MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvidlem Structured version   Visualization version   GIF version

Theorem dvidlem 25823
Description: Lemma for dvid 25826 and dvconst 25825. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvidlem.1 (𝜑𝐹:ℂ⟶ℂ)
dvidlem.2 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
dvidlem.3 𝐵 ∈ ℂ
Assertion
Ref Expression
dvidlem (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧

Proof of Theorem dvidlem
StepHypRef Expression
1 dvfcn 25816 . . . 4 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2 ssidd 3973 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
3 dvidlem.1 . . . . . . 7 (𝜑𝐹:ℂ⟶ℂ)
42, 3, 2dvbss 25809 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) ⊆ ℂ)
5 reldv 25778 . . . . . . 7 Rel (ℂ D 𝐹)
6 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
7 eqid 2730 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
87cnfldtop 24678 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
9 unicntop 24680 . . . . . . . . . . 11 ℂ = (TopOpen‘ℂfld)
109ntrtop 22964 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
118, 10ax-mp 5 . . . . . . . . 9 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
126, 11eleqtrrdi 2840 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ))
13 limcresi 25793 . . . . . . . . . 10 ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥) ⊆ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) lim 𝑥)
14 dvidlem.3 . . . . . . . . . . . 12 𝐵 ∈ ℂ
15 ssidd 3973 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ℂ ⊆ ℂ)
16 cncfmptc 24812 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
1714, 15, 15, 16mp3an2i 1468 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
18 eqidd 2731 . . . . . . . . . . 11 (𝑧 = 𝑥𝐵 = 𝐵)
1917, 6, 18cnmptlimc 25798 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥))
2013, 19sselid 3947 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) lim 𝑥))
21 eldifsn 4753 . . . . . . . . . . . . 13 (𝑧 ∈ (ℂ ∖ {𝑥}) ↔ (𝑧 ∈ ℂ ∧ 𝑧𝑥))
22 dvidlem.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
23223exp2 1355 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ → (𝑧 ∈ ℂ → (𝑧𝑥 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵))))
2423imp43 427 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ (𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
2521, 24sylan2b 594 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑧 ∈ (ℂ ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
2625mpteq2dva 5203 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵))
27 difss 4102 . . . . . . . . . . . 12 (ℂ ∖ {𝑥}) ⊆ ℂ
28 resmpt 6011 . . . . . . . . . . . 12 ((ℂ ∖ {𝑥}) ⊆ ℂ → ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵))
2927, 28ax-mp 5 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵)
3026, 29eqtr4di 2783 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})))
3130oveq1d 7405 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) lim 𝑥))
3220, 31eleqtrrd 2832 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
337cnfldtopon 24677 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3433toponrestid 22815 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
35 eqid 2730 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
363adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
3734, 7, 35, 15, 36, 15eldv 25806 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑥(ℂ D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ) ∧ 𝐵 ∈ ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
3812, 32, 37mpbir2and 713 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑥(ℂ D 𝐹)𝐵)
39 releldm 5911 . . . . . . 7 ((Rel (ℂ D 𝐹) ∧ 𝑥(ℂ D 𝐹)𝐵) → 𝑥 ∈ dom (ℂ D 𝐹))
405, 38, 39sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ dom (ℂ D 𝐹))
414, 40eqelssd 3971 . . . . 5 (𝜑 → dom (ℂ D 𝐹) = ℂ)
4241feq2d 6675 . . . 4 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):ℂ⟶ℂ))
431, 42mpbii 233 . . 3 (𝜑 → (ℂ D 𝐹):ℂ⟶ℂ)
4443ffnd 6692 . 2 (𝜑 → (ℂ D 𝐹) Fn ℂ)
45 fnconstg 6751 . . 3 (𝐵 ∈ ℂ → (ℂ × {𝐵}) Fn ℂ)
4614, 45mp1i 13 . 2 (𝜑 → (ℂ × {𝐵}) Fn ℂ)
47 ffun 6694 . . . . . 6 ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun (ℂ D 𝐹))
481, 47mp1i 13 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Fun (ℂ D 𝐹))
49 funbrfvb 6917 . . . . 5 ((Fun (ℂ D 𝐹) ∧ 𝑥 ∈ dom (ℂ D 𝐹)) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5048, 40, 49syl2anc 584 . . . 4 ((𝜑𝑥 ∈ ℂ) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5138, 50mpbird 257 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = 𝐵)
5214a1i 11 . . . 4 (𝜑𝐵 ∈ ℂ)
53 fvconst2g 7179 . . . 4 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
5452, 53sylan 580 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
5551, 54eqtr4d 2768 . 2 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = ((ℂ × {𝐵})‘𝑥))
5644, 46, 55eqfnfvd 7009 1 (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  cres 5643  Rel wrel 5646  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cmin 11412   / cdiv 11842  TopOpenctopn 17391  fldccnfld 21271  Topctop 22787  intcnt 22911  cnccncf 24776   lim climc 25770   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  dvconst  25825  dvid  25826
  Copyright terms: Public domain W3C validator