Step | Hyp | Ref
| Expression |
1 | | neips.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | clsss3 22210 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
3 | 2 | sseld 3920 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃 ∈ 𝑋)) |
4 | 3 | impr 455 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) → 𝑃 ∈ 𝑋) |
5 | 1 | isneip 22256 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
6 | 4, 5 | syldan 591 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
7 | | 3anass 1094 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ↔ (𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))) |
8 | 1 | clsndisj 22226 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔 ∈ 𝐽 ∧ 𝑃 ∈ 𝑔)) → (𝑔 ∩ 𝑆) ≠ ∅) |
9 | 7, 8 | sylanbr 582 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ (𝑔 ∈ 𝐽 ∧ 𝑃 ∈ 𝑔)) → (𝑔 ∩ 𝑆) ≠ ∅) |
10 | 9 | anassrs 468 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑔 ∈ 𝐽) ∧ 𝑃 ∈ 𝑔) → (𝑔 ∩ 𝑆) ≠ ∅) |
11 | 10 | adantllr 716 |
. . . . . . . 8
⊢
(((((𝐽 ∈ Top
∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁 ⊆ 𝑋) ∧ 𝑔 ∈ 𝐽) ∧ 𝑃 ∈ 𝑔) → (𝑔 ∩ 𝑆) ≠ ∅) |
12 | 11 | adantrr 714 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁 ⊆ 𝑋) ∧ 𝑔 ∈ 𝐽) ∧ (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → (𝑔 ∩ 𝑆) ≠ ∅) |
13 | | ssdisj 4393 |
. . . . . . . . . 10
⊢ ((𝑔 ⊆ 𝑁 ∧ (𝑁 ∩ 𝑆) = ∅) → (𝑔 ∩ 𝑆) = ∅) |
14 | 13 | ex 413 |
. . . . . . . . 9
⊢ (𝑔 ⊆ 𝑁 → ((𝑁 ∩ 𝑆) = ∅ → (𝑔 ∩ 𝑆) = ∅)) |
15 | 14 | necon3d 2964 |
. . . . . . . 8
⊢ (𝑔 ⊆ 𝑁 → ((𝑔 ∩ 𝑆) ≠ ∅ → (𝑁 ∩ 𝑆) ≠ ∅)) |
16 | 15 | ad2antll 726 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁 ⊆ 𝑋) ∧ 𝑔 ∈ 𝐽) ∧ (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → ((𝑔 ∩ 𝑆) ≠ ∅ → (𝑁 ∩ 𝑆) ≠ ∅)) |
17 | 12, 16 | mpd 15 |
. . . . . 6
⊢
(((((𝐽 ∈ Top
∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁 ⊆ 𝑋) ∧ 𝑔 ∈ 𝐽) ∧ (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → (𝑁 ∩ 𝑆) ≠ ∅) |
18 | 17 | rexlimdva2 3216 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁 ⊆ 𝑋) → (∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) → (𝑁 ∩ 𝑆) ≠ ∅)) |
19 | 18 | expimpd 454 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) → ((𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → (𝑁 ∩ 𝑆) ≠ ∅)) |
20 | 6, 19 | sylbid 239 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁 ∩ 𝑆) ≠ ∅)) |
21 | 20 | exp32 421 |
. 2
⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁 ∩ 𝑆) ≠ ∅)))) |
22 | 21 | imp43 428 |
1
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁 ∩ 𝑆) ≠ ∅) |