MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islssd Structured version   Visualization version   GIF version

Theorem islssd 20817
Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
islssd.f (𝜑𝐹 = (Scalar‘𝑊))
islssd.b (𝜑𝐵 = (Base‘𝐹))
islssd.v (𝜑𝑉 = (Base‘𝑊))
islssd.p (𝜑+ = (+g𝑊))
islssd.t (𝜑· = ( ·𝑠𝑊))
islssd.s (𝜑𝑆 = (LSubSp‘𝑊))
islssd.u (𝜑𝑈𝑉)
islssd.z (𝜑𝑈 ≠ ∅)
islssd.c ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
Assertion
Ref Expression
islssd (𝜑𝑈𝑆)
Distinct variable groups:   𝑎,𝑏,𝑥,𝜑   𝑈,𝑎,𝑏,𝑥   𝑊,𝑎,𝑏,𝑥   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐵(𝑥)   + (𝑥,𝑎,𝑏)   𝑆(𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑉(𝑥,𝑎,𝑏)

Proof of Theorem islssd
StepHypRef Expression
1 islssd.u . . . 4 (𝜑𝑈𝑉)
2 islssd.v . . . 4 (𝜑𝑉 = (Base‘𝑊))
31, 2sseqtrd 3980 . . 3 (𝜑𝑈 ⊆ (Base‘𝑊))
4 islssd.z . . 3 (𝜑𝑈 ≠ ∅)
5 islssd.c . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
653exp2 1355 . . . . . . . 8 (𝜑 → (𝑥𝐵 → (𝑎𝑈 → (𝑏𝑈 → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))))
76imp43 427 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
87ralrimivva 3178 . . . . . 6 ((𝜑𝑥𝐵) → ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
98ex 412 . . . . 5 (𝜑 → (𝑥𝐵 → ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
10 islssd.b . . . . . . 7 (𝜑𝐵 = (Base‘𝐹))
11 islssd.f . . . . . . . 8 (𝜑𝐹 = (Scalar‘𝑊))
1211fveq2d 6844 . . . . . . 7 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
1310, 12eqtrd 2764 . . . . . 6 (𝜑𝐵 = (Base‘(Scalar‘𝑊)))
1413eleq2d 2814 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘(Scalar‘𝑊))))
15 islssd.p . . . . . . . . 9 (𝜑+ = (+g𝑊))
1615oveqd 7386 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥 · 𝑎)(+g𝑊)𝑏))
17 islssd.t . . . . . . . . . 10 (𝜑· = ( ·𝑠𝑊))
1817oveqd 7386 . . . . . . . . 9 (𝜑 → (𝑥 · 𝑎) = (𝑥( ·𝑠𝑊)𝑎))
1918oveq1d 7384 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑎)(+g𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏))
2016, 19eqtrd 2764 . . . . . . 7 (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏))
2120eleq1d 2813 . . . . . 6 (𝜑 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
22212ralbidv 3199 . . . . 5 (𝜑 → (∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
239, 14, 223imtr3d 293 . . . 4 (𝜑 → (𝑥 ∈ (Base‘(Scalar‘𝑊)) → ∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
2423ralrimiv 3124 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈)
25 eqid 2729 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
26 eqid 2729 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
27 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
28 eqid 2729 . . . 4 (+g𝑊) = (+g𝑊)
29 eqid 2729 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
30 eqid 2729 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
3125, 26, 27, 28, 29, 30islss 20816 . . 3 (𝑈 ∈ (LSubSp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
323, 4, 24, 31syl3anbrc 1344 . 2 (𝜑𝑈 ∈ (LSubSp‘𝑊))
33 islssd.s . 2 (𝜑𝑆 = (LSubSp‘𝑊))
3432, 33eleqtrrd 2831 1 (𝜑𝑈𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3911  c0 4292  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  LSubSpclss 20813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-lss 20814
This theorem is referenced by:  lss1  20820  lsssn0  20830  islss3  20841  lss1d  20845  lssintcl  20846  lspsolvlem  21028  lbsextlem2  21045  mpllsslem  21885  scmatlss  22388  ply1degltlss  33535  drgextlsp  33562  dialss  41013  diblss  41137  diclss  41160  lincolss  48396
  Copyright terms: Public domain W3C validator