![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version |
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
Ref | Expression |
---|---|
imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6100 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
2 | rnexg 7942 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
3 | ssexg 5341 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 586 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ran crn 5701 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: imaex 7954 imaexd 7956 ecexg 8767 fopwdom 9146 gsumvalx 18714 gsum2dlem1 20012 gsum2dlem2 20013 gsum2d 20014 xkococnlem 23688 qtopval 23724 ustuqtop4 24274 utopsnnei 24279 fmucnd 24322 metustel 24584 metustss 24585 metustfbas 24591 metuel2 24599 psmetutop 24601 restmetu 24604 cnheiborlem 25005 itg2gt0 25815 shsval 31344 nlfnval 31913 fnpreimac 32689 ffsrn 32743 pwrssmgc 32973 gsummpt2co 33031 gsummpt2d 33032 qusima 33401 elrspunidl 33421 ply1degltdimlem 33635 algextdeglem8 33715 locfinreflem 33786 zarcmplem 33827 rhmpreimacnlem 33830 qqhval 33920 esum2d 34057 mbfmcnt 34233 sitgaddlemb 34313 eulerpartgbij 34337 eulerpartlemgs2 34345 orvcval 34422 coinfliprv 34447 ballotlemrval 34482 ballotlem7 34500 msrval 35506 mthmval 35543 dfrdg2 35759 tailval 36339 bj-clexab 36930 bj-imdirco 37156 isbasisrelowl 37324 relowlpssretop 37330 lkrval 39044 hashscontpow 42079 imacrhmcl 42469 isnacs3 42666 pw2f1ocnv 42994 pw2f1o2val 42996 lmhmlnmsplit 43044 frege98 43923 frege110 43935 frege133 43958 binomcxplemnotnn0 44325 tgqioo2 45465 sge0f1o 46303 smfco 46723 preimafvelsetpreimafv 47262 fundcmpsurinjlem2 47273 |
Copyright terms: Public domain | W3C validator |