coinfliprv 34520 ballotlemrval 34555 ballotlem7 34573 msrval 35565 mthmval 35602 dfrdg2 35818 tailval 36396 bj-clexab 36987 bj-imdirco 37213 isbasisrelowl 37381 relowlpssretop 37387 lkrval 39111 hashscontpow 42140 imacrhmcl 42512 isnacs3 42708 pw2f1ocnv 43036 pw2f1o2val 43038 lmhmlnmsplit 43086 frege98 43960 frege110 43972 frege133 43995 binomcxplemnotnn0 44355 tgqioo2 45556 smfco 46811 preimafvelsetpreimafv 47382 fundcmpsurinjlem2 47393 |
| Copyright terms: Public domain | W3C validator |