MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islssd Structured version   Visualization version   GIF version

Theorem islssd 20868
Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
islssd.f (𝜑𝐹 = (Scalar‘𝑊))
islssd.b (𝜑𝐵 = (Base‘𝐹))
islssd.v (𝜑𝑉 = (Base‘𝑊))
islssd.p (𝜑+ = (+g𝑊))
islssd.t (𝜑· = ( ·𝑠𝑊))
islssd.s (𝜑𝑆 = (LSubSp‘𝑊))
islssd.u (𝜑𝑈𝑉)
islssd.z (𝜑𝑈 ≠ ∅)
islssd.c ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
Assertion
Ref Expression
islssd (𝜑𝑈𝑆)
Distinct variable groups:   𝑎,𝑏,𝑥,𝜑   𝑈,𝑎,𝑏,𝑥   𝑊,𝑎,𝑏,𝑥   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐵(𝑥)   + (𝑥,𝑎,𝑏)   𝑆(𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑉(𝑥,𝑎,𝑏)

Proof of Theorem islssd
StepHypRef Expression
1 islssd.u . . . 4 (𝜑𝑈𝑉)
2 islssd.v . . . 4 (𝜑𝑉 = (Base‘𝑊))
31, 2sseqtrd 3966 . . 3 (𝜑𝑈 ⊆ (Base‘𝑊))
4 islssd.z . . 3 (𝜑𝑈 ≠ ∅)
5 islssd.c . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
653exp2 1355 . . . . . . . 8 (𝜑 → (𝑥𝐵 → (𝑎𝑈 → (𝑏𝑈 → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))))
76imp43 427 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
87ralrimivva 3175 . . . . . 6 ((𝜑𝑥𝐵) → ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
98ex 412 . . . . 5 (𝜑 → (𝑥𝐵 → ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
10 islssd.b . . . . . . 7 (𝜑𝐵 = (Base‘𝐹))
11 islssd.f . . . . . . . 8 (𝜑𝐹 = (Scalar‘𝑊))
1211fveq2d 6826 . . . . . . 7 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
1310, 12eqtrd 2766 . . . . . 6 (𝜑𝐵 = (Base‘(Scalar‘𝑊)))
1413eleq2d 2817 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘(Scalar‘𝑊))))
15 islssd.p . . . . . . . . 9 (𝜑+ = (+g𝑊))
1615oveqd 7363 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥 · 𝑎)(+g𝑊)𝑏))
17 islssd.t . . . . . . . . . 10 (𝜑· = ( ·𝑠𝑊))
1817oveqd 7363 . . . . . . . . 9 (𝜑 → (𝑥 · 𝑎) = (𝑥( ·𝑠𝑊)𝑎))
1918oveq1d 7361 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑎)(+g𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏))
2016, 19eqtrd 2766 . . . . . . 7 (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏))
2120eleq1d 2816 . . . . . 6 (𝜑 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
22212ralbidv 3196 . . . . 5 (𝜑 → (∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
239, 14, 223imtr3d 293 . . . 4 (𝜑 → (𝑥 ∈ (Base‘(Scalar‘𝑊)) → ∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
2423ralrimiv 3123 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈)
25 eqid 2731 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
26 eqid 2731 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
27 eqid 2731 . . . 4 (Base‘𝑊) = (Base‘𝑊)
28 eqid 2731 . . . 4 (+g𝑊) = (+g𝑊)
29 eqid 2731 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
30 eqid 2731 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
3125, 26, 27, 28, 29, 30islss 20867 . . 3 (𝑈 ∈ (LSubSp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
323, 4, 24, 31syl3anbrc 1344 . 2 (𝜑𝑈 ∈ (LSubSp‘𝑊))
33 islssd.s . 2 (𝜑𝑆 = (LSubSp‘𝑊))
3432, 33eleqtrrd 2834 1 (𝜑𝑈𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wss 3897  c0 4280  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  LSubSpclss 20864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-lss 20865
This theorem is referenced by:  lss1  20871  lsssn0  20881  islss3  20892  lss1d  20896  lssintcl  20897  lspsolvlem  21079  lbsextlem2  21096  mpllsslem  21937  scmatlss  22440  ply1degltlss  33557  drgextlsp  33606  dialss  41093  diblss  41217  diclss  41240  lincolss  48474
  Copyright terms: Public domain W3C validator