Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsub Structured version   Visualization version   GIF version

Theorem pmapsub 39725
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmapsub.b 𝐵 = (Base‘𝐾)
pmapsub.s 𝑆 = (PSubSp‘𝐾)
pmapsub.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapsub ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝑆)

Proof of Theorem pmapsub
Dummy variables 𝑞 𝑝 𝑟 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmapsub.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2740 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2740 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
4 pmapsub.m . . 3 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapval 39714 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})
6 breq1 5169 . . . . . . . . . . . . . 14 (𝑐 = 𝑝 → (𝑐(le‘𝐾)𝑋𝑝(le‘𝐾)𝑋))
76elrab 3708 . . . . . . . . . . . . 13 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋))
81, 3atbase 39245 . . . . . . . . . . . . . 14 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
98anim1i 614 . . . . . . . . . . . . 13 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → (𝑝𝐵𝑝(le‘𝐾)𝑋))
107, 9sylbi 217 . . . . . . . . . . . 12 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑝𝐵𝑝(le‘𝐾)𝑋))
11 breq1 5169 . . . . . . . . . . . . . 14 (𝑐 = 𝑞 → (𝑐(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))
1211elrab 3708 . . . . . . . . . . . . 13 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋))
131, 3atbase 39245 . . . . . . . . . . . . . 14 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
1413anim1i 614 . . . . . . . . . . . . 13 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) → (𝑞𝐵𝑞(le‘𝐾)𝑋))
1512, 14sylbi 217 . . . . . . . . . . . 12 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑞𝐵𝑞(le‘𝐾)𝑋))
1610, 15anim12i 612 . . . . . . . . . . 11 ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝𝐵𝑝(le‘𝐾)𝑋) ∧ (𝑞𝐵𝑞(le‘𝐾)𝑋)))
17 an4 655 . . . . . . . . . . 11 (((𝑝𝐵𝑝(le‘𝐾)𝑋) ∧ (𝑞𝐵𝑞(le‘𝐾)𝑋)) ↔ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋)))
1816, 17sylib 218 . . . . . . . . . 10 ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋)))
1918anim2i 616 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))))
201, 3atbase 39245 . . . . . . . . 9 (𝑟 ∈ (Atoms‘𝐾) → 𝑟𝐵)
21 eqid 2740 . . . . . . . . . . . . . . . . 17 (join‘𝐾) = (join‘𝐾)
221, 2, 21latjle12 18520 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑞𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))
2322biimpd 229 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑞𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))
24233exp2 1354 . . . . . . . . . . . . . 14 (𝐾 ∈ Lat → (𝑝𝐵 → (𝑞𝐵 → (𝑋𝐵 → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)))))
2524impd 410 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → ((𝑝𝐵𝑞𝐵) → (𝑋𝐵 → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))
2625com23 86 . . . . . . . . . . . 12 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝𝐵𝑞𝐵) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))
2726imp43 427 . . . . . . . . . . 11 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)
2827adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)
291, 21latjcl 18509 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑝𝐵𝑞𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
30293expib 1122 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → ((𝑝𝐵𝑞𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵))
311, 2lattr 18514 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑟𝐵 ∧ (𝑝(join‘𝐾)𝑞) ∈ 𝐵𝑋𝐵)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
32313exp2 1354 . . . . . . . . . . . . . 14 (𝐾 ∈ Lat → (𝑟𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑋𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3332com24 95 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑟𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3430, 33syl5d 73 . . . . . . . . . . . 12 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝𝐵𝑞𝐵) → (𝑟𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3534imp41 425 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ 𝑟𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
3635adantlrr 720 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
3728, 36mpan2d 693 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋))
3819, 20, 37syl2an 595 . . . . . . . 8 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋))
39 simpr 484 . . . . . . . 8 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾))
4038, 39jctild 525 . . . . . . 7 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋)))
41 breq1 5169 . . . . . . . 8 (𝑐 = 𝑟 → (𝑐(le‘𝐾)𝑋𝑟(le‘𝐾)𝑋))
4241elrab 3708 . . . . . . 7 (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋))
4340, 42imbitrrdi 252 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
4443ralrimiva 3152 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
4544ralrimivva 3208 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
46 ssrab2 4103 . . . 4 {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾)
4745, 46jctil 519 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})))
48 pmapsub.s . . . . 5 𝑆 = (PSubSp‘𝐾)
492, 21, 3, 48ispsubsp 39702 . . . 4 (𝐾 ∈ Lat → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))))
5049adantr 480 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))))
5147, 50mpbird 257 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆)
525, 51eqeltrd 2844 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  Latclat 18501  Atomscatm 39219  PSubSpcpsubsp 39453  pmapcpmap 39454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-poset 18383  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-lat 18502  df-ats 39223  df-psubsp 39460  df-pmap 39461
This theorem is referenced by:  hlmod1i  39813  polsubN  39864  pl42lem4N  39939
  Copyright terms: Public domain W3C validator