| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pmapsub.b | . . 3
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | eqid 2737 | . . 3
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 3 |  | eqid 2737 | . . 3
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) | 
| 4 |  | pmapsub.m | . . 3
⊢ 𝑀 = (pmap‘𝐾) | 
| 5 | 1, 2, 3, 4 | pmapval 39759 | . 2
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) | 
| 6 |  | breq1 5146 | . . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑝 → (𝑐(le‘𝐾)𝑋 ↔ 𝑝(le‘𝐾)𝑋)) | 
| 7 | 6 | elrab 3692 | . . . . . . . . . . . . 13
⊢ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋)) | 
| 8 | 1, 3 | atbase 39290 | . . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ 𝐵) | 
| 9 | 8 | anim1i 615 | . . . . . . . . . . . . 13
⊢ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → (𝑝 ∈ 𝐵 ∧ 𝑝(le‘𝐾)𝑋)) | 
| 10 | 7, 9 | sylbi 217 | . . . . . . . . . . . 12
⊢ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑝 ∈ 𝐵 ∧ 𝑝(le‘𝐾)𝑋)) | 
| 11 |  | breq1 5146 | . . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑞 → (𝑐(le‘𝐾)𝑋 ↔ 𝑞(le‘𝐾)𝑋)) | 
| 12 | 11 | elrab 3692 | . . . . . . . . . . . . 13
⊢ (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋)) | 
| 13 | 1, 3 | atbase 39290 | . . . . . . . . . . . . . 14
⊢ (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ 𝐵) | 
| 14 | 13 | anim1i 615 | . . . . . . . . . . . . 13
⊢ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) → (𝑞 ∈ 𝐵 ∧ 𝑞(le‘𝐾)𝑋)) | 
| 15 | 12, 14 | sylbi 217 | . . . . . . . . . . . 12
⊢ (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑞 ∈ 𝐵 ∧ 𝑞(le‘𝐾)𝑋)) | 
| 16 | 10, 15 | anim12i 613 | . . . . . . . . . . 11
⊢ ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝 ∈ 𝐵 ∧ 𝑝(le‘𝐾)𝑋) ∧ (𝑞 ∈ 𝐵 ∧ 𝑞(le‘𝐾)𝑋))) | 
| 17 |  | an4 656 | . . . . . . . . . . 11
⊢ (((𝑝 ∈ 𝐵 ∧ 𝑝(le‘𝐾)𝑋) ∧ (𝑞 ∈ 𝐵 ∧ 𝑞(le‘𝐾)𝑋)) ↔ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) | 
| 18 | 16, 17 | sylib 218 | . . . . . . . . . 10
⊢ ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) | 
| 19 | 18 | anim2i 617 | . . . . . . . . 9
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋)))) | 
| 20 | 1, 3 | atbase 39290 | . . . . . . . . 9
⊢ (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ 𝐵) | 
| 21 |  | eqid 2737 | . . . . . . . . . . . . . . . . 17
⊢
(join‘𝐾) =
(join‘𝐾) | 
| 22 | 1, 2, 21 | latjle12 18495 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)) | 
| 23 | 22 | biimpd 229 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)) | 
| 24 | 23 | 3exp2 1355 | . . . . . . . . . . . . . 14
⊢ (𝐾 ∈ Lat → (𝑝 ∈ 𝐵 → (𝑞 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))) | 
| 25 | 24 | impd 410 | . . . . . . . . . . . . 13
⊢ (𝐾 ∈ Lat → ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑋 ∈ 𝐵 → ((𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)))) | 
| 26 | 25 | com23 86 | . . . . . . . . . . . 12
⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝐵 → ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → ((𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)))) | 
| 27 | 26 | imp43 427 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) | 
| 28 | 27 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) ∧ 𝑟 ∈ 𝐵) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) | 
| 29 | 1, 21 | latjcl 18484 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵) | 
| 30 | 29 | 3expib 1123 | . . . . . . . . . . . . 13
⊢ (𝐾 ∈ Lat → ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)) | 
| 31 | 1, 2 | lattr 18489 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ (𝑟 ∈ 𝐵 ∧ (𝑝(join‘𝐾)𝑞) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)) | 
| 32 | 31 | 3exp2 1355 | . . . . . . . . . . . . . 14
⊢ (𝐾 ∈ Lat → (𝑟 ∈ 𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))))) | 
| 33 | 32 | com24 95 | . . . . . . . . . . . . 13
⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑟 ∈ 𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))))) | 
| 34 | 30, 33 | syl5d 73 | . . . . . . . . . . . 12
⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝐵 → ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑟 ∈ 𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))))) | 
| 35 | 34 | imp41 425 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ 𝑟 ∈ 𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)) | 
| 36 | 35 | adantlrr 721 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) ∧ 𝑟 ∈ 𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)) | 
| 37 | 28, 36 | mpan2d 694 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) ∧ 𝑟 ∈ 𝐵) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋)) | 
| 38 | 19, 20, 37 | syl2an 596 | . . . . . . . 8
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋)) | 
| 39 |  | simpr 484 | . . . . . . . 8
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾)) | 
| 40 | 38, 39 | jctild 525 | . . . . . . 7
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋))) | 
| 41 |  | breq1 5146 | . . . . . . . 8
⊢ (𝑐 = 𝑟 → (𝑐(le‘𝐾)𝑋 ↔ 𝑟(le‘𝐾)𝑋)) | 
| 42 | 41 | elrab 3692 | . . . . . . 7
⊢ (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋)) | 
| 43 | 40, 42 | imbitrrdi 252 | . . . . . 6
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) | 
| 44 | 43 | ralrimiva 3146 | . . . . 5
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) | 
| 45 | 44 | ralrimivva 3202 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) | 
| 46 |  | ssrab2 4080 | . . . 4
⊢ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) | 
| 47 | 45, 46 | jctil 519 | . . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))) | 
| 48 |  | pmapsub.s | . . . . 5
⊢ 𝑆 = (PSubSp‘𝐾) | 
| 49 | 2, 21, 3, 48 | ispsubsp 39747 | . . . 4
⊢ (𝐾 ∈ Lat → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})))) | 
| 50 | 49 | adantr 480 | . . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})))) | 
| 51 | 47, 50 | mpbird 257 | . 2
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆) | 
| 52 | 5, 51 | eqeltrd 2841 | 1
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝑆) |