MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islssd Structured version   Visualization version   GIF version

Theorem islssd 20933
Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
islssd.f (𝜑𝐹 = (Scalar‘𝑊))
islssd.b (𝜑𝐵 = (Base‘𝐹))
islssd.v (𝜑𝑉 = (Base‘𝑊))
islssd.p (𝜑+ = (+g𝑊))
islssd.t (𝜑· = ( ·𝑠𝑊))
islssd.s (𝜑𝑆 = (LSubSp‘𝑊))
islssd.u (𝜑𝑈𝑉)
islssd.z (𝜑𝑈 ≠ ∅)
islssd.c ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
Assertion
Ref Expression
islssd (𝜑𝑈𝑆)
Distinct variable groups:   𝑎,𝑏,𝑥,𝜑   𝑈,𝑎,𝑏,𝑥   𝑊,𝑎,𝑏,𝑥   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐵(𝑥)   + (𝑥,𝑎,𝑏)   𝑆(𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑉(𝑥,𝑎,𝑏)

Proof of Theorem islssd
StepHypRef Expression
1 islssd.u . . . 4 (𝜑𝑈𝑉)
2 islssd.v . . . 4 (𝜑𝑉 = (Base‘𝑊))
31, 2sseqtrd 4020 . . 3 (𝜑𝑈 ⊆ (Base‘𝑊))
4 islssd.z . . 3 (𝜑𝑈 ≠ ∅)
5 islssd.c . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
653exp2 1355 . . . . . . . 8 (𝜑 → (𝑥𝐵 → (𝑎𝑈 → (𝑏𝑈 → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))))
76imp43 427 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
87ralrimivva 3202 . . . . . 6 ((𝜑𝑥𝐵) → ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
98ex 412 . . . . 5 (𝜑 → (𝑥𝐵 → ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
10 islssd.b . . . . . . 7 (𝜑𝐵 = (Base‘𝐹))
11 islssd.f . . . . . . . 8 (𝜑𝐹 = (Scalar‘𝑊))
1211fveq2d 6910 . . . . . . 7 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
1310, 12eqtrd 2777 . . . . . 6 (𝜑𝐵 = (Base‘(Scalar‘𝑊)))
1413eleq2d 2827 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘(Scalar‘𝑊))))
15 islssd.p . . . . . . . . 9 (𝜑+ = (+g𝑊))
1615oveqd 7448 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥 · 𝑎)(+g𝑊)𝑏))
17 islssd.t . . . . . . . . . 10 (𝜑· = ( ·𝑠𝑊))
1817oveqd 7448 . . . . . . . . 9 (𝜑 → (𝑥 · 𝑎) = (𝑥( ·𝑠𝑊)𝑎))
1918oveq1d 7446 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑎)(+g𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏))
2016, 19eqtrd 2777 . . . . . . 7 (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏))
2120eleq1d 2826 . . . . . 6 (𝜑 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
22212ralbidv 3221 . . . . 5 (𝜑 → (∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
239, 14, 223imtr3d 293 . . . 4 (𝜑 → (𝑥 ∈ (Base‘(Scalar‘𝑊)) → ∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
2423ralrimiv 3145 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈)
25 eqid 2737 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
26 eqid 2737 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
27 eqid 2737 . . . 4 (Base‘𝑊) = (Base‘𝑊)
28 eqid 2737 . . . 4 (+g𝑊) = (+g𝑊)
29 eqid 2737 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
30 eqid 2737 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
3125, 26, 27, 28, 29, 30islss 20932 . . 3 (𝑈 ∈ (LSubSp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
323, 4, 24, 31syl3anbrc 1344 . 2 (𝜑𝑈 ∈ (LSubSp‘𝑊))
33 islssd.s . 2 (𝜑𝑆 = (LSubSp‘𝑊))
3432, 33eleqtrrd 2844 1 (𝜑𝑈𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wss 3951  c0 4333  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  LSubSpclss 20929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-lss 20930
This theorem is referenced by:  lss1  20936  lsssn0  20946  islss3  20957  lss1d  20961  lssintcl  20962  lspsolvlem  21144  lbsextlem2  21161  mpllsslem  22020  scmatlss  22531  ply1degltlss  33617  drgextlsp  33644  dialss  41048  diblss  41172  diclss  41195  lincolss  48351
  Copyright terms: Public domain W3C validator