Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsub Structured version   Visualization version   GIF version

Theorem pmapsub 37057
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmapsub.b 𝐵 = (Base‘𝐾)
pmapsub.s 𝑆 = (PSubSp‘𝐾)
pmapsub.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapsub ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝑆)

Proof of Theorem pmapsub
Dummy variables 𝑞 𝑝 𝑟 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmapsub.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2801 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2801 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
4 pmapsub.m . . 3 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapval 37046 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})
6 breq1 5036 . . . . . . . . . . . . . 14 (𝑐 = 𝑝 → (𝑐(le‘𝐾)𝑋𝑝(le‘𝐾)𝑋))
76elrab 3631 . . . . . . . . . . . . 13 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋))
81, 3atbase 36578 . . . . . . . . . . . . . 14 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
98anim1i 617 . . . . . . . . . . . . 13 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → (𝑝𝐵𝑝(le‘𝐾)𝑋))
107, 9sylbi 220 . . . . . . . . . . . 12 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑝𝐵𝑝(le‘𝐾)𝑋))
11 breq1 5036 . . . . . . . . . . . . . 14 (𝑐 = 𝑞 → (𝑐(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))
1211elrab 3631 . . . . . . . . . . . . 13 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋))
131, 3atbase 36578 . . . . . . . . . . . . . 14 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
1413anim1i 617 . . . . . . . . . . . . 13 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) → (𝑞𝐵𝑞(le‘𝐾)𝑋))
1512, 14sylbi 220 . . . . . . . . . . . 12 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑞𝐵𝑞(le‘𝐾)𝑋))
1610, 15anim12i 615 . . . . . . . . . . 11 ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝𝐵𝑝(le‘𝐾)𝑋) ∧ (𝑞𝐵𝑞(le‘𝐾)𝑋)))
17 an4 655 . . . . . . . . . . 11 (((𝑝𝐵𝑝(le‘𝐾)𝑋) ∧ (𝑞𝐵𝑞(le‘𝐾)𝑋)) ↔ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋)))
1816, 17sylib 221 . . . . . . . . . 10 ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋)))
1918anim2i 619 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))))
201, 3atbase 36578 . . . . . . . . 9 (𝑟 ∈ (Atoms‘𝐾) → 𝑟𝐵)
21 eqid 2801 . . . . . . . . . . . . . . . . 17 (join‘𝐾) = (join‘𝐾)
221, 2, 21latjle12 17667 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑞𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))
2322biimpd 232 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑞𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))
24233exp2 1351 . . . . . . . . . . . . . 14 (𝐾 ∈ Lat → (𝑝𝐵 → (𝑞𝐵 → (𝑋𝐵 → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)))))
2524impd 414 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → ((𝑝𝐵𝑞𝐵) → (𝑋𝐵 → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))
2625com23 86 . . . . . . . . . . . 12 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝𝐵𝑞𝐵) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))
2726imp43 431 . . . . . . . . . . 11 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)
2827adantr 484 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)
291, 21latjcl 17656 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑝𝐵𝑞𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
30293expib 1119 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → ((𝑝𝐵𝑞𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵))
311, 2lattr 17661 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑟𝐵 ∧ (𝑝(join‘𝐾)𝑞) ∈ 𝐵𝑋𝐵)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
32313exp2 1351 . . . . . . . . . . . . . 14 (𝐾 ∈ Lat → (𝑟𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑋𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3332com24 95 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑟𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3430, 33syl5d 73 . . . . . . . . . . . 12 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝𝐵𝑞𝐵) → (𝑟𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3534imp41 429 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ 𝑟𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
3635adantlrr 720 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
3728, 36mpan2d 693 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋))
3819, 20, 37syl2an 598 . . . . . . . 8 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋))
39 simpr 488 . . . . . . . 8 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾))
4038, 39jctild 529 . . . . . . 7 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋)))
41 breq1 5036 . . . . . . . 8 (𝑐 = 𝑟 → (𝑐(le‘𝐾)𝑋𝑟(le‘𝐾)𝑋))
4241elrab 3631 . . . . . . 7 (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋))
4340, 42syl6ibr 255 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
4443ralrimiva 3152 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
4544ralrimivva 3159 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
46 ssrab2 4010 . . . 4 {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾)
4745, 46jctil 523 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})))
48 pmapsub.s . . . . 5 𝑆 = (PSubSp‘𝐾)
492, 21, 3, 48ispsubsp 37034 . . . 4 (𝐾 ∈ Lat → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))))
5049adantr 484 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))))
5147, 50mpbird 260 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆)
525, 51eqeltrd 2893 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  {crab 3113  wss 3884   class class class wbr 5033  cfv 6328  (class class class)co 7139  Basecbs 16478  lecple 16567  joincjn 17549  Latclat 17650  Atomscatm 36552  PSubSpcpsubsp 36785  pmapcpmap 36786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-poset 17551  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-lat 17651  df-ats 36556  df-psubsp 36792  df-pmap 36793
This theorem is referenced by:  hlmod1i  37145  polsubN  37196  pl42lem4N  37271
  Copyright terms: Public domain W3C validator