Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpmrn | Structured version Visualization version GIF version |
Description: The range of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
elpmrn | ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → ran 𝐹 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpmi 8665 | . . 3 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) | |
2 | 1 | simpld 496 | . 2 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → 𝐹:dom 𝐹⟶𝐴) |
3 | 2 | frnd 6638 | 1 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → ran 𝐹 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ⊆ wss 3892 dom cdm 5600 ran crn 5601 ⟶wf 6454 (class class class)co 7307 ↑pm cpm 8647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-pm 8649 |
This theorem is referenced by: mbfpsssmf 44371 |
Copyright terms: Public domain | W3C validator |