![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version |
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
Ref | Expression |
---|---|
imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5733 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
2 | rnexg 7378 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
3 | ssexg 5043 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 581 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3398 ⊆ wss 3792 ran crn 5358 “ cima 5360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-xp 5363 df-cnv 5365 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 |
This theorem is referenced by: imaex 7385 ecexg 8032 fopwdom 8358 gsumvalx 17660 gsum2dlem1 18759 gsum2dlem2 18760 gsum2d 18761 xkococnlem 21875 qtopval 21911 ustuqtop4 22460 utopsnnei 22465 fmucnd 22508 metustel 22767 metustss 22768 metustfbas 22774 metuel2 22782 psmetutop 22784 restmetu 22787 cnheiborlem 23165 itg2gt0 23968 shsval 28747 nlfnval 29316 fnpreimac 30040 ffsrn 30074 gsummpt2co 30346 gsummpt2d 30347 locfinreflem 30509 qqhval 30620 esum2d 30757 mbfmcnt 30932 sitgaddlemb 31012 eulerpartgbij 31036 eulerpartlemgs2 31044 orvcval 31122 coinfliprv 31147 ballotlemrval 31182 ballotlem7 31200 msrval 32038 mthmval 32075 dfrdg2 32293 tailval 32960 bj-clex 33528 isbasisrelowl 33804 relowlpssretop 33810 ptrest 34039 lkrval 35247 isnacs3 38243 pw2f1ocnv 38573 pw2f1o2val 38575 lmhmlnmsplit 38626 intima0 38906 elintima 38912 brtrclfv2 38986 frege98 39221 frege110 39233 frege133 39256 binomcxplemnotnn0 39521 imaexi 40346 tgqioo2 40692 sge0f1o 41533 smfco 41946 isomuspgrlem2a 42751 |
Copyright terms: Public domain | W3C validator |