Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version |
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
Ref | Expression |
---|---|
imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5982 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
2 | rnexg 7751 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
3 | ssexg 5249 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3431 ⊆ wss 3888 ran crn 5592 “ cima 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pr 5354 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5077 df-opab 5139 df-xp 5597 df-cnv 5599 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 |
This theorem is referenced by: imaex 7763 ecexg 8500 fopwdom 8865 gsumvalx 18358 gsum2dlem1 19569 gsum2dlem2 19570 gsum2d 19571 xkococnlem 22808 qtopval 22844 ustuqtop4 23394 utopsnnei 23399 fmucnd 23442 metustel 23704 metustss 23705 metustfbas 23711 metuel2 23719 psmetutop 23721 restmetu 23724 cnheiborlem 24115 itg2gt0 24923 shsval 29671 nlfnval 30240 fnpreimac 31005 ffsrn 31061 pwrssmgc 31275 gsummpt2co 31305 gsummpt2d 31306 qusima 31591 elrspunidl 31603 locfinreflem 31787 zarcmplem 31828 rhmpreimacnlem 31831 qqhval 31921 esum2d 32058 mbfmcnt 32232 sitgaddlemb 32312 eulerpartgbij 32336 eulerpartlemgs2 32344 orvcval 32421 coinfliprv 32446 ballotlemrval 32481 ballotlem7 32499 msrval 33497 mthmval 33534 dfrdg2 33768 tailval 34559 bj-clex 35151 bj-imdirco 35358 isbasisrelowl 35526 relowlpssretop 35532 lkrval 37099 isnacs3 40529 pw2f1ocnv 40856 pw2f1o2val 40858 lmhmlnmsplit 40909 frege98 41539 frege110 41551 frege133 41574 binomcxplemnotnn0 41944 imaexi 42731 tgqioo2 43055 sge0f1o 43890 smfco 44303 preimafvelsetpreimafv 44807 fundcmpsurinjlem2 44818 isomuspgrlem2a 45247 |
Copyright terms: Public domain | W3C validator |