Step | Hyp | Ref
| Expression |
1 | | sstr2 3924 |
. . . . . . . 8
⊢ (𝑥 ⊆ 𝐷 → (𝐷 ⊆ 𝐵 → 𝑥 ⊆ 𝐵)) |
2 | 1 | com12 32 |
. . . . . . 7
⊢ (𝐷 ⊆ 𝐵 → (𝑥 ⊆ 𝐷 → 𝑥 ⊆ 𝐵)) |
3 | 2 | ad2antlr 723 |
. . . . . 6
⊢ (((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑥 ⊆ 𝐷 → 𝑥 ⊆ 𝐵)) |
4 | 3 | ad2antlr 723 |
. . . . 5
⊢
(((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) ∧ 𝑥 ∈
Cℋ ) → (𝑥 ⊆ 𝐷 → 𝑥 ⊆ 𝐵)) |
5 | | chlej2 29774 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈
Cℋ ∧ 𝐴 ∈ Cℋ
∧ 𝑥 ∈
Cℋ ) ∧ 𝐶 ⊆ 𝐴) → (𝑥 ∨ℋ 𝐶) ⊆ (𝑥 ∨ℋ 𝐴)) |
6 | | ss2in 4167 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∨ℋ 𝐶) ⊆ (𝑥 ∨ℋ 𝐴) ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) |
7 | 6 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∨ℋ 𝐶) ⊆ (𝑥 ∨ℋ 𝐴) → (𝐷 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
8 | 5, 7 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈
Cℋ ∧ 𝐴 ∈ Cℋ
∧ 𝑥 ∈
Cℋ ) ∧ 𝐶 ⊆ 𝐴) → (𝐷 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
9 | 8 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈
Cℋ ∧ 𝐴 ∈ Cℋ
∧ 𝑥 ∈
Cℋ ) → (𝐶 ⊆ 𝐴 → (𝐷 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)))) |
10 | 9 | 3expia 1119 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈
Cℋ ∧ 𝐴 ∈ Cℋ )
→ (𝑥 ∈
Cℋ → (𝐶 ⊆ 𝐴 → (𝐷 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))))) |
11 | 10 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
Cℋ ∧ 𝐶 ∈ Cℋ )
→ (𝑥 ∈
Cℋ → (𝐶 ⊆ 𝐴 → (𝐷 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))))) |
12 | 11 | ad2ant2r 743 |
. . . . . . . . 9
⊢ (((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
→ (𝑥 ∈
Cℋ → (𝐶 ⊆ 𝐴 → (𝐷 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))))) |
13 | 12 | imp43 427 |
. . . . . . . 8
⊢
(((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ 𝑥 ∈
Cℋ ) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵)) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) |
14 | 13 | adantrr 713 |
. . . . . . 7
⊢
(((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ 𝑥 ∈
Cℋ ) ∧ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) |
15 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) = (𝑥 ∨ℋ
0ℋ)) |
16 | | chj0 29760 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈
Cℋ → (𝑥 ∨ℋ 0ℋ)
= 𝑥) |
17 | 15, 16 | sylan9eqr 2801 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) = 𝑥) |
18 | 17 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ )
∧ (𝑥 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) = 𝑥) |
19 | | chincl 29762 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ )
→ (𝐶 ∩ 𝐷) ∈
Cℋ ) |
20 | | chub1 29770 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
Cℋ ∧ (𝐶 ∩ 𝐷) ∈ Cℋ )
→ 𝑥 ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))) |
21 | 20 | ancoms 458 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∩ 𝐷) ∈ Cℋ
∧ 𝑥 ∈
Cℋ ) → 𝑥 ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))) |
22 | 19, 21 | sylan 579 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ )
∧ 𝑥 ∈
Cℋ ) → 𝑥 ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))) |
23 | 22 | adantrr 713 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ )
∧ (𝑥 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → 𝑥 ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))) |
24 | 18, 23 | eqsstrd 3955 |
. . . . . . . . . 10
⊢ (((𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ )
∧ (𝑥 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))) |
25 | 24 | adantll 710 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ (𝑥 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))) |
26 | 25 | anassrs 467 |
. . . . . . . 8
⊢
(((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ 𝑥 ∈
Cℋ ) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))) |
27 | 26 | adantrl 712 |
. . . . . . 7
⊢
(((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ 𝑥 ∈
Cℋ ) ∧ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))) |
28 | | sstr2 3924 |
. . . . . . . . 9
⊢ (((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
29 | | sstr2 3924 |
. . . . . . . . 9
⊢ (((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷)) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷)))) |
30 | 28, 29 | syl6 35 |
. . . . . . . 8
⊢ (((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷)) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) |
31 | 30 | com23 86 |
. . . . . . 7
⊢ (((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) → ((𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷)) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) |
32 | 14, 27, 31 | sylc 65 |
. . . . . 6
⊢
(((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ 𝑥 ∈
Cℋ ) ∧ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷)))) |
33 | 32 | an32s 648 |
. . . . 5
⊢
(((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) ∧ 𝑥 ∈
Cℋ ) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷)))) |
34 | 4, 33 | imim12d 81 |
. . . 4
⊢
(((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) ∧ 𝑥 ∈
Cℋ ) → ((𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) → (𝑥 ⊆ 𝐷 → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) |
35 | 34 | ralimdva 3102 |
. . 3
⊢ ((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) →
(∀𝑥 ∈
Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) → ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝐷 → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) |
36 | | mdbr2 30559 |
. . . 4
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
37 | 36 | ad2antrr 722 |
. . 3
⊢ ((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → (𝐴 𝑀ℋ
𝐵 ↔ ∀𝑥 ∈
Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
38 | | mdbr2 30559 |
. . . 4
⊢ ((𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ )
→ (𝐶
𝑀ℋ 𝐷 ↔ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝐷 → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) |
39 | 38 | ad2antlr 723 |
. . 3
⊢ ((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → (𝐶 𝑀ℋ
𝐷 ↔ ∀𝑥 ∈
Cℋ (𝑥 ⊆ 𝐷 → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) |
40 | 35, 37, 39 | 3imtr4d 293 |
. 2
⊢ ((((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
∧ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → (𝐴 𝑀ℋ
𝐵 → 𝐶 𝑀ℋ 𝐷)) |
41 | 40 | expimpd 453 |
1
⊢ (((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ ))
→ ((((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧ 𝐴 𝑀ℋ
𝐵) → 𝐶 𝑀ℋ 𝐷)) |