Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsub Structured version   Visualization version   GIF version

Theorem pmapsub 39792
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmapsub.b 𝐵 = (Base‘𝐾)
pmapsub.s 𝑆 = (PSubSp‘𝐾)
pmapsub.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapsub ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝑆)

Proof of Theorem pmapsub
Dummy variables 𝑞 𝑝 𝑟 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmapsub.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2736 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2736 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
4 pmapsub.m . . 3 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapval 39781 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})
6 breq1 5127 . . . . . . . . . . . . . 14 (𝑐 = 𝑝 → (𝑐(le‘𝐾)𝑋𝑝(le‘𝐾)𝑋))
76elrab 3676 . . . . . . . . . . . . 13 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋))
81, 3atbase 39312 . . . . . . . . . . . . . 14 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
98anim1i 615 . . . . . . . . . . . . 13 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → (𝑝𝐵𝑝(le‘𝐾)𝑋))
107, 9sylbi 217 . . . . . . . . . . . 12 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑝𝐵𝑝(le‘𝐾)𝑋))
11 breq1 5127 . . . . . . . . . . . . . 14 (𝑐 = 𝑞 → (𝑐(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))
1211elrab 3676 . . . . . . . . . . . . 13 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋))
131, 3atbase 39312 . . . . . . . . . . . . . 14 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
1413anim1i 615 . . . . . . . . . . . . 13 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) → (𝑞𝐵𝑞(le‘𝐾)𝑋))
1512, 14sylbi 217 . . . . . . . . . . . 12 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑞𝐵𝑞(le‘𝐾)𝑋))
1610, 15anim12i 613 . . . . . . . . . . 11 ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝𝐵𝑝(le‘𝐾)𝑋) ∧ (𝑞𝐵𝑞(le‘𝐾)𝑋)))
17 an4 656 . . . . . . . . . . 11 (((𝑝𝐵𝑝(le‘𝐾)𝑋) ∧ (𝑞𝐵𝑞(le‘𝐾)𝑋)) ↔ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋)))
1816, 17sylib 218 . . . . . . . . . 10 ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋)))
1918anim2i 617 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))))
201, 3atbase 39312 . . . . . . . . 9 (𝑟 ∈ (Atoms‘𝐾) → 𝑟𝐵)
21 eqid 2736 . . . . . . . . . . . . . . . . 17 (join‘𝐾) = (join‘𝐾)
221, 2, 21latjle12 18465 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑞𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))
2322biimpd 229 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑞𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))
24233exp2 1355 . . . . . . . . . . . . . 14 (𝐾 ∈ Lat → (𝑝𝐵 → (𝑞𝐵 → (𝑋𝐵 → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)))))
2524impd 410 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → ((𝑝𝐵𝑞𝐵) → (𝑋𝐵 → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))
2625com23 86 . . . . . . . . . . . 12 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝𝐵𝑞𝐵) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))
2726imp43 427 . . . . . . . . . . 11 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)
2827adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)
291, 21latjcl 18454 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑝𝐵𝑞𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
30293expib 1122 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → ((𝑝𝐵𝑞𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵))
311, 2lattr 18459 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑟𝐵 ∧ (𝑝(join‘𝐾)𝑞) ∈ 𝐵𝑋𝐵)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
32313exp2 1355 . . . . . . . . . . . . . 14 (𝐾 ∈ Lat → (𝑟𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑋𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3332com24 95 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑟𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3430, 33syl5d 73 . . . . . . . . . . . 12 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝𝐵𝑞𝐵) → (𝑟𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3534imp41 425 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ 𝑟𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
3635adantlrr 721 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
3728, 36mpan2d 694 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋))
3819, 20, 37syl2an 596 . . . . . . . 8 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋))
39 simpr 484 . . . . . . . 8 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾))
4038, 39jctild 525 . . . . . . 7 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋)))
41 breq1 5127 . . . . . . . 8 (𝑐 = 𝑟 → (𝑐(le‘𝐾)𝑋𝑟(le‘𝐾)𝑋))
4241elrab 3676 . . . . . . 7 (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋))
4340, 42imbitrrdi 252 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
4443ralrimiva 3133 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
4544ralrimivva 3188 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
46 ssrab2 4060 . . . 4 {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾)
4745, 46jctil 519 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})))
48 pmapsub.s . . . . 5 𝑆 = (PSubSp‘𝐾)
492, 21, 3, 48ispsubsp 39769 . . . 4 (𝐾 ∈ Lat → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))))
5049adantr 480 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))))
5147, 50mpbird 257 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆)
525, 51eqeltrd 2835 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {crab 3420  wss 3931   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  joincjn 18328  Latclat 18446  Atomscatm 39286  PSubSpcpsubsp 39520  pmapcpmap 39521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-poset 18330  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-lat 18447  df-ats 39290  df-psubsp 39527  df-pmap 39528
This theorem is referenced by:  hlmod1i  39880  polsubN  39931  pl42lem4N  40006
  Copyright terms: Public domain W3C validator