Step | Hyp | Ref
| Expression |
1 | | pmapsub.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | eqid 2738 |
. . 3
⊢
(le‘𝐾) =
(le‘𝐾) |
3 | | eqid 2738 |
. . 3
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
4 | | pmapsub.m |
. . 3
⊢ 𝑀 = (pmap‘𝐾) |
5 | 1, 2, 3, 4 | pmapval 37698 |
. 2
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) |
6 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑝 → (𝑐(le‘𝐾)𝑋 ↔ 𝑝(le‘𝐾)𝑋)) |
7 | 6 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋)) |
8 | 1, 3 | atbase 37230 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ 𝐵) |
9 | 8 | anim1i 614 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → (𝑝 ∈ 𝐵 ∧ 𝑝(le‘𝐾)𝑋)) |
10 | 7, 9 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑝 ∈ 𝐵 ∧ 𝑝(le‘𝐾)𝑋)) |
11 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑞 → (𝑐(le‘𝐾)𝑋 ↔ 𝑞(le‘𝐾)𝑋)) |
12 | 11 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋)) |
13 | 1, 3 | atbase 37230 |
. . . . . . . . . . . . . 14
⊢ (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ 𝐵) |
14 | 13 | anim1i 614 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) → (𝑞 ∈ 𝐵 ∧ 𝑞(le‘𝐾)𝑋)) |
15 | 12, 14 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑞 ∈ 𝐵 ∧ 𝑞(le‘𝐾)𝑋)) |
16 | 10, 15 | anim12i 612 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝 ∈ 𝐵 ∧ 𝑝(le‘𝐾)𝑋) ∧ (𝑞 ∈ 𝐵 ∧ 𝑞(le‘𝐾)𝑋))) |
17 | | an4 652 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ 𝐵 ∧ 𝑝(le‘𝐾)𝑋) ∧ (𝑞 ∈ 𝐵 ∧ 𝑞(le‘𝐾)𝑋)) ↔ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) |
18 | 16, 17 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) |
19 | 18 | anim2i 616 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋)))) |
20 | 1, 3 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ 𝐵) |
21 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(join‘𝐾) =
(join‘𝐾) |
22 | 1, 2, 21 | latjle12 18083 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)) |
23 | 22 | biimpd 228 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)) |
24 | 23 | 3exp2 1352 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ Lat → (𝑝 ∈ 𝐵 → (𝑞 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))) |
25 | 24 | impd 410 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Lat → ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑋 ∈ 𝐵 → ((𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)))) |
26 | 25 | com23 86 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝐵 → ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → ((𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)))) |
27 | 26 | imp43 427 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) |
28 | 27 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) ∧ 𝑟 ∈ 𝐵) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) |
29 | 1, 21 | latjcl 18072 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵) |
30 | 29 | 3expib 1120 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Lat → ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)) |
31 | 1, 2 | lattr 18077 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ (𝑟 ∈ 𝐵 ∧ (𝑝(join‘𝐾)𝑞) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)) |
32 | 31 | 3exp2 1352 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ Lat → (𝑟 ∈ 𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))))) |
33 | 32 | com24 95 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑟 ∈ 𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))))) |
34 | 30, 33 | syl5d 73 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝐵 → ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑟 ∈ 𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))))) |
35 | 34 | imp41 425 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ 𝑟 ∈ 𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)) |
36 | 35 | adantlrr 717 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) ∧ 𝑟 ∈ 𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)) |
37 | 28, 36 | mpan2d 690 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) ∧ (𝑝(le‘𝐾)𝑋 ∧ 𝑞(le‘𝐾)𝑋))) ∧ 𝑟 ∈ 𝐵) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋)) |
38 | 19, 20, 37 | syl2an 595 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋)) |
39 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾)) |
40 | 38, 39 | jctild 525 |
. . . . . . 7
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋))) |
41 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑐 = 𝑟 → (𝑐(le‘𝐾)𝑋 ↔ 𝑟(le‘𝐾)𝑋)) |
42 | 41 | elrab 3617 |
. . . . . . 7
⊢ (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋)) |
43 | 40, 42 | syl6ibr 251 |
. . . . . 6
⊢ ((((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) |
44 | 43 | ralrimiva 3107 |
. . . . 5
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) |
45 | 44 | ralrimivva 3114 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) |
46 | | ssrab2 4009 |
. . . 4
⊢ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) |
47 | 45, 46 | jctil 519 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))) |
48 | | pmapsub.s |
. . . . 5
⊢ 𝑆 = (PSubSp‘𝐾) |
49 | 2, 21, 3, 48 | ispsubsp 37686 |
. . . 4
⊢ (𝐾 ∈ Lat → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})))) |
50 | 49 | adantr 480 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})))) |
51 | 47, 50 | mpbird 256 |
. 2
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆) |
52 | 5, 51 | eqeltrd 2839 |
1
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝑆) |