Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsub Structured version   Visualization version   GIF version

Theorem pmapsub 35576
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmapsub.b 𝐵 = (Base‘𝐾)
pmapsub.s 𝑆 = (PSubSp‘𝐾)
pmapsub.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapsub ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝑆)

Proof of Theorem pmapsub
Dummy variables 𝑞 𝑝 𝑟 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmapsub.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2771 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2771 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
4 pmapsub.m . . 3 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapval 35565 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})
6 breq1 4789 . . . . . . . . . . . . . 14 (𝑐 = 𝑝 → (𝑐(le‘𝐾)𝑋𝑝(le‘𝐾)𝑋))
76elrab 3515 . . . . . . . . . . . . 13 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋))
81, 3atbase 35098 . . . . . . . . . . . . . 14 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
98anim1i 594 . . . . . . . . . . . . 13 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → (𝑝𝐵𝑝(le‘𝐾)𝑋))
107, 9sylbi 207 . . . . . . . . . . . 12 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑝𝐵𝑝(le‘𝐾)𝑋))
11 breq1 4789 . . . . . . . . . . . . . 14 (𝑐 = 𝑞 → (𝑐(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))
1211elrab 3515 . . . . . . . . . . . . 13 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋))
131, 3atbase 35098 . . . . . . . . . . . . . 14 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
1413anim1i 594 . . . . . . . . . . . . 13 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) → (𝑞𝐵𝑞(le‘𝐾)𝑋))
1512, 14sylbi 207 . . . . . . . . . . . 12 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑞𝐵𝑞(le‘𝐾)𝑋))
1610, 15anim12i 592 . . . . . . . . . . 11 ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝𝐵𝑝(le‘𝐾)𝑋) ∧ (𝑞𝐵𝑞(le‘𝐾)𝑋)))
17 an4 627 . . . . . . . . . . 11 (((𝑝𝐵𝑝(le‘𝐾)𝑋) ∧ (𝑞𝐵𝑞(le‘𝐾)𝑋)) ↔ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋)))
1816, 17sylib 208 . . . . . . . . . 10 ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋)))
1918anim2i 595 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))))
201, 3atbase 35098 . . . . . . . . 9 (𝑟 ∈ (Atoms‘𝐾) → 𝑟𝐵)
21 eqid 2771 . . . . . . . . . . . . . . . . 17 (join‘𝐾) = (join‘𝐾)
221, 2, 21latjle12 17270 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑞𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))
2322biimpd 219 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑞𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))
24233exp2 1447 . . . . . . . . . . . . . 14 (𝐾 ∈ Lat → (𝑝𝐵 → (𝑞𝐵 → (𝑋𝐵 → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)))))
2524impd 396 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → ((𝑝𝐵𝑞𝐵) → (𝑋𝐵 → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))
2625com23 86 . . . . . . . . . . . 12 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝𝐵𝑞𝐵) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))
2726imp43 414 . . . . . . . . . . 11 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)
2827adantr 466 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)
291, 21latjcl 17259 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑝𝐵𝑞𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
30293expib 1116 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → ((𝑝𝐵𝑞𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵))
311, 2lattr 17264 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑟𝐵 ∧ (𝑝(join‘𝐾)𝑞) ∈ 𝐵𝑋𝐵)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
32313exp2 1447 . . . . . . . . . . . . . 14 (𝐾 ∈ Lat → (𝑟𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑋𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3332com24 95 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑟𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3430, 33syl5d 73 . . . . . . . . . . . 12 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝𝐵𝑞𝐵) → (𝑟𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3534imp41 412 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ 𝑟𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
3635adantlrr 692 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
3728, 36mpan2d 666 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋))
3819, 20, 37syl2an 575 . . . . . . . 8 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋))
39 simpr 471 . . . . . . . 8 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾))
4038, 39jctild 509 . . . . . . 7 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋)))
41 breq1 4789 . . . . . . . 8 (𝑐 = 𝑟 → (𝑐(le‘𝐾)𝑋𝑟(le‘𝐾)𝑋))
4241elrab 3515 . . . . . . 7 (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋))
4340, 42syl6ibr 242 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
4443ralrimiva 3115 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
4544ralrimivva 3120 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
46 ssrab2 3836 . . . 4 {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾)
4745, 46jctil 503 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})))
48 pmapsub.s . . . . 5 𝑆 = (PSubSp‘𝐾)
492, 21, 3, 48ispsubsp 35553 . . . 4 (𝐾 ∈ Lat → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))))
5049adantr 466 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))))
5147, 50mpbird 247 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆)
525, 51eqeltrd 2850 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  {crab 3065  wss 3723   class class class wbr 4786  cfv 6031  (class class class)co 6793  Basecbs 16064  lecple 16156  joincjn 17152  Latclat 17253  Atomscatm 35072  PSubSpcpsubsp 35304  pmapcpmap 35305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-poset 17154  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-lat 17254  df-ats 35076  df-psubsp 35311  df-pmap 35312
This theorem is referenced by:  hlmod1i  35664  polsubN  35715  pl42lem4N  35790
  Copyright terms: Public domain W3C validator