MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfuncd Structured version   Visualization version   GIF version

Theorem isfuncd 17854
Description: Deduce that an operation is a functor of categories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
isfunc.b 𝐵 = (Base‘𝐷)
isfunc.c 𝐶 = (Base‘𝐸)
isfunc.h 𝐻 = (Hom ‘𝐷)
isfunc.j 𝐽 = (Hom ‘𝐸)
isfunc.1 1 = (Id‘𝐷)
isfunc.i 𝐼 = (Id‘𝐸)
isfunc.x · = (comp‘𝐷)
isfunc.o 𝑂 = (comp‘𝐸)
isfunc.d (𝜑𝐷 ∈ Cat)
isfunc.e (𝜑𝐸 ∈ Cat)
isfuncd.1 (𝜑𝐹:𝐵𝐶)
isfuncd.2 (𝜑𝐺 Fn (𝐵 × 𝐵))
isfuncd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
isfuncd.4 ((𝜑𝑥𝐵) → ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)))
isfuncd.5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧))) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))
Assertion
Ref Expression
isfuncd (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝑧,𝐵   𝐷,𝑚,𝑛,𝑥,𝑦,𝑧   𝑚,𝐸,𝑛,𝑥,𝑦,𝑧   𝑚,𝐻,𝑛,𝑥,𝑦,𝑧   𝑚,𝐹,𝑛,𝑥,𝑦,𝑧   𝑚,𝐺,𝑛,𝑥,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝜑,𝑚,𝑛,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑚,𝑛)   · (𝑥,𝑦,𝑧,𝑚,𝑛)   1 (𝑥,𝑦,𝑧,𝑚,𝑛)   𝐼(𝑥,𝑦,𝑧,𝑚,𝑛)   𝐽(𝑚,𝑛)   𝑂(𝑥,𝑦,𝑧,𝑚,𝑛)

Proof of Theorem isfuncd
StepHypRef Expression
1 isfuncd.1 . 2 (𝜑𝐹:𝐵𝐶)
2 isfuncd.2 . . . 4 (𝜑𝐺 Fn (𝐵 × 𝐵))
3 isfunc.b . . . . . 6 𝐵 = (Base‘𝐷)
43fvexi 6910 . . . . 5 𝐵 ∈ V
54, 4xpex 7756 . . . 4 (𝐵 × 𝐵) ∈ V
6 fnex 7229 . . . 4 ((𝐺 Fn (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ∈ V) → 𝐺 ∈ V)
72, 5, 6sylancl 584 . . 3 (𝜑𝐺 ∈ V)
8 isfuncd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
9 ovex 7452 . . . . . . 7 ((𝐹𝑥)𝐽(𝐹𝑦)) ∈ V
10 ovex 7452 . . . . . . 7 (𝑥𝐻𝑦) ∈ V
119, 10elmap 8890 . . . . . 6 ((𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
128, 11sylibr 233 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)))
1312ralrimivva 3190 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)))
14 fveq2 6896 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝐺‘⟨𝑥, 𝑦⟩))
15 df-ov 7422 . . . . . . 7 (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩)
1614, 15eqtr4di 2783 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝑥𝐺𝑦))
17 vex 3465 . . . . . . . . . 10 𝑥 ∈ V
18 vex 3465 . . . . . . . . . 10 𝑦 ∈ V
1917, 18op1std 8004 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
2019fveq2d 6900 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘(1st𝑧)) = (𝐹𝑥))
2117, 18op2ndd 8005 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
2221fveq2d 6900 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘(2nd𝑧)) = (𝐹𝑦))
2320, 22oveq12d 7437 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) = ((𝐹𝑥)𝐽(𝐹𝑦)))
24 fveq2 6896 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
25 df-ov 7422 . . . . . . . 8 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
2624, 25eqtr4di 2783 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
2723, 26oveq12d 7437 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) = (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)))
2816, 27eleq12d 2819 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦))))
2928ralxp 5844 . . . 4 (∀𝑧 ∈ (𝐵 × 𝐵)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)))
3013, 29sylibr 233 . . 3 (𝜑 → ∀𝑧 ∈ (𝐵 × 𝐵)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))
31 elixp2 8920 . . 3 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ (𝐵 × 𝐵)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))))
327, 2, 30, 31syl3anbrc 1340 . 2 (𝜑𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))
33 isfuncd.4 . . . 4 ((𝜑𝑥𝐵) → ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)))
34 isfuncd.5 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧))) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))
35343expia 1118 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧)) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
36353exp2 1351 . . . . . . 7 (𝜑 → (𝑥𝐵 → (𝑦𝐵 → (𝑧𝐵 → ((𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧)) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))))))
3736imp43 426 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧)) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
3837ralrimivv 3188 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))
3938ralrimivva 3190 . . . 4 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))
4033, 39jca 510 . . 3 ((𝜑𝑥𝐵) → (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
4140ralrimiva 3135 . 2 (𝜑 → ∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
42 isfunc.c . . 3 𝐶 = (Base‘𝐸)
43 isfunc.h . . 3 𝐻 = (Hom ‘𝐷)
44 isfunc.j . . 3 𝐽 = (Hom ‘𝐸)
45 isfunc.1 . . 3 1 = (Id‘𝐷)
46 isfunc.i . . 3 𝐼 = (Id‘𝐸)
47 isfunc.x . . 3 · = (comp‘𝐷)
48 isfunc.o . . 3 𝑂 = (comp‘𝐸)
49 isfunc.d . . 3 (𝜑𝐷 ∈ Cat)
50 isfunc.e . . 3 (𝜑𝐸 ∈ Cat)
513, 42, 43, 44, 45, 46, 47, 48, 49, 50isfunc 17853 . 2 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵𝐶𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
521, 32, 41, 51mpbir3and 1339 1 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  cop 4636   class class class wbr 5149   × cxp 5676   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  1st c1st 7992  2nd c2nd 7993  m cmap 8845  Xcixp 8916  Basecbs 17183  Hom chom 17247  compcco 17248  Catccat 17647  Idccid 17648   Func cfunc 17843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-map 8847  df-ixp 8917  df-func 17847
This theorem is referenced by:  funcoppc  17864  funcres  17885  catcisolem  18102  funcestrcsetc  18143  funcsetcestrc  18158  1stfcl  18191  2ndfcl  18192  prfcl  18197  evlfcl  18217  curf1cl  18223  curfcl  18227  hofcl  18254  funcringcsetcALTV2  47544  funcringcsetcALTV  47567
  Copyright terms: Public domain W3C validator