MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsghm Structured version   Visualization version   GIF version

Theorem lmodvsghm 20099
Description: Scalar multiplication of the vector space by a fixed scalar is an endomorphism of the additive group of vectors. (Contributed by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
lmodvsghm.v 𝑉 = (Base‘𝑊)
lmodvsghm.f 𝐹 = (Scalar‘𝑊)
lmodvsghm.s · = ( ·𝑠𝑊)
lmodvsghm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvsghm ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑥𝑉 ↦ (𝑅 · 𝑥)) ∈ (𝑊 GrpHom 𝑊))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥, ·   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem lmodvsghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodvsghm.v . 2 𝑉 = (Base‘𝑊)
2 eqid 2738 . 2 (+g𝑊) = (+g𝑊)
3 lmodgrp 20045 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
43adantr 480 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → 𝑊 ∈ Grp)
5 lmodvsghm.f . . . . 5 𝐹 = (Scalar‘𝑊)
6 lmodvsghm.s . . . . 5 · = ( ·𝑠𝑊)
7 lmodvsghm.k . . . . 5 𝐾 = (Base‘𝐹)
81, 5, 6, 7lmodvscl 20055 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑥𝑉) → (𝑅 · 𝑥) ∈ 𝑉)
983expa 1116 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ 𝑥𝑉) → (𝑅 · 𝑥) ∈ 𝑉)
109fmpttd 6971 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑥𝑉 ↦ (𝑅 · 𝑥)):𝑉𝑉)
111, 2, 5, 6, 7lmodvsdi 20061 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑦𝑉𝑧𝑉)) → (𝑅 · (𝑦(+g𝑊)𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
12113exp2 1352 . . . 4 (𝑊 ∈ LMod → (𝑅𝐾 → (𝑦𝑉 → (𝑧𝑉 → (𝑅 · (𝑦(+g𝑊)𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧))))))
1312imp43 427 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → (𝑅 · (𝑦(+g𝑊)𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
141, 2lmodvacl 20052 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑦𝑉𝑧𝑉) → (𝑦(+g𝑊)𝑧) ∈ 𝑉)
15143expb 1118 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(+g𝑊)𝑧) ∈ 𝑉)
1615adantlr 711 . . . 4 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(+g𝑊)𝑧) ∈ 𝑉)
17 oveq2 7263 . . . . 5 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑅 · 𝑥) = (𝑅 · (𝑦(+g𝑊)𝑧)))
18 eqid 2738 . . . . 5 (𝑥𝑉 ↦ (𝑅 · 𝑥)) = (𝑥𝑉 ↦ (𝑅 · 𝑥))
19 ovex 7288 . . . . 5 (𝑅 · (𝑦(+g𝑊)𝑧)) ∈ V
2017, 18, 19fvmpt 6857 . . . 4 ((𝑦(+g𝑊)𝑧) ∈ 𝑉 → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘(𝑦(+g𝑊)𝑧)) = (𝑅 · (𝑦(+g𝑊)𝑧)))
2116, 20syl 17 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘(𝑦(+g𝑊)𝑧)) = (𝑅 · (𝑦(+g𝑊)𝑧)))
22 oveq2 7263 . . . . . 6 (𝑥 = 𝑦 → (𝑅 · 𝑥) = (𝑅 · 𝑦))
23 ovex 7288 . . . . . 6 (𝑅 · 𝑦) ∈ V
2422, 18, 23fvmpt 6857 . . . . 5 (𝑦𝑉 → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦) = (𝑅 · 𝑦))
25 oveq2 7263 . . . . . 6 (𝑥 = 𝑧 → (𝑅 · 𝑥) = (𝑅 · 𝑧))
26 ovex 7288 . . . . . 6 (𝑅 · 𝑧) ∈ V
2725, 18, 26fvmpt 6857 . . . . 5 (𝑧𝑉 → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧) = (𝑅 · 𝑧))
2824, 27oveqan12d 7274 . . . 4 ((𝑦𝑉𝑧𝑉) → (((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦)(+g𝑊)((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
2928adantl 481 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → (((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦)(+g𝑊)((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
3013, 21, 293eqtr4d 2788 . 2 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘(𝑦(+g𝑊)𝑧)) = (((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦)(+g𝑊)((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧)))
311, 1, 2, 2, 4, 4, 10, 30isghmd 18758 1 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑥𝑉 ↦ (𝑅 · 𝑥)) ∈ (𝑊 GrpHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cmpt 5153  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  Grpcgrp 18492   GrpHom cghm 18746  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ghm 18747  df-lmod 20040
This theorem is referenced by:  gsumvsmul  20102  lmhmvsca  20222
  Copyright terms: Public domain W3C validator