MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj Structured version   Visualization version   GIF version

Theorem neindisj 22620
Description: Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neips.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
neindisj (((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) ∧ (𝑃 ∈ ((clsβ€˜π½)β€˜π‘†) ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}))) β†’ (𝑁 ∩ 𝑆) β‰  βˆ…)

Proof of Theorem neindisj
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . . 8 𝑋 = βˆͺ 𝐽
21clsss3 22562 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((clsβ€˜π½)β€˜π‘†) βŠ† 𝑋)
32sseld 3981 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑃 ∈ ((clsβ€˜π½)β€˜π‘†) β†’ 𝑃 ∈ 𝑋))
43impr 455 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))) β†’ 𝑃 ∈ 𝑋)
51isneip 22608 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁))))
64, 5syldan 591 . . . 4 ((𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁))))
7 3anass 1095 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†)) ↔ (𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))))
81clsndisj 22578 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ (𝑔 ∈ 𝐽 ∧ 𝑃 ∈ 𝑔)) β†’ (𝑔 ∩ 𝑆) β‰  βˆ…)
97, 8sylanbr 582 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))) ∧ (𝑔 ∈ 𝐽 ∧ 𝑃 ∈ 𝑔)) β†’ (𝑔 ∩ 𝑆) β‰  βˆ…)
109anassrs 468 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))) ∧ 𝑔 ∈ 𝐽) ∧ 𝑃 ∈ 𝑔) β†’ (𝑔 ∩ 𝑆) β‰  βˆ…)
1110adantllr 717 . . . . . . . 8 (((((𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))) ∧ 𝑁 βŠ† 𝑋) ∧ 𝑔 ∈ 𝐽) ∧ 𝑃 ∈ 𝑔) β†’ (𝑔 ∩ 𝑆) β‰  βˆ…)
1211adantrr 715 . . . . . . 7 (((((𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))) ∧ 𝑁 βŠ† 𝑋) ∧ 𝑔 ∈ 𝐽) ∧ (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁)) β†’ (𝑔 ∩ 𝑆) β‰  βˆ…)
13 ssdisj 4459 . . . . . . . . . 10 ((𝑔 βŠ† 𝑁 ∧ (𝑁 ∩ 𝑆) = βˆ…) β†’ (𝑔 ∩ 𝑆) = βˆ…)
1413ex 413 . . . . . . . . 9 (𝑔 βŠ† 𝑁 β†’ ((𝑁 ∩ 𝑆) = βˆ… β†’ (𝑔 ∩ 𝑆) = βˆ…))
1514necon3d 2961 . . . . . . . 8 (𝑔 βŠ† 𝑁 β†’ ((𝑔 ∩ 𝑆) β‰  βˆ… β†’ (𝑁 ∩ 𝑆) β‰  βˆ…))
1615ad2antll 727 . . . . . . 7 (((((𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))) ∧ 𝑁 βŠ† 𝑋) ∧ 𝑔 ∈ 𝐽) ∧ (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁)) β†’ ((𝑔 ∩ 𝑆) β‰  βˆ… β†’ (𝑁 ∩ 𝑆) β‰  βˆ…))
1712, 16mpd 15 . . . . . 6 (((((𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))) ∧ 𝑁 βŠ† 𝑋) ∧ 𝑔 ∈ 𝐽) ∧ (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁)) β†’ (𝑁 ∩ 𝑆) β‰  βˆ…)
1817rexlimdva2 3157 . . . . 5 (((𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))) ∧ 𝑁 βŠ† 𝑋) β†’ (βˆƒπ‘” ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁) β†’ (𝑁 ∩ 𝑆) β‰  βˆ…))
1918expimpd 454 . . . 4 ((𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))) β†’ ((𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁)) β†’ (𝑁 ∩ 𝑆) β‰  βˆ…))
206, 19sylbid 239 . . 3 ((𝐽 ∈ Top ∧ (𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ ((clsβ€˜π½)β€˜π‘†))) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}) β†’ (𝑁 ∩ 𝑆) β‰  βˆ…))
2120exp32 421 . 2 (𝐽 ∈ Top β†’ (𝑆 βŠ† 𝑋 β†’ (𝑃 ∈ ((clsβ€˜π½)β€˜π‘†) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}) β†’ (𝑁 ∩ 𝑆) β‰  βˆ…))))
2221imp43 428 1 (((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) ∧ (𝑃 ∈ ((clsβ€˜π½)β€˜π‘†) ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}))) β†’ (𝑁 ∩ 𝑆) β‰  βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  {csn 4628  βˆͺ cuni 4908  β€˜cfv 6543  Topctop 22394  clsccl 22521  neicnei 22600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22395  df-cld 22522  df-ntr 22523  df-cls 22524  df-nei 22601
This theorem is referenced by:  clslp  22651  flimclslem  23487  utop3cls  23755
  Copyright terms: Public domain W3C validator