| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
| Ref | Expression |
|---|---|
| imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6026 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
| 2 | rnexg 7842 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 3 | ssexg 5265 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ran crn 5624 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: imaex 7854 imaexd 7856 ecexg 8636 fopwdom 9009 gsumvalx 18568 gsum2dlem1 19867 gsum2dlem2 19868 gsum2d 19869 xkococnlem 23562 qtopval 23598 ustuqtop4 24148 utopsnnei 24153 fmucnd 24195 metustel 24454 metustss 24455 metustfbas 24461 metuel2 24469 psmetutop 24471 restmetu 24474 cnheiborlem 24869 itg2gt0 25677 shsval 31274 nlfnval 31843 fnpreimac 32628 ffsrn 32685 pwrssmgc 32955 gsummpt2co 33014 gsummpt2d 33015 qusima 33355 elrspunidl 33375 ply1degltdimlem 33594 algextdeglem8 33690 locfinreflem 33806 zarcmplem 33847 rhmpreimacnlem 33850 qqhval 33938 esum2d 34059 mbfmcnt 34235 sitgaddlemb 34315 eulerpartgbij 34339 eulerpartlemgs2 34347 orvcval 34425 coinfliprv 34450 ballotlemrval 34485 ballotlem7 34503 msrval 35510 mthmval 35547 dfrdg2 35768 tailval 36346 bj-clexab 36937 bj-imdirco 37163 isbasisrelowl 37331 relowlpssretop 37337 lkrval 39066 hashscontpow 42095 imacrhmcl 42487 isnacs3 42683 pw2f1ocnv 43010 pw2f1o2val 43012 lmhmlnmsplit 43060 frege98 43934 frege110 43946 frege133 43969 binomcxplemnotnn0 44329 tgqioo2 45529 smfco 46784 preimafvelsetpreimafv 47373 fundcmpsurinjlem2 47384 |
| Copyright terms: Public domain | W3C validator |