MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfuncd Structured version   Visualization version   GIF version

Theorem isfuncd 17772
Description: Deduce that an operation is a functor of categories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
isfunc.b 𝐵 = (Base‘𝐷)
isfunc.c 𝐶 = (Base‘𝐸)
isfunc.h 𝐻 = (Hom ‘𝐷)
isfunc.j 𝐽 = (Hom ‘𝐸)
isfunc.1 1 = (Id‘𝐷)
isfunc.i 𝐼 = (Id‘𝐸)
isfunc.x · = (comp‘𝐷)
isfunc.o 𝑂 = (comp‘𝐸)
isfunc.d (𝜑𝐷 ∈ Cat)
isfunc.e (𝜑𝐸 ∈ Cat)
isfuncd.1 (𝜑𝐹:𝐵𝐶)
isfuncd.2 (𝜑𝐺 Fn (𝐵 × 𝐵))
isfuncd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
isfuncd.4 ((𝜑𝑥𝐵) → ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)))
isfuncd.5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧))) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))
Assertion
Ref Expression
isfuncd (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝑧,𝐵   𝐷,𝑚,𝑛,𝑥,𝑦,𝑧   𝑚,𝐸,𝑛,𝑥,𝑦,𝑧   𝑚,𝐻,𝑛,𝑥,𝑦,𝑧   𝑚,𝐹,𝑛,𝑥,𝑦,𝑧   𝑚,𝐺,𝑛,𝑥,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝜑,𝑚,𝑛,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑚,𝑛)   · (𝑥,𝑦,𝑧,𝑚,𝑛)   1 (𝑥,𝑦,𝑧,𝑚,𝑛)   𝐼(𝑥,𝑦,𝑧,𝑚,𝑛)   𝐽(𝑚,𝑛)   𝑂(𝑥,𝑦,𝑧,𝑚,𝑛)

Proof of Theorem isfuncd
StepHypRef Expression
1 isfuncd.1 . 2 (𝜑𝐹:𝐵𝐶)
2 isfuncd.2 . . . 4 (𝜑𝐺 Fn (𝐵 × 𝐵))
3 isfunc.b . . . . . 6 𝐵 = (Base‘𝐷)
43fvexi 6836 . . . . 5 𝐵 ∈ V
54, 4xpex 7686 . . . 4 (𝐵 × 𝐵) ∈ V
6 fnex 7151 . . . 4 ((𝐺 Fn (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ∈ V) → 𝐺 ∈ V)
72, 5, 6sylancl 586 . . 3 (𝜑𝐺 ∈ V)
8 isfuncd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
9 ovex 7379 . . . . . . 7 ((𝐹𝑥)𝐽(𝐹𝑦)) ∈ V
10 ovex 7379 . . . . . . 7 (𝑥𝐻𝑦) ∈ V
119, 10elmap 8795 . . . . . 6 ((𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
128, 11sylibr 234 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)))
1312ralrimivva 3175 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)))
14 fveq2 6822 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝐺‘⟨𝑥, 𝑦⟩))
15 df-ov 7349 . . . . . . 7 (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩)
1614, 15eqtr4di 2784 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝑥𝐺𝑦))
17 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
18 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
1917, 18op1std 7931 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
2019fveq2d 6826 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘(1st𝑧)) = (𝐹𝑥))
2117, 18op2ndd 7932 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
2221fveq2d 6826 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘(2nd𝑧)) = (𝐹𝑦))
2320, 22oveq12d 7364 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) = ((𝐹𝑥)𝐽(𝐹𝑦)))
24 fveq2 6822 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
25 df-ov 7349 . . . . . . . 8 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
2624, 25eqtr4di 2784 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
2723, 26oveq12d 7364 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) = (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)))
2816, 27eleq12d 2825 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦))))
2928ralxp 5780 . . . 4 (∀𝑧 ∈ (𝐵 × 𝐵)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)))
3013, 29sylibr 234 . . 3 (𝜑 → ∀𝑧 ∈ (𝐵 × 𝐵)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))
31 elixp2 8825 . . 3 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ (𝐵 × 𝐵)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))))
327, 2, 30, 31syl3anbrc 1344 . 2 (𝜑𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))
33 isfuncd.4 . . . 4 ((𝜑𝑥𝐵) → ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)))
34 isfuncd.5 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧))) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))
35343expia 1121 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧)) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
36353exp2 1355 . . . . . . 7 (𝜑 → (𝑥𝐵 → (𝑦𝐵 → (𝑧𝐵 → ((𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧)) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))))))
3736imp43 427 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧)) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
3837ralrimivv 3173 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))
3938ralrimivva 3175 . . . 4 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))
4033, 39jca 511 . . 3 ((𝜑𝑥𝐵) → (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
4140ralrimiva 3124 . 2 (𝜑 → ∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
42 isfunc.c . . 3 𝐶 = (Base‘𝐸)
43 isfunc.h . . 3 𝐻 = (Hom ‘𝐷)
44 isfunc.j . . 3 𝐽 = (Hom ‘𝐸)
45 isfunc.1 . . 3 1 = (Id‘𝐷)
46 isfunc.i . . 3 𝐼 = (Id‘𝐸)
47 isfunc.x . . 3 · = (comp‘𝐷)
48 isfunc.o . . 3 𝑂 = (comp‘𝐸)
49 isfunc.d . . 3 (𝜑𝐷 ∈ Cat)
50 isfunc.e . . 3 (𝜑𝐸 ∈ Cat)
513, 42, 43, 44, 45, 46, 47, 48, 49, 50isfunc 17771 . 2 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵𝐶𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
521, 32, 41, 51mpbir3and 1343 1 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cop 4579   class class class wbr 5089   × cxp 5612   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  m cmap 8750  Xcixp 8821  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-func 17765
This theorem is referenced by:  funcoppc  17782  funcres  17803  catcisolem  18017  funcestrcsetc  18055  funcsetcestrc  18070  1stfcl  18103  2ndfcl  18104  prfcl  18109  evlfcl  18128  curf1cl  18134  curfcl  18138  hofcl  18165  funcringcsetcALTV2  48409  funcringcsetcALTV  48432  swapffunc  49393  fucofunc  49470  fucoppc  49521
  Copyright terms: Public domain W3C validator