Proof of Theorem dvidlem
| Step | Hyp | Ref
| Expression |
| 1 | | dvfcn 25943 |
. . . 4
⊢ (ℂ
D 𝐹):dom (ℂ D 𝐹)⟶ℂ |
| 2 | | ssidd 4007 |
. . . . . . 7
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 3 | | dvidlem.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
| 4 | 2, 3, 2 | dvbss 25936 |
. . . . . 6
⊢ (𝜑 → dom (ℂ D 𝐹) ⊆
ℂ) |
| 5 | | reldv 25905 |
. . . . . . 7
⊢ Rel
(ℂ D 𝐹) |
| 6 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) |
| 7 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 8 | 7 | cnfldtop 24804 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈ Top |
| 9 | | unicntop 24806 |
. . . . . . . . . . 11
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
| 10 | 9 | ntrtop 23078 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ∈ Top →
((int‘(TopOpen‘ℂfld))‘ℂ) =
ℂ) |
| 11 | 8, 10 | ax-mp 5 |
. . . . . . . . 9
⊢
((int‘(TopOpen‘ℂfld))‘ℂ) =
ℂ |
| 12 | 6, 11 | eleqtrrdi 2852 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈
((int‘(TopOpen‘ℂfld))‘ℂ)) |
| 13 | | limcresi 25920 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ↦ 𝐵) limℂ 𝑥) ⊆ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) limℂ 𝑥) |
| 14 | | dvidlem.3 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ ℂ |
| 15 | | ssidd 4007 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂ ⊆
ℂ) |
| 16 | | cncfmptc 24938 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℂ ∧ ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ)) |
| 17 | 14, 15, 15, 16 | mp3an2i 1468 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ)) |
| 18 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → 𝐵 = 𝐵) |
| 19 | 17, 6, 18 | cnmptlimc 25925 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ ℂ ↦ 𝐵) limℂ 𝑥)) |
| 20 | 13, 19 | sselid 3981 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) limℂ 𝑥)) |
| 21 | | eldifsn 4786 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (ℂ ∖ {𝑥}) ↔ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) |
| 22 | | dvidlem.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 23 | 22 | 3exp2 1355 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ ℂ → (𝑧 ∈ ℂ → (𝑧 ≠ 𝑥 → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)))) |
| 24 | 23 | imp43 427 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 25 | 21, 24 | sylan2b 594 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑧 ∈ (ℂ ∖ {𝑥})) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 26 | 25 | mpteq2dva 5242 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵)) |
| 27 | | difss 4136 |
. . . . . . . . . . . 12
⊢ (ℂ
∖ {𝑥}) ⊆
ℂ |
| 28 | | resmpt 6055 |
. . . . . . . . . . . 12
⊢ ((ℂ
∖ {𝑥}) ⊆
ℂ → ((𝑧 ∈
ℂ ↦ 𝐵) ↾
(ℂ ∖ {𝑥})) =
(𝑧 ∈ (ℂ ∖
{𝑥}) ↦ 𝐵)) |
| 29 | 27, 28 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖
{𝑥})) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵) |
| 30 | 26, 29 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥}))) |
| 31 | 30 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) limℂ 𝑥)) |
| 32 | 20, 31 | eleqtrrd 2844 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 33 | 7 | cnfldtopon 24803 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 34 | 33 | toponrestid 22927 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 35 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) |
| 36 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐹:ℂ⟶ℂ) |
| 37 | 34, 7, 35, 15, 36, 15 | eldv 25933 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥(ℂ D 𝐹)𝐵 ↔ (𝑥 ∈
((int‘(TopOpen‘ℂfld))‘ℂ) ∧ 𝐵 ∈ ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
| 38 | 12, 32, 37 | mpbir2and 713 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥(ℂ D 𝐹)𝐵) |
| 39 | | releldm 5955 |
. . . . . . 7
⊢ ((Rel
(ℂ D 𝐹) ∧ 𝑥(ℂ D 𝐹)𝐵) → 𝑥 ∈ dom (ℂ D 𝐹)) |
| 40 | 5, 38, 39 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ dom (ℂ D 𝐹)) |
| 41 | 4, 40 | eqelssd 4005 |
. . . . 5
⊢ (𝜑 → dom (ℂ D 𝐹) = ℂ) |
| 42 | 41 | feq2d 6722 |
. . . 4
⊢ (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ
D 𝐹):ℂ⟶ℂ)) |
| 43 | 1, 42 | mpbii 233 |
. . 3
⊢ (𝜑 → (ℂ D 𝐹):ℂ⟶ℂ) |
| 44 | 43 | ffnd 6737 |
. 2
⊢ (𝜑 → (ℂ D 𝐹) Fn ℂ) |
| 45 | | fnconstg 6796 |
. . 3
⊢ (𝐵 ∈ ℂ → (ℂ
× {𝐵}) Fn
ℂ) |
| 46 | 14, 45 | mp1i 13 |
. 2
⊢ (𝜑 → (ℂ × {𝐵}) Fn ℂ) |
| 47 | | ffun 6739 |
. . . . . 6
⊢ ((ℂ
D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun
(ℂ D 𝐹)) |
| 48 | 1, 47 | mp1i 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Fun (ℂ D 𝐹)) |
| 49 | | funbrfvb 6962 |
. . . . 5
⊢ ((Fun
(ℂ D 𝐹) ∧ 𝑥 ∈ dom (ℂ D 𝐹)) → (((ℂ D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(ℂ D 𝐹)𝐵)) |
| 50 | 48, 40, 49 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((ℂ D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(ℂ D 𝐹)𝐵)) |
| 51 | 38, 50 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = 𝐵) |
| 52 | 14 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 53 | | fvconst2g 7222 |
. . . 4
⊢ ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
((ℂ × {𝐵})‘𝑥) = 𝐵) |
| 54 | 52, 53 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ ×
{𝐵})‘𝑥) = 𝐵) |
| 55 | 51, 54 | eqtr4d 2780 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = ((ℂ × {𝐵})‘𝑥)) |
| 56 | 44, 46, 55 | eqfnfvd 7054 |
1
⊢ (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵})) |