Proof of Theorem dvidlem
Step | Hyp | Ref
| Expression |
1 | | dvfcn 24071 |
. . . 4
⊢ (ℂ
D 𝐹):dom (ℂ D 𝐹)⟶ℂ |
2 | | ssidd 3849 |
. . . . . . 7
⊢ (𝜑 → ℂ ⊆
ℂ) |
3 | | dvidlem.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
4 | 2, 3, 2 | dvbss 24064 |
. . . . . 6
⊢ (𝜑 → dom (ℂ D 𝐹) ⊆
ℂ) |
5 | | reldv 24033 |
. . . . . . 7
⊢ Rel
(ℂ D 𝐹) |
6 | | simpr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) |
7 | | eqid 2825 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
8 | 7 | cnfldtop 22957 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈ Top |
9 | 7 | cnfldtopon 22956 |
. . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
10 | 9 | toponunii 21091 |
. . . . . . . . . . 11
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
11 | 10 | ntrtop 21245 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ∈ Top →
((int‘(TopOpen‘ℂfld))‘ℂ) =
ℂ) |
12 | 8, 11 | ax-mp 5 |
. . . . . . . . 9
⊢
((int‘(TopOpen‘ℂfld))‘ℂ) =
ℂ |
13 | 6, 12 | syl6eleqr 2917 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈
((int‘(TopOpen‘ℂfld))‘ℂ)) |
14 | | limcresi 24048 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ↦ 𝐵) limℂ 𝑥) ⊆ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) limℂ 𝑥) |
15 | | dvidlem.3 |
. . . . . . . . . . . . 13
⊢ 𝐵 ∈ ℂ |
16 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) |
17 | | ssidd 3849 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂ ⊆
ℂ) |
18 | | cncfmptc 23084 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℂ ∧ ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ)) |
19 | 16, 17, 17, 18 | syl3anc 1494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ)) |
20 | | eqidd 2826 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → 𝐵 = 𝐵) |
21 | 19, 6, 20 | cnmptlimc 24053 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ ℂ ↦ 𝐵) limℂ 𝑥)) |
22 | 14, 21 | sseldi 3825 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) limℂ 𝑥)) |
23 | | eldifsn 4536 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (ℂ ∖ {𝑥}) ↔ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) |
24 | | dvidlem.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
25 | 24 | 3exp2 1467 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ ℂ → (𝑧 ∈ ℂ → (𝑧 ≠ 𝑥 → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)))) |
26 | 25 | imp43 420 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
27 | 23, 26 | sylan2b 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑧 ∈ (ℂ ∖ {𝑥})) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
28 | 27 | mpteq2dva 4967 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵)) |
29 | | difss 3964 |
. . . . . . . . . . . 12
⊢ (ℂ
∖ {𝑥}) ⊆
ℂ |
30 | | resmpt 5686 |
. . . . . . . . . . . 12
⊢ ((ℂ
∖ {𝑥}) ⊆
ℂ → ((𝑧 ∈
ℂ ↦ 𝐵) ↾
(ℂ ∖ {𝑥})) =
(𝑧 ∈ (ℂ ∖
{𝑥}) ↦ 𝐵)) |
31 | 29, 30 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖
{𝑥})) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵) |
32 | 28, 31 | syl6eqr 2879 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥}))) |
33 | 32 | oveq1d 6920 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) limℂ 𝑥)) |
34 | 22, 33 | eleqtrrd 2909 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
35 | 9 | toponrestid 21096 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
36 | | eqid 2825 |
. . . . . . . . 9
⊢ (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) |
37 | 3 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐹:ℂ⟶ℂ) |
38 | 35, 7, 36, 17, 37, 17 | eldv 24061 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥(ℂ D 𝐹)𝐵 ↔ (𝑥 ∈
((int‘(TopOpen‘ℂfld))‘ℂ) ∧ 𝐵 ∈ ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
39 | 13, 34, 38 | mpbir2and 704 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥(ℂ D 𝐹)𝐵) |
40 | | releldm 5591 |
. . . . . . 7
⊢ ((Rel
(ℂ D 𝐹) ∧ 𝑥(ℂ D 𝐹)𝐵) → 𝑥 ∈ dom (ℂ D 𝐹)) |
41 | 5, 39, 40 | sylancr 581 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ dom (ℂ D 𝐹)) |
42 | 4, 41 | eqelssd 3847 |
. . . . 5
⊢ (𝜑 → dom (ℂ D 𝐹) = ℂ) |
43 | 42 | feq2d 6264 |
. . . 4
⊢ (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ
D 𝐹):ℂ⟶ℂ)) |
44 | 1, 43 | mpbii 225 |
. . 3
⊢ (𝜑 → (ℂ D 𝐹):ℂ⟶ℂ) |
45 | 44 | ffnd 6279 |
. 2
⊢ (𝜑 → (ℂ D 𝐹) Fn ℂ) |
46 | | fnconstg 6330 |
. . 3
⊢ (𝐵 ∈ ℂ → (ℂ
× {𝐵}) Fn
ℂ) |
47 | 15, 46 | mp1i 13 |
. 2
⊢ (𝜑 → (ℂ × {𝐵}) Fn ℂ) |
48 | | ffun 6281 |
. . . . . 6
⊢ ((ℂ
D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun
(ℂ D 𝐹)) |
49 | 1, 48 | mp1i 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Fun (ℂ D 𝐹)) |
50 | | funbrfvb 6484 |
. . . . 5
⊢ ((Fun
(ℂ D 𝐹) ∧ 𝑥 ∈ dom (ℂ D 𝐹)) → (((ℂ D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(ℂ D 𝐹)𝐵)) |
51 | 49, 41, 50 | syl2anc 579 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((ℂ D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(ℂ D 𝐹)𝐵)) |
52 | 39, 51 | mpbird 249 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = 𝐵) |
53 | 15 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℂ) |
54 | | fvconst2g 6723 |
. . . 4
⊢ ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
((ℂ × {𝐵})‘𝑥) = 𝐵) |
55 | 53, 54 | sylan 575 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ ×
{𝐵})‘𝑥) = 𝐵) |
56 | 52, 55 | eqtr4d 2864 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = ((ℂ × {𝐵})‘𝑥)) |
57 | 45, 47, 56 | eqfnfvd 6563 |
1
⊢ (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵})) |