| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
| Ref | Expression |
|---|---|
| imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6042 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
| 2 | rnexg 7878 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 3 | ssexg 5278 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ran crn 5639 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: imaex 7890 imaexd 7892 ecexg 8675 fopwdom 9049 gsumvalx 18603 gsum2dlem1 19900 gsum2dlem2 19901 gsum2d 19902 xkococnlem 23546 qtopval 23582 ustuqtop4 24132 utopsnnei 24137 fmucnd 24179 metustel 24438 metustss 24439 metustfbas 24445 metuel2 24453 psmetutop 24455 restmetu 24458 cnheiborlem 24853 itg2gt0 25661 shsval 31241 nlfnval 31810 fnpreimac 32595 ffsrn 32652 pwrssmgc 32926 gsummpt2co 32988 gsummpt2d 32989 qusima 33379 elrspunidl 33399 ply1degltdimlem 33618 algextdeglem8 33714 locfinreflem 33830 zarcmplem 33871 rhmpreimacnlem 33874 qqhval 33962 esum2d 34083 mbfmcnt 34259 sitgaddlemb 34339 eulerpartgbij 34363 eulerpartlemgs2 34371 orvcval 34449 coinfliprv 34474 ballotlemrval 34509 ballotlem7 34527 msrval 35525 mthmval 35562 dfrdg2 35783 tailval 36361 bj-clexab 36952 bj-imdirco 37178 isbasisrelowl 37346 relowlpssretop 37352 lkrval 39081 hashscontpow 42110 imacrhmcl 42502 isnacs3 42698 pw2f1ocnv 43026 pw2f1o2val 43028 lmhmlnmsplit 43076 frege98 43950 frege110 43962 frege133 43985 binomcxplemnotnn0 44345 tgqioo2 45545 smfco 46800 preimafvelsetpreimafv 47389 fundcmpsurinjlem2 47400 |
| Copyright terms: Public domain | W3C validator |