HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsl0 Structured version   Visualization version   GIF version

Theorem mdsl0 30090
Description: A sublattice condition that transfers the modular pair property. Exercise 12 of [Kalmbach] p. 103. Also Lemma 1.5.3 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdsl0 (((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) → ((((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0) ∧ 𝐴 𝑀 𝐵) → 𝐶 𝑀 𝐷))

Proof of Theorem mdsl0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3977 . . . . . . . 8 (𝑥𝐷 → (𝐷𝐵𝑥𝐵))
21com12 32 . . . . . . 7 (𝐷𝐵 → (𝑥𝐷𝑥𝐵))
32ad2antlr 725 . . . . . 6 (((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0) → (𝑥𝐷𝑥𝐵))
43ad2antlr 725 . . . . 5 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) ∧ 𝑥C ) → (𝑥𝐷𝑥𝐵))
5 chlej2 29291 . . . . . . . . . . . . . 14 (((𝐶C𝐴C𝑥C ) ∧ 𝐶𝐴) → (𝑥 𝐶) ⊆ (𝑥 𝐴))
6 ss2in 4216 . . . . . . . . . . . . . . 15 (((𝑥 𝐶) ⊆ (𝑥 𝐴) ∧ 𝐷𝐵) → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵))
76ex 415 . . . . . . . . . . . . . 14 ((𝑥 𝐶) ⊆ (𝑥 𝐴) → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵)))
85, 7syl 17 . . . . . . . . . . . . 13 (((𝐶C𝐴C𝑥C ) ∧ 𝐶𝐴) → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵)))
98ex 415 . . . . . . . . . . . 12 ((𝐶C𝐴C𝑥C ) → (𝐶𝐴 → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵))))
1093expia 1117 . . . . . . . . . . 11 ((𝐶C𝐴C ) → (𝑥C → (𝐶𝐴 → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵)))))
1110ancoms 461 . . . . . . . . . 10 ((𝐴C𝐶C ) → (𝑥C → (𝐶𝐴 → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵)))))
1211ad2ant2r 745 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) → (𝑥C → (𝐶𝐴 → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵)))))
1312imp43 430 . . . . . . . 8 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ 𝑥C ) ∧ (𝐶𝐴𝐷𝐵)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵))
1413adantrr 715 . . . . . . 7 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ 𝑥C ) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵))
15 oveq2 7167 . . . . . . . . . . . . 13 ((𝐴𝐵) = 0 → (𝑥 (𝐴𝐵)) = (𝑥 0))
16 chj0 29277 . . . . . . . . . . . . 13 (𝑥C → (𝑥 0) = 𝑥)
1715, 16sylan9eqr 2881 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴𝐵) = 0) → (𝑥 (𝐴𝐵)) = 𝑥)
1817adantl 484 . . . . . . . . . . 11 (((𝐶C𝐷C ) ∧ (𝑥C ∧ (𝐴𝐵) = 0)) → (𝑥 (𝐴𝐵)) = 𝑥)
19 chincl 29279 . . . . . . . . . . . . 13 ((𝐶C𝐷C ) → (𝐶𝐷) ∈ C )
20 chub1 29287 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐶𝐷) ∈ C ) → 𝑥 ⊆ (𝑥 (𝐶𝐷)))
2120ancoms 461 . . . . . . . . . . . . 13 (((𝐶𝐷) ∈ C𝑥C ) → 𝑥 ⊆ (𝑥 (𝐶𝐷)))
2219, 21sylan 582 . . . . . . . . . . . 12 (((𝐶C𝐷C ) ∧ 𝑥C ) → 𝑥 ⊆ (𝑥 (𝐶𝐷)))
2322adantrr 715 . . . . . . . . . . 11 (((𝐶C𝐷C ) ∧ (𝑥C ∧ (𝐴𝐵) = 0)) → 𝑥 ⊆ (𝑥 (𝐶𝐷)))
2418, 23eqsstrd 4008 . . . . . . . . . 10 (((𝐶C𝐷C ) ∧ (𝑥C ∧ (𝐴𝐵) = 0)) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)))
2524adantll 712 . . . . . . . . 9 ((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ (𝑥C ∧ (𝐴𝐵) = 0)) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)))
2625anassrs 470 . . . . . . . 8 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ 𝑥C ) ∧ (𝐴𝐵) = 0) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)))
2726adantrl 714 . . . . . . 7 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ 𝑥C ) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)))
28 sstr2 3977 . . . . . . . . 9 (((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵) → (((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐴𝐵))))
29 sstr2 3977 . . . . . . . . 9 (((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))
3028, 29syl6 35 . . . . . . . 8 (((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵) → (((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
3130com23 86 . . . . . . 7 (((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵) → ((𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)) → (((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
3214, 27, 31sylc 65 . . . . . 6 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ 𝑥C ) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))
3332an32s 650 . . . . 5 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) ∧ 𝑥C ) → (((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))
344, 33imim12d 81 . . . 4 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) ∧ 𝑥C ) → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵))) → (𝑥𝐷 → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
3534ralimdva 3180 . . 3 ((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵))) → ∀𝑥C (𝑥𝐷 → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
36 mdbr2 30076 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)))))
3736ad2antrr 724 . . 3 ((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)))))
38 mdbr2 30076 . . . 4 ((𝐶C𝐷C ) → (𝐶 𝑀 𝐷 ↔ ∀𝑥C (𝑥𝐷 → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
3938ad2antlr 725 . . 3 ((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (𝐶 𝑀 𝐷 ↔ ∀𝑥C (𝑥𝐷 → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4035, 37, 393imtr4d 296 . 2 ((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (𝐴 𝑀 𝐵𝐶 𝑀 𝐷))
4140expimpd 456 1 (((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) → ((((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0) ∧ 𝐴 𝑀 𝐵) → 𝐶 𝑀 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  cin 3938  wss 3939   class class class wbr 5069  (class class class)co 7159   C cch 28709   chj 28713  0c0h 28715   𝑀 cmd 28746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cc 9860  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620  ax-hilex 28779  ax-hfvadd 28780  ax-hvcom 28781  ax-hvass 28782  ax-hv0cl 28783  ax-hvaddid 28784  ax-hfvmul 28785  ax-hvmulid 28786  ax-hvmulass 28787  ax-hvdistr1 28788  ax-hvdistr2 28789  ax-hvmul0 28790  ax-hfi 28859  ax-his1 28862  ax-his2 28863  ax-his3 28864  ax-his4 28865  ax-hcompl 28982
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-acn 9374  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-cn 21838  df-cnp 21839  df-lm 21840  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cfil 23861  df-cau 23862  df-cmet 23863  df-grpo 28273  df-gid 28274  df-ginv 28275  df-gdiv 28276  df-ablo 28325  df-vc 28339  df-nv 28372  df-va 28375  df-ba 28376  df-sm 28377  df-0v 28378  df-vs 28379  df-nmcv 28380  df-ims 28381  df-dip 28481  df-ssp 28502  df-ph 28593  df-cbn 28643  df-hnorm 28748  df-hba 28749  df-hvsub 28751  df-hlim 28752  df-hcau 28753  df-sh 28987  df-ch 29001  df-oc 29032  df-ch0 29033  df-shs 29088  df-chj 29090  df-md 30060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator