Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version |
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
Ref | Expression |
---|---|
imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5980 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
2 | rnexg 7751 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
3 | ssexg 5247 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ran crn 5590 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: imaex 7763 ecexg 8502 fopwdom 8867 gsumvalx 18360 gsum2dlem1 19571 gsum2dlem2 19572 gsum2d 19573 xkococnlem 22810 qtopval 22846 ustuqtop4 23396 utopsnnei 23401 fmucnd 23444 metustel 23706 metustss 23707 metustfbas 23713 metuel2 23721 psmetutop 23723 restmetu 23726 cnheiborlem 24117 itg2gt0 24925 shsval 29674 nlfnval 30243 fnpreimac 31008 ffsrn 31064 pwrssmgc 31278 gsummpt2co 31308 gsummpt2d 31309 qusima 31594 elrspunidl 31606 locfinreflem 31790 zarcmplem 31831 rhmpreimacnlem 31834 qqhval 31924 esum2d 32061 mbfmcnt 32235 sitgaddlemb 32315 eulerpartgbij 32339 eulerpartlemgs2 32347 orvcval 32424 coinfliprv 32449 ballotlemrval 32484 ballotlem7 32502 msrval 33500 mthmval 33537 dfrdg2 33771 tailval 34562 bj-clex 35154 bj-imdirco 35361 isbasisrelowl 35529 relowlpssretop 35535 lkrval 37102 isnacs3 40532 pw2f1ocnv 40859 pw2f1o2val 40861 lmhmlnmsplit 40912 frege98 41569 frege110 41581 frege133 41604 binomcxplemnotnn0 41974 imaexi 42761 tgqioo2 43085 sge0f1o 43920 smfco 44336 preimafvelsetpreimafv 44840 fundcmpsurinjlem2 44851 isomuspgrlem2a 45280 |
Copyright terms: Public domain | W3C validator |