| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaexg | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
| Ref | Expression |
|---|---|
| imaexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6020 | . 2 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
| 2 | rnexg 7832 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 3 | ssexg 5261 | . 2 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ran crn 5617 “ cima 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: imaex 7844 imaexd 7846 ecexg 8626 fopwdom 8998 gsumvalx 18584 gsum2dlem1 19883 gsum2dlem2 19884 gsum2d 19885 xkococnlem 23575 qtopval 23611 ustuqtop4 24160 utopsnnei 24165 fmucnd 24207 metustel 24466 metustss 24467 metustfbas 24473 metuel2 24481 psmetutop 24483 restmetu 24486 cnheiborlem 24881 itg2gt0 25689 shsval 31290 nlfnval 31859 fnpreimac 32651 ffsrn 32709 pwrssmgc 32979 gsummpt2co 33026 gsummpt2d 33027 qusima 33371 elrspunidl 33391 ply1degltdimlem 33633 algextdeglem8 33735 locfinreflem 33851 zarcmplem 33892 rhmpreimacnlem 33895 qqhval 33983 esum2d 34104 mbfmcnt 34279 sitgaddlemb 34359 eulerpartgbij 34383 eulerpartlemgs2 34391 orvcval 34469 coinfliprv 34494 ballotlemrval 34529 ballotlem7 34547 msrval 35580 mthmval 35617 dfrdg2 35835 tailval 36413 bj-clexab 37004 bj-imdirco 37230 isbasisrelowl 37398 relowlpssretop 37404 lkrval 39133 hashscontpow 42161 imacrhmcl 42553 isnacs3 42749 pw2f1ocnv 43076 pw2f1o2val 43078 lmhmlnmsplit 43126 frege98 44000 frege110 44012 frege133 44035 binomcxplemnotnn0 44395 tgqioo2 45593 smfco 46846 preimafvelsetpreimafv 47425 fundcmpsurinjlem2 47436 |
| Copyright terms: Public domain | W3C validator |