MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islssd Structured version   Visualization version   GIF version

Theorem islssd 20892
Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
islssd.f (𝜑𝐹 = (Scalar‘𝑊))
islssd.b (𝜑𝐵 = (Base‘𝐹))
islssd.v (𝜑𝑉 = (Base‘𝑊))
islssd.p (𝜑+ = (+g𝑊))
islssd.t (𝜑· = ( ·𝑠𝑊))
islssd.s (𝜑𝑆 = (LSubSp‘𝑊))
islssd.u (𝜑𝑈𝑉)
islssd.z (𝜑𝑈 ≠ ∅)
islssd.c ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
Assertion
Ref Expression
islssd (𝜑𝑈𝑆)
Distinct variable groups:   𝑎,𝑏,𝑥,𝜑   𝑈,𝑎,𝑏,𝑥   𝑊,𝑎,𝑏,𝑥   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐵(𝑥)   + (𝑥,𝑎,𝑏)   𝑆(𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑉(𝑥,𝑎,𝑏)

Proof of Theorem islssd
StepHypRef Expression
1 islssd.u . . . 4 (𝜑𝑈𝑉)
2 islssd.v . . . 4 (𝜑𝑉 = (Base‘𝑊))
31, 2sseqtrd 3995 . . 3 (𝜑𝑈 ⊆ (Base‘𝑊))
4 islssd.z . . 3 (𝜑𝑈 ≠ ∅)
5 islssd.c . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
653exp2 1355 . . . . . . . 8 (𝜑 → (𝑥𝐵 → (𝑎𝑈 → (𝑏𝑈 → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))))
76imp43 427 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
87ralrimivva 3187 . . . . . 6 ((𝜑𝑥𝐵) → ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
98ex 412 . . . . 5 (𝜑 → (𝑥𝐵 → ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
10 islssd.b . . . . . . 7 (𝜑𝐵 = (Base‘𝐹))
11 islssd.f . . . . . . . 8 (𝜑𝐹 = (Scalar‘𝑊))
1211fveq2d 6880 . . . . . . 7 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
1310, 12eqtrd 2770 . . . . . 6 (𝜑𝐵 = (Base‘(Scalar‘𝑊)))
1413eleq2d 2820 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘(Scalar‘𝑊))))
15 islssd.p . . . . . . . . 9 (𝜑+ = (+g𝑊))
1615oveqd 7422 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥 · 𝑎)(+g𝑊)𝑏))
17 islssd.t . . . . . . . . . 10 (𝜑· = ( ·𝑠𝑊))
1817oveqd 7422 . . . . . . . . 9 (𝜑 → (𝑥 · 𝑎) = (𝑥( ·𝑠𝑊)𝑎))
1918oveq1d 7420 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑎)(+g𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏))
2016, 19eqtrd 2770 . . . . . . 7 (𝜑 → ((𝑥 · 𝑎) + 𝑏) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏))
2120eleq1d 2819 . . . . . 6 (𝜑 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
22212ralbidv 3205 . . . . 5 (𝜑 → (∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
239, 14, 223imtr3d 293 . . . 4 (𝜑 → (𝑥 ∈ (Base‘(Scalar‘𝑊)) → ∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
2423ralrimiv 3131 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈)
25 eqid 2735 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
26 eqid 2735 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
27 eqid 2735 . . . 4 (Base‘𝑊) = (Base‘𝑊)
28 eqid 2735 . . . 4 (+g𝑊) = (+g𝑊)
29 eqid 2735 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
30 eqid 2735 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
3125, 26, 27, 28, 29, 30islss 20891 . . 3 (𝑈 ∈ (LSubSp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
323, 4, 24, 31syl3anbrc 1344 . 2 (𝜑𝑈 ∈ (LSubSp‘𝑊))
33 islssd.s . 2 (𝜑𝑆 = (LSubSp‘𝑊))
3432, 33eleqtrrd 2837 1 (𝜑𝑈𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wss 3926  c0 4308  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Scalarcsca 17274   ·𝑠 cvsca 17275  LSubSpclss 20888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-lss 20889
This theorem is referenced by:  lss1  20895  lsssn0  20905  islss3  20916  lss1d  20920  lssintcl  20921  lspsolvlem  21103  lbsextlem2  21120  mpllsslem  21960  scmatlss  22463  ply1degltlss  33606  drgextlsp  33633  dialss  41065  diblss  41189  diclss  41212  lincolss  48410
  Copyright terms: Public domain W3C validator