Proof of Theorem isfuncd
Step | Hyp | Ref
| Expression |
1 | | isfuncd.1 |
. 2
⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
2 | | isfuncd.2 |
. . . 4
⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
3 | | isfunc.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐷) |
4 | 3 | fvexi 6770 |
. . . . 5
⊢ 𝐵 ∈ V |
5 | 4, 4 | xpex 7581 |
. . . 4
⊢ (𝐵 × 𝐵) ∈ V |
6 | | fnex 7075 |
. . . 4
⊢ ((𝐺 Fn (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ∈ V) → 𝐺 ∈ V) |
7 | 2, 5, 6 | sylancl 585 |
. . 3
⊢ (𝜑 → 𝐺 ∈ V) |
8 | | isfuncd.3 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
9 | | ovex 7288 |
. . . . . . 7
⊢ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∈ V |
10 | | ovex 7288 |
. . . . . . 7
⊢ (𝑥𝐻𝑦) ∈ V |
11 | 9, 10 | elmap 8617 |
. . . . . 6
⊢ ((𝑥𝐺𝑦) ∈ (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↑m (𝑥𝐻𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
12 | 8, 11 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐺𝑦) ∈ (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↑m (𝑥𝐻𝑦))) |
13 | 12 | ralrimivva 3114 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦) ∈ (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↑m (𝑥𝐻𝑦))) |
14 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐺‘𝑧) = (𝐺‘〈𝑥, 𝑦〉)) |
15 | | df-ov 7258 |
. . . . . . 7
⊢ (𝑥𝐺𝑦) = (𝐺‘〈𝑥, 𝑦〉) |
16 | 14, 15 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐺‘𝑧) = (𝑥𝐺𝑦)) |
17 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
18 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
19 | 17, 18 | op1std 7814 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
20 | 19 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘(1st ‘𝑧)) = (𝐹‘𝑥)) |
21 | 17, 18 | op2ndd 7815 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
22 | 21 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘(2nd ‘𝑧)) = (𝐹‘𝑦)) |
23 | 20, 22 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
24 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐻‘𝑧) = (𝐻‘〈𝑥, 𝑦〉)) |
25 | | df-ov 7258 |
. . . . . . . 8
⊢ (𝑥𝐻𝑦) = (𝐻‘〈𝑥, 𝑦〉) |
26 | 24, 25 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐻‘𝑧) = (𝑥𝐻𝑦)) |
27 | 23, 26 | oveq12d 7273 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) = (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↑m (𝑥𝐻𝑦))) |
28 | 16, 27 | eleq12d 2833 |
. . . . 5
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐺‘𝑧) ∈ (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝑥𝐺𝑦) ∈ (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↑m (𝑥𝐻𝑦)))) |
29 | 28 | ralxp 5739 |
. . . 4
⊢
(∀𝑧 ∈
(𝐵 × 𝐵)(𝐺‘𝑧) ∈ (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦) ∈ (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↑m (𝑥𝐻𝑦))) |
30 | 13, 29 | sylibr 233 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ (𝐵 × 𝐵)(𝐺‘𝑧) ∈ (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
31 | | elixp2 8647 |
. . 3
⊢ (𝐺 ∈ X𝑧 ∈
(𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ (𝐵 × 𝐵)(𝐺‘𝑧) ∈ (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)))) |
32 | 7, 2, 30, 31 | syl3anbrc 1341 |
. 2
⊢ (𝜑 → 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
33 | | isfuncd.4 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
34 | | isfuncd.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧))) → ((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))) |
35 | 34 | 3expia 1119 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧)) → ((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) |
36 | 35 | 3exp2 1352 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑦 ∈ 𝐵 → (𝑧 ∈ 𝐵 → ((𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧)) → ((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))))) |
37 | 36 | imp43 427 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧)) → ((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) |
38 | 37 | ralrimivv 3113 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))) |
39 | 38 | ralrimivva 3114 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))) |
40 | 33, 39 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) |
41 | 40 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) |
42 | | isfunc.c |
. . 3
⊢ 𝐶 = (Base‘𝐸) |
43 | | isfunc.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐷) |
44 | | isfunc.j |
. . 3
⊢ 𝐽 = (Hom ‘𝐸) |
45 | | isfunc.1 |
. . 3
⊢ 1 =
(Id‘𝐷) |
46 | | isfunc.i |
. . 3
⊢ 𝐼 = (Id‘𝐸) |
47 | | isfunc.x |
. . 3
⊢ · =
(comp‘𝐷) |
48 | | isfunc.o |
. . 3
⊢ 𝑂 = (comp‘𝐸) |
49 | | isfunc.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ Cat) |
50 | | isfunc.e |
. . 3
⊢ (𝜑 → 𝐸 ∈ Cat) |
51 | 3, 42, 43, 44, 45, 46, 47, 48, 49, 50 | isfunc 17495 |
. 2
⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
52 | 1, 32, 41, 51 | mpbir3and 1340 |
1
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |