MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islssd Structured version   Visualization version   GIF version

Theorem islssd 20841
Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
islssd.f (𝜑𝐹 = (Scalar‘𝑊))
islssd.b (𝜑𝐵 = (Base‘𝐹))
islssd.v (𝜑𝑉 = (Base‘𝑊))
islssd.p (𝜑+ = (+g𝑊))
islssd.t (𝜑· = ( ·𝑠𝑊))
islssd.s (𝜑𝑆 = (LSubSp‘𝑊))
islssd.u (𝜑𝑈𝑉)
islssd.z (𝜑𝑈 ≠ ∅)
islssd.c ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
Assertion
Ref Expression
islssd (𝜑𝑈𝑆)
Distinct variable groups:   𝑎,𝑏,𝑥,𝜑   𝑈,𝑎,𝑏,𝑥   𝑊,𝑎,𝑏,𝑥   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐵(𝑥)   + (𝑥,𝑎,𝑏)   𝑆(𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑉(𝑥,𝑎,𝑏)

Proof of Theorem islssd
StepHypRef Expression
1 islssd.u . . . 4 (𝜑𝑈𝑉)
2 islssd.v . . . 4 (𝜑𝑉 = (Base‘𝑊))
31, 2sseqtrd 3983 . . 3 (𝜑𝑈 ⊆ (Base‘𝑊))
4 islssd.z . . 3 (𝜑𝑈 ≠ ∅)
5 islssd.c . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
653exp2 1355 . . . . . . . 8 (𝜑 → (𝑥𝐵 → (𝑎𝑈 → (𝑏𝑈 → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))))
76imp43 427 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
87ralrimivva 3180 . . . . . 6 ((𝜑𝑥𝐵) → ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
98ex 412 . . . . 5 (𝜑 → (𝑥𝐵 → ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
10 islssd.b . . . . . . 7 (𝜑𝐵 = (Base‘𝐹))
11 islssd.f . . . . . . . 8 (𝜑𝐹 = (Scalar‘𝑊))
1211fveq2d 6862 . . . . . . 7 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
1310, 12eqtrd 2764 . . . . . 6 (𝜑𝐵 = (Base‘(Scalar‘𝑊)))
1413eleq2d 2814 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘(Scalar‘𝑊))))
15 islssd.p . . . . . . . . 9 (𝜑+ = (+g𝑊))
1615oveqd 7404 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥 · 𝑎)(+g𝑊)𝑏))
17 islssd.t . . . . . . . . . 10 (𝜑· = ( ·𝑠𝑊))
1817oveqd 7404 . . . . . . . . 9 (𝜑 → (𝑥 · 𝑎) = (𝑥( ·𝑠𝑊)𝑎))
1918oveq1d 7402 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑎)(+g𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏))
2016, 19eqtrd 2764 . . . . . . 7 (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏))
2120eleq1d 2813 . . . . . 6 (𝜑 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
22212ralbidv 3201 . . . . 5 (𝜑 → (∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
239, 14, 223imtr3d 293 . . . 4 (𝜑 → (𝑥 ∈ (Base‘(Scalar‘𝑊)) → ∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
2423ralrimiv 3124 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈)
25 eqid 2729 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
26 eqid 2729 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
27 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
28 eqid 2729 . . . 4 (+g𝑊) = (+g𝑊)
29 eqid 2729 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
30 eqid 2729 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
3125, 26, 27, 28, 29, 30islss 20840 . . 3 (𝑈 ∈ (LSubSp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
323, 4, 24, 31syl3anbrc 1344 . 2 (𝜑𝑈 ∈ (LSubSp‘𝑊))
33 islssd.s . 2 (𝜑𝑆 = (LSubSp‘𝑊))
3432, 33eleqtrrd 2831 1 (𝜑𝑈𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  c0 4296  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223   ·𝑠 cvsca 17224  LSubSpclss 20837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-lss 20838
This theorem is referenced by:  lss1  20844  lsssn0  20854  islss3  20865  lss1d  20869  lssintcl  20870  lspsolvlem  21052  lbsextlem2  21069  mpllsslem  21909  scmatlss  22412  ply1degltlss  33562  drgextlsp  33589  dialss  41040  diblss  41164  diclss  41187  lincolss  48423
  Copyright terms: Public domain W3C validator