MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj Structured version   Visualization version   GIF version

Theorem neindisj 21727
Description: Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
neindisj (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁𝑆) ≠ ∅)

Proof of Theorem neindisj
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . . 8 𝑋 = 𝐽
21clsss3 21669 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
32sseld 3968 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃𝑋))
43impr 457 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → 𝑃𝑋)
51isneip 21715 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
64, 5syldan 593 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
7 3anass 1091 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ↔ (𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))))
81clsndisj 21685 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔𝐽𝑃𝑔)) → (𝑔𝑆) ≠ ∅)
97, 8sylanbr 584 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ (𝑔𝐽𝑃𝑔)) → (𝑔𝑆) ≠ ∅)
109anassrs 470 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑔𝐽) ∧ 𝑃𝑔) → (𝑔𝑆) ≠ ∅)
1110adantllr 717 . . . . . . . 8 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ 𝑃𝑔) → (𝑔𝑆) ≠ ∅)
1211adantrr 715 . . . . . . 7 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → (𝑔𝑆) ≠ ∅)
13 ssdisj 4411 . . . . . . . . . 10 ((𝑔𝑁 ∧ (𝑁𝑆) = ∅) → (𝑔𝑆) = ∅)
1413ex 415 . . . . . . . . 9 (𝑔𝑁 → ((𝑁𝑆) = ∅ → (𝑔𝑆) = ∅))
1514necon3d 3039 . . . . . . . 8 (𝑔𝑁 → ((𝑔𝑆) ≠ ∅ → (𝑁𝑆) ≠ ∅))
1615ad2antll 727 . . . . . . 7 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → ((𝑔𝑆) ≠ ∅ → (𝑁𝑆) ≠ ∅))
1712, 16mpd 15 . . . . . 6 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → (𝑁𝑆) ≠ ∅)
1817rexlimdva2 3289 . . . . 5 (((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) → (∃𝑔𝐽 (𝑃𝑔𝑔𝑁) → (𝑁𝑆) ≠ ∅))
1918expimpd 456 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) → (𝑁𝑆) ≠ ∅))
206, 19sylbid 242 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑆) ≠ ∅))
2120exp32 423 . 2 (𝐽 ∈ Top → (𝑆𝑋 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑆) ≠ ∅))))
2221imp43 430 1 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141  cin 3937  wss 3938  c0 4293  {csn 4569   cuni 4840  cfv 6357  Topctop 21503  clsccl 21628  neicnei 21707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-top 21504  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708
This theorem is referenced by:  clslp  21758  flimclslem  22594  utop3cls  22862
  Copyright terms: Public domain W3C validator