MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsghm Structured version   Visualization version   GIF version

Theorem lmodvsghm 20836
Description: Scalar multiplication of the vector space by a fixed scalar is an endomorphism of the additive group of vectors. (Contributed by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
lmodvsghm.v 𝑉 = (Base‘𝑊)
lmodvsghm.f 𝐹 = (Scalar‘𝑊)
lmodvsghm.s · = ( ·𝑠𝑊)
lmodvsghm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvsghm ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑥𝑉 ↦ (𝑅 · 𝑥)) ∈ (𝑊 GrpHom 𝑊))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥, ·   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem lmodvsghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodvsghm.v . 2 𝑉 = (Base‘𝑊)
2 eqid 2730 . 2 (+g𝑊) = (+g𝑊)
3 lmodgrp 20780 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
43adantr 480 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → 𝑊 ∈ Grp)
5 lmodvsghm.f . . . . 5 𝐹 = (Scalar‘𝑊)
6 lmodvsghm.s . . . . 5 · = ( ·𝑠𝑊)
7 lmodvsghm.k . . . . 5 𝐾 = (Base‘𝐹)
81, 5, 6, 7lmodvscl 20791 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑥𝑉) → (𝑅 · 𝑥) ∈ 𝑉)
983expa 1118 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ 𝑥𝑉) → (𝑅 · 𝑥) ∈ 𝑉)
109fmpttd 7090 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑥𝑉 ↦ (𝑅 · 𝑥)):𝑉𝑉)
111, 2, 5, 6, 7lmodvsdi 20798 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑦𝑉𝑧𝑉)) → (𝑅 · (𝑦(+g𝑊)𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
12113exp2 1355 . . . 4 (𝑊 ∈ LMod → (𝑅𝐾 → (𝑦𝑉 → (𝑧𝑉 → (𝑅 · (𝑦(+g𝑊)𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧))))))
1312imp43 427 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → (𝑅 · (𝑦(+g𝑊)𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
141, 2lmodvacl 20788 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑦𝑉𝑧𝑉) → (𝑦(+g𝑊)𝑧) ∈ 𝑉)
15143expb 1120 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(+g𝑊)𝑧) ∈ 𝑉)
1615adantlr 715 . . . 4 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(+g𝑊)𝑧) ∈ 𝑉)
17 oveq2 7398 . . . . 5 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑅 · 𝑥) = (𝑅 · (𝑦(+g𝑊)𝑧)))
18 eqid 2730 . . . . 5 (𝑥𝑉 ↦ (𝑅 · 𝑥)) = (𝑥𝑉 ↦ (𝑅 · 𝑥))
19 ovex 7423 . . . . 5 (𝑅 · (𝑦(+g𝑊)𝑧)) ∈ V
2017, 18, 19fvmpt 6971 . . . 4 ((𝑦(+g𝑊)𝑧) ∈ 𝑉 → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘(𝑦(+g𝑊)𝑧)) = (𝑅 · (𝑦(+g𝑊)𝑧)))
2116, 20syl 17 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘(𝑦(+g𝑊)𝑧)) = (𝑅 · (𝑦(+g𝑊)𝑧)))
22 oveq2 7398 . . . . . 6 (𝑥 = 𝑦 → (𝑅 · 𝑥) = (𝑅 · 𝑦))
23 ovex 7423 . . . . . 6 (𝑅 · 𝑦) ∈ V
2422, 18, 23fvmpt 6971 . . . . 5 (𝑦𝑉 → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦) = (𝑅 · 𝑦))
25 oveq2 7398 . . . . . 6 (𝑥 = 𝑧 → (𝑅 · 𝑥) = (𝑅 · 𝑧))
26 ovex 7423 . . . . . 6 (𝑅 · 𝑧) ∈ V
2725, 18, 26fvmpt 6971 . . . . 5 (𝑧𝑉 → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧) = (𝑅 · 𝑧))
2824, 27oveqan12d 7409 . . . 4 ((𝑦𝑉𝑧𝑉) → (((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦)(+g𝑊)((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
2928adantl 481 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → (((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦)(+g𝑊)((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
3013, 21, 293eqtr4d 2775 . 2 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘(𝑦(+g𝑊)𝑧)) = (((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦)(+g𝑊)((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧)))
311, 1, 2, 2, 4, 4, 10, 30isghmd 19164 1 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑥𝑉 ↦ (𝑅 · 𝑥)) ∈ (𝑊 GrpHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5191  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  Grpcgrp 18872   GrpHom cghm 19151  LModclmod 20773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-ghm 19152  df-lmod 20775
This theorem is referenced by:  gsumvsmul  20839  lmhmvsca  20959
  Copyright terms: Public domain W3C validator