MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundmen Structured version   Visualization version   GIF version

Theorem fundmen 8975
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypothesis
Ref Expression
fundmen.1 𝐹 ∈ V
Assertion
Ref Expression
fundmen (Fun 𝐹 → dom 𝐹𝐹)

Proof of Theorem fundmen
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundmen.1 . . . 4 𝐹 ∈ V
21dmex 7848 . . 3 dom 𝐹 ∈ V
32a1i 11 . 2 (Fun 𝐹 → dom 𝐹 ∈ V)
41a1i 11 . 2 (Fun 𝐹𝐹 ∈ V)
5 funfvop 7000 . . 3 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
65ex 413 . 2 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹))
7 funrel 6518 . . 3 (Fun 𝐹 → Rel 𝐹)
8 elreldm 5890 . . . 4 ((Rel 𝐹𝑦𝐹) → 𝑦 ∈ dom 𝐹)
98ex 413 . . 3 (Rel 𝐹 → (𝑦𝐹 𝑦 ∈ dom 𝐹))
107, 9syl 17 . 2 (Fun 𝐹 → (𝑦𝐹 𝑦 ∈ dom 𝐹))
11 df-rel 5640 . . . . . . . . 9 (Rel 𝐹𝐹 ⊆ (V × V))
127, 11sylib 217 . . . . . . . 8 (Fun 𝐹𝐹 ⊆ (V × V))
1312sselda 3944 . . . . . . 7 ((Fun 𝐹𝑦𝐹) → 𝑦 ∈ (V × V))
14 elvv 5706 . . . . . . 7 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
1513, 14sylib 217 . . . . . 6 ((Fun 𝐹𝑦𝐹) → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
16 inteq 4910 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑦 = 𝑧, 𝑤⟩)
1716inteqd 4912 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑦 = 𝑧, 𝑤⟩)
18 vex 3449 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
19 vex 3449 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
2018, 19op1stb 5428 . . . . . . . . . . . . . . . 16 𝑧, 𝑤⟩ = 𝑧
2117, 20eqtrdi 2792 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑦 = 𝑧)
22 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 = 𝑧 𝑦 = 𝑧))
2321, 22syl5ibr 245 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑥 = 𝑧))
24 opeq1 4830 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩)
2523, 24syl6 35 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑦 = ⟨𝑧, 𝑤⟩ → ⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩))
2625imp 407 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → ⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩)
27 eqeq2 2748 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩ → (𝑦 = ⟨𝑥, 𝑤⟩ ↔ 𝑦 = ⟨𝑧, 𝑤⟩))
2827biimprcd 249 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩ → 𝑦 = ⟨𝑥, 𝑤⟩))
2928adantl 482 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → (⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩ → 𝑦 = ⟨𝑥, 𝑤⟩))
3026, 29mpd 15 . . . . . . . . . . 11 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → 𝑦 = ⟨𝑥, 𝑤⟩)
3130ancoms 459 . . . . . . . . . 10 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦) → 𝑦 = ⟨𝑥, 𝑤⟩)
3231adantl 482 . . . . . . . . 9 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → 𝑦 = ⟨𝑥, 𝑤⟩)
3330eleq1d 2822 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → (𝑦𝐹 ↔ ⟨𝑥, 𝑤⟩ ∈ 𝐹))
3433adantl 482 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ (𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩)) → (𝑦𝐹 ↔ ⟨𝑥, 𝑤⟩ ∈ 𝐹))
35 funopfv 6894 . . . . . . . . . . . . . . 15 (Fun 𝐹 → (⟨𝑥, 𝑤⟩ ∈ 𝐹 → (𝐹𝑥) = 𝑤))
3635adantr 481 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ (𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩)) → (⟨𝑥, 𝑤⟩ ∈ 𝐹 → (𝐹𝑥) = 𝑤))
3734, 36sylbid 239 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩)) → (𝑦𝐹 → (𝐹𝑥) = 𝑤))
3837exp32 421 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑥 = 𝑦 → (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹 → (𝐹𝑥) = 𝑤))))
3938com24 95 . . . . . . . . . . 11 (Fun 𝐹 → (𝑦𝐹 → (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑥 = 𝑦 → (𝐹𝑥) = 𝑤))))
4039imp43 428 . . . . . . . . . 10 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → (𝐹𝑥) = 𝑤)
4140opeq2d 4837 . . . . . . . . 9 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝑥, 𝑤⟩)
4232, 41eqtr4d 2779 . . . . . . . 8 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → 𝑦 = ⟨𝑥, (𝐹𝑥)⟩)
4342exp32 421 . . . . . . 7 ((Fun 𝐹𝑦𝐹) → (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩)))
4443exlimdvv 1937 . . . . . 6 ((Fun 𝐹𝑦𝐹) → (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩)))
4515, 44mpd 15 . . . . 5 ((Fun 𝐹𝑦𝐹) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩))
4645adantrl 714 . . . 4 ((Fun 𝐹 ∧ (𝑥 ∈ dom 𝐹𝑦𝐹)) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩))
47 inteq 4910 . . . . . 6 (𝑦 = ⟨𝑥, (𝐹𝑥)⟩ → 𝑦 = 𝑥, (𝐹𝑥)⟩)
4847inteqd 4912 . . . . 5 (𝑦 = ⟨𝑥, (𝐹𝑥)⟩ → 𝑦 = 𝑥, (𝐹𝑥)⟩)
49 vex 3449 . . . . . 6 𝑥 ∈ V
50 fvex 6855 . . . . . 6 (𝐹𝑥) ∈ V
5149, 50op1stb 5428 . . . . 5 𝑥, (𝐹𝑥)⟩ = 𝑥
5248, 51eqtr2di 2793 . . . 4 (𝑦 = ⟨𝑥, (𝐹𝑥)⟩ → 𝑥 = 𝑦)
5346, 52impbid1 224 . . 3 ((Fun 𝐹 ∧ (𝑥 ∈ dom 𝐹𝑦𝐹)) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩))
5453ex 413 . 2 (Fun 𝐹 → ((𝑥 ∈ dom 𝐹𝑦𝐹) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩)))
553, 4, 6, 10, 54en3d 8929 1 (Fun 𝐹 → dom 𝐹𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  Vcvv 3445  wss 3910  cop 4592   cint 4907   class class class wbr 5105   × cxp 5631  dom cdm 5633  Rel wrel 5638  Fun wfun 6490  cfv 6496  cen 8880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-en 8884
This theorem is referenced by:  fundmeng  8976  infmap2  10154  heicant  36113
  Copyright terms: Public domain W3C validator