Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version |
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
Ref | Expression |
---|---|
imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5969 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
2 | rnexg 7725 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
3 | ssexg 5242 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 586 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ran crn 5581 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: imaex 7737 ecexg 8460 fopwdom 8820 gsumvalx 18275 gsum2dlem1 19486 gsum2dlem2 19487 gsum2d 19488 xkococnlem 22718 qtopval 22754 ustuqtop4 23304 utopsnnei 23309 fmucnd 23352 metustel 23612 metustss 23613 metustfbas 23619 metuel2 23627 psmetutop 23629 restmetu 23632 cnheiborlem 24023 itg2gt0 24830 shsval 29575 nlfnval 30144 fnpreimac 30910 ffsrn 30966 pwrssmgc 31180 gsummpt2co 31210 gsummpt2d 31211 qusima 31496 elrspunidl 31508 locfinreflem 31692 zarcmplem 31733 rhmpreimacnlem 31736 qqhval 31824 esum2d 31961 mbfmcnt 32135 sitgaddlemb 32215 eulerpartgbij 32239 eulerpartlemgs2 32247 orvcval 32324 coinfliprv 32349 ballotlemrval 32384 ballotlem7 32402 msrval 33400 mthmval 33437 dfrdg2 33677 tailval 34489 bj-clex 35081 bj-imdirco 35288 isbasisrelowl 35456 relowlpssretop 35462 lkrval 37029 isnacs3 40448 pw2f1ocnv 40775 pw2f1o2val 40777 lmhmlnmsplit 40828 frege98 41458 frege110 41470 frege133 41493 binomcxplemnotnn0 41863 imaexi 42650 tgqioo2 42975 sge0f1o 43810 smfco 44223 preimafvelsetpreimafv 44728 fundcmpsurinjlem2 44739 isomuspgrlem2a 45168 |
Copyright terms: Public domain | W3C validator |