MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj Structured version   Visualization version   GIF version

Theorem neindisj 21722
Description: Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
neindisj (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁𝑆) ≠ ∅)

Proof of Theorem neindisj
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . . 8 𝑋 = 𝐽
21clsss3 21664 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
32sseld 3914 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃𝑋))
43impr 458 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → 𝑃𝑋)
51isneip 21710 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
64, 5syldan 594 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
7 3anass 1092 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ↔ (𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))))
81clsndisj 21680 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔𝐽𝑃𝑔)) → (𝑔𝑆) ≠ ∅)
97, 8sylanbr 585 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ (𝑔𝐽𝑃𝑔)) → (𝑔𝑆) ≠ ∅)
109anassrs 471 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑔𝐽) ∧ 𝑃𝑔) → (𝑔𝑆) ≠ ∅)
1110adantllr 718 . . . . . . . 8 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ 𝑃𝑔) → (𝑔𝑆) ≠ ∅)
1211adantrr 716 . . . . . . 7 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → (𝑔𝑆) ≠ ∅)
13 ssdisj 4367 . . . . . . . . . 10 ((𝑔𝑁 ∧ (𝑁𝑆) = ∅) → (𝑔𝑆) = ∅)
1413ex 416 . . . . . . . . 9 (𝑔𝑁 → ((𝑁𝑆) = ∅ → (𝑔𝑆) = ∅))
1514necon3d 3008 . . . . . . . 8 (𝑔𝑁 → ((𝑔𝑆) ≠ ∅ → (𝑁𝑆) ≠ ∅))
1615ad2antll 728 . . . . . . 7 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → ((𝑔𝑆) ≠ ∅ → (𝑁𝑆) ≠ ∅))
1712, 16mpd 15 . . . . . 6 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → (𝑁𝑆) ≠ ∅)
1817rexlimdva2 3246 . . . . 5 (((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) → (∃𝑔𝐽 (𝑃𝑔𝑔𝑁) → (𝑁𝑆) ≠ ∅))
1918expimpd 457 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) → (𝑁𝑆) ≠ ∅))
206, 19sylbid 243 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑆) ≠ ∅))
2120exp32 424 . 2 (𝐽 ∈ Top → (𝑆𝑋 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑆) ≠ ∅))))
2221imp43 431 1 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cin 3880  wss 3881  c0 4243  {csn 4525   cuni 4800  cfv 6324  Topctop 21498  clsccl 21623  neicnei 21702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-top 21499  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703
This theorem is referenced by:  clslp  21753  flimclslem  22589  utop3cls  22857
  Copyright terms: Public domain W3C validator