|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) | 
| Ref | Expression | 
|---|---|
| imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imassrn 6088 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
| 2 | rnexg 7925 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 3 | ssexg 5322 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 ran crn 5685 “ cima 5687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 | 
| This theorem is referenced by: imaex 7937 imaexd 7939 ecexg 8750 fopwdom 9121 gsumvalx 18690 gsum2dlem1 19989 gsum2dlem2 19990 gsum2d 19991 xkococnlem 23668 qtopval 23704 ustuqtop4 24254 utopsnnei 24259 fmucnd 24302 metustel 24564 metustss 24565 metustfbas 24571 metuel2 24579 psmetutop 24581 restmetu 24584 cnheiborlem 24987 itg2gt0 25796 shsval 31332 nlfnval 31901 fnpreimac 32682 ffsrn 32741 pwrssmgc 32991 gsummpt2co 33052 gsummpt2d 33053 qusima 33437 elrspunidl 33457 ply1degltdimlem 33674 algextdeglem8 33766 locfinreflem 33840 zarcmplem 33881 rhmpreimacnlem 33884 qqhval 33974 esum2d 34095 mbfmcnt 34271 sitgaddlemb 34351 eulerpartgbij 34375 eulerpartlemgs2 34383 orvcval 34461 coinfliprv 34486 ballotlemrval 34521 ballotlem7 34539 msrval 35544 mthmval 35581 dfrdg2 35797 tailval 36375 bj-clexab 36966 bj-imdirco 37192 isbasisrelowl 37360 relowlpssretop 37366 lkrval 39090 hashscontpow 42124 imacrhmcl 42529 isnacs3 42726 pw2f1ocnv 43054 pw2f1o2val 43056 lmhmlnmsplit 43104 frege98 43979 frege110 43991 frege133 44014 binomcxplemnotnn0 44380 tgqioo2 45565 smfco 46822 preimafvelsetpreimafv 47380 fundcmpsurinjlem2 47391 | 
| Copyright terms: Public domain | W3C validator |