| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
| Ref | Expression |
|---|---|
| imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6024 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
| 2 | rnexg 7838 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 3 | ssexg 5263 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ran crn 5620 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: imaex 7850 imaexd 7852 ecexg 8632 fopwdom 9005 gsumvalx 18586 gsum2dlem1 19884 gsum2dlem2 19885 gsum2d 19886 xkococnlem 23575 qtopval 23611 ustuqtop4 24160 utopsnnei 24165 fmucnd 24207 metustel 24466 metustss 24467 metustfbas 24473 metuel2 24481 psmetutop 24483 restmetu 24486 cnheiborlem 24881 itg2gt0 25689 shsval 31294 nlfnval 31863 fnpreimac 32655 ffsrn 32715 pwrssmgc 32988 gsummpt2co 33035 gsummpt2d 33036 qusima 33380 elrspunidl 33400 ply1degltdimlem 33656 algextdeglem8 33758 locfinreflem 33874 zarcmplem 33915 rhmpreimacnlem 33918 qqhval 34006 esum2d 34127 mbfmcnt 34302 sitgaddlemb 34382 eulerpartgbij 34406 eulerpartlemgs2 34414 orvcval 34492 coinfliprv 34517 ballotlemrval 34552 ballotlem7 34570 msrval 35603 mthmval 35640 dfrdg2 35858 tailval 36438 bj-clexab 37029 bj-imdirco 37255 isbasisrelowl 37423 relowlpssretop 37429 lkrval 39208 hashscontpow 42236 imacrhmcl 42633 isnacs3 42828 pw2f1ocnv 43155 pw2f1o2val 43157 lmhmlnmsplit 43205 frege98 44079 frege110 44091 frege133 44114 binomcxplemnotnn0 44474 tgqioo2 45672 smfco 46925 preimafvelsetpreimafv 47513 fundcmpsurinjlem2 47524 |
| Copyright terms: Public domain | W3C validator |