MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvidlem Structured version   Visualization version   GIF version

Theorem dvidlem 25060
Description: Lemma for dvid 25063 and dvconst 25062. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvidlem.1 (𝜑𝐹:ℂ⟶ℂ)
dvidlem.2 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
dvidlem.3 𝐵 ∈ ℂ
Assertion
Ref Expression
dvidlem (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧

Proof of Theorem dvidlem
StepHypRef Expression
1 dvfcn 25053 . . . 4 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2 ssidd 3948 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
3 dvidlem.1 . . . . . . 7 (𝜑𝐹:ℂ⟶ℂ)
42, 3, 2dvbss 25046 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) ⊆ ℂ)
5 reldv 25015 . . . . . . 7 Rel (ℂ D 𝐹)
6 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
7 eqid 2739 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
87cnfldtop 23928 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
9 unicntop 23930 . . . . . . . . . . 11 ℂ = (TopOpen‘ℂfld)
109ntrtop 22202 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
118, 10ax-mp 5 . . . . . . . . 9 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
126, 11eleqtrrdi 2851 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ))
13 limcresi 25030 . . . . . . . . . 10 ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥) ⊆ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) lim 𝑥)
14 dvidlem.3 . . . . . . . . . . . 12 𝐵 ∈ ℂ
15 ssidd 3948 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ℂ ⊆ ℂ)
16 cncfmptc 24056 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
1714, 15, 15, 16mp3an2i 1464 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
18 eqidd 2740 . . . . . . . . . . 11 (𝑧 = 𝑥𝐵 = 𝐵)
1917, 6, 18cnmptlimc 25035 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥))
2013, 19sselid 3923 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) lim 𝑥))
21 eldifsn 4725 . . . . . . . . . . . . 13 (𝑧 ∈ (ℂ ∖ {𝑥}) ↔ (𝑧 ∈ ℂ ∧ 𝑧𝑥))
22 dvidlem.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
23223exp2 1352 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ → (𝑧 ∈ ℂ → (𝑧𝑥 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵))))
2423imp43 427 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ (𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
2521, 24sylan2b 593 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑧 ∈ (ℂ ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
2625mpteq2dva 5178 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵))
27 difss 4070 . . . . . . . . . . . 12 (ℂ ∖ {𝑥}) ⊆ ℂ
28 resmpt 5942 . . . . . . . . . . . 12 ((ℂ ∖ {𝑥}) ⊆ ℂ → ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵))
2927, 28ax-mp 5 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵)
3026, 29eqtr4di 2797 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})))
3130oveq1d 7283 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) lim 𝑥))
3220, 31eleqtrrd 2843 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
337cnfldtopon 23927 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3433toponrestid 22051 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
35 eqid 2739 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
363adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
3734, 7, 35, 15, 36, 15eldv 25043 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑥(ℂ D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ) ∧ 𝐵 ∈ ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
3812, 32, 37mpbir2and 709 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑥(ℂ D 𝐹)𝐵)
39 releldm 5850 . . . . . . 7 ((Rel (ℂ D 𝐹) ∧ 𝑥(ℂ D 𝐹)𝐵) → 𝑥 ∈ dom (ℂ D 𝐹))
405, 38, 39sylancr 586 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ dom (ℂ D 𝐹))
414, 40eqelssd 3946 . . . . 5 (𝜑 → dom (ℂ D 𝐹) = ℂ)
4241feq2d 6582 . . . 4 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):ℂ⟶ℂ))
431, 42mpbii 232 . . 3 (𝜑 → (ℂ D 𝐹):ℂ⟶ℂ)
4443ffnd 6597 . 2 (𝜑 → (ℂ D 𝐹) Fn ℂ)
45 fnconstg 6658 . . 3 (𝐵 ∈ ℂ → (ℂ × {𝐵}) Fn ℂ)
4614, 45mp1i 13 . 2 (𝜑 → (ℂ × {𝐵}) Fn ℂ)
47 ffun 6599 . . . . . 6 ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun (ℂ D 𝐹))
481, 47mp1i 13 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Fun (ℂ D 𝐹))
49 funbrfvb 6818 . . . . 5 ((Fun (ℂ D 𝐹) ∧ 𝑥 ∈ dom (ℂ D 𝐹)) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5048, 40, 49syl2anc 583 . . . 4 ((𝜑𝑥 ∈ ℂ) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5138, 50mpbird 256 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = 𝐵)
5214a1i 11 . . . 4 (𝜑𝐵 ∈ ℂ)
53 fvconst2g 7071 . . . 4 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
5452, 53sylan 579 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
5551, 54eqtr4d 2782 . 2 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = ((ℂ × {𝐵})‘𝑥))
5644, 46, 55eqfnfvd 6906 1 (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  cdif 3888  wss 3891  {csn 4566   class class class wbr 5078  cmpt 5161   × cxp 5586  dom cdm 5588  cres 5590  Rel wrel 5593  Fun wfun 6424   Fn wfn 6425  wf 6426  cfv 6430  (class class class)co 7268  cc 10853  cmin 11188   / cdiv 11615  TopOpenctopn 17113  fldccnfld 20578  Topctop 22023  intcnt 22149  cnccncf 24020   lim climc 25007   D cdv 25008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fi 9131  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-icc 13068  df-fz 13222  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-mulr 16957  df-starv 16958  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-rest 17114  df-topn 17115  df-topgen 17135  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-fbas 20575  df-fg 20576  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-lp 22268  df-perf 22269  df-cn 22359  df-cnp 22360  df-haus 22447  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-xms 23454  df-ms 23455  df-cncf 24022  df-limc 25011  df-dv 25012
This theorem is referenced by:  dvconst  25062  dvid  25063
  Copyright terms: Public domain W3C validator