HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsl0 Structured version   Visualization version   GIF version

Theorem mdsl0 32058
Description: A sublattice condition that transfers the modular pair property. Exercise 12 of [Kalmbach] p. 103. Also Lemma 1.5.3 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdsl0 (((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) → ((((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0) ∧ 𝐴 𝑀 𝐵) → 𝐶 𝑀 𝐷))

Proof of Theorem mdsl0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3982 . . . . . . . 8 (𝑥𝐷 → (𝐷𝐵𝑥𝐵))
21com12 32 . . . . . . 7 (𝐷𝐵 → (𝑥𝐷𝑥𝐵))
32ad2antlr 724 . . . . . 6 (((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0) → (𝑥𝐷𝑥𝐵))
43ad2antlr 724 . . . . 5 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) ∧ 𝑥C ) → (𝑥𝐷𝑥𝐵))
5 chlej2 31259 . . . . . . . . . . . . . 14 (((𝐶C𝐴C𝑥C ) ∧ 𝐶𝐴) → (𝑥 𝐶) ⊆ (𝑥 𝐴))
6 ss2in 4229 . . . . . . . . . . . . . . 15 (((𝑥 𝐶) ⊆ (𝑥 𝐴) ∧ 𝐷𝐵) → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵))
76ex 412 . . . . . . . . . . . . . 14 ((𝑥 𝐶) ⊆ (𝑥 𝐴) → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵)))
85, 7syl 17 . . . . . . . . . . . . 13 (((𝐶C𝐴C𝑥C ) ∧ 𝐶𝐴) → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵)))
98ex 412 . . . . . . . . . . . 12 ((𝐶C𝐴C𝑥C ) → (𝐶𝐴 → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵))))
1093expia 1118 . . . . . . . . . . 11 ((𝐶C𝐴C ) → (𝑥C → (𝐶𝐴 → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵)))))
1110ancoms 458 . . . . . . . . . 10 ((𝐴C𝐶C ) → (𝑥C → (𝐶𝐴 → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵)))))
1211ad2ant2r 744 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) → (𝑥C → (𝐶𝐴 → (𝐷𝐵 → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵)))))
1312imp43 427 . . . . . . . 8 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ 𝑥C ) ∧ (𝐶𝐴𝐷𝐵)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵))
1413adantrr 714 . . . . . . 7 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ 𝑥C ) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵))
15 oveq2 7410 . . . . . . . . . . . . 13 ((𝐴𝐵) = 0 → (𝑥 (𝐴𝐵)) = (𝑥 0))
16 chj0 31245 . . . . . . . . . . . . 13 (𝑥C → (𝑥 0) = 𝑥)
1715, 16sylan9eqr 2786 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴𝐵) = 0) → (𝑥 (𝐴𝐵)) = 𝑥)
1817adantl 481 . . . . . . . . . . 11 (((𝐶C𝐷C ) ∧ (𝑥C ∧ (𝐴𝐵) = 0)) → (𝑥 (𝐴𝐵)) = 𝑥)
19 chincl 31247 . . . . . . . . . . . . 13 ((𝐶C𝐷C ) → (𝐶𝐷) ∈ C )
20 chub1 31255 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐶𝐷) ∈ C ) → 𝑥 ⊆ (𝑥 (𝐶𝐷)))
2120ancoms 458 . . . . . . . . . . . . 13 (((𝐶𝐷) ∈ C𝑥C ) → 𝑥 ⊆ (𝑥 (𝐶𝐷)))
2219, 21sylan 579 . . . . . . . . . . . 12 (((𝐶C𝐷C ) ∧ 𝑥C ) → 𝑥 ⊆ (𝑥 (𝐶𝐷)))
2322adantrr 714 . . . . . . . . . . 11 (((𝐶C𝐷C ) ∧ (𝑥C ∧ (𝐴𝐵) = 0)) → 𝑥 ⊆ (𝑥 (𝐶𝐷)))
2418, 23eqsstrd 4013 . . . . . . . . . 10 (((𝐶C𝐷C ) ∧ (𝑥C ∧ (𝐴𝐵) = 0)) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)))
2524adantll 711 . . . . . . . . 9 ((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ (𝑥C ∧ (𝐴𝐵) = 0)) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)))
2625anassrs 467 . . . . . . . 8 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ 𝑥C ) ∧ (𝐴𝐵) = 0) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)))
2726adantrl 713 . . . . . . 7 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ 𝑥C ) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)))
28 sstr2 3982 . . . . . . . . 9 (((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵) → (((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐴𝐵))))
29 sstr2 3982 . . . . . . . . 9 (((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))
3028, 29syl6 35 . . . . . . . 8 (((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵) → (((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
3130com23 86 . . . . . . 7 (((𝑥 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∩ 𝐵) → ((𝑥 (𝐴𝐵)) ⊆ (𝑥 (𝐶𝐷)) → (((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
3214, 27, 31sylc 65 . . . . . 6 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ 𝑥C ) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))
3332an32s 649 . . . . 5 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) ∧ 𝑥C ) → (((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))
344, 33imim12d 81 . . . 4 (((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) ∧ 𝑥C ) → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵))) → (𝑥𝐷 → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
3534ralimdva 3159 . . 3 ((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵))) → ∀𝑥C (𝑥𝐷 → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
36 mdbr2 32044 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)))))
3736ad2antrr 723 . . 3 ((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)))))
38 mdbr2 32044 . . . 4 ((𝐶C𝐷C ) → (𝐶 𝑀 𝐷 ↔ ∀𝑥C (𝑥𝐷 → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
3938ad2antlr 724 . . 3 ((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (𝐶 𝑀 𝐷 ↔ ∀𝑥C (𝑥𝐷 → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4035, 37, 393imtr4d 294 . 2 ((((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) ∧ ((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0)) → (𝐴 𝑀 𝐵𝐶 𝑀 𝐷))
4140expimpd 453 1 (((𝐴C𝐵C ) ∧ (𝐶C𝐷C )) → ((((𝐶𝐴𝐷𝐵) ∧ (𝐴𝐵) = 0) ∧ 𝐴 𝑀 𝐵) → 𝐶 𝑀 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  cin 3940  wss 3941   class class class wbr 5139  (class class class)co 7402   C cch 30677   chj 30681  0c0h 30683   𝑀 cmd 30714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cc 10427  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187  ax-hilex 30747  ax-hfvadd 30748  ax-hvcom 30749  ax-hvass 30750  ax-hv0cl 30751  ax-hvaddid 30752  ax-hfvmul 30753  ax-hvmulid 30754  ax-hvmulass 30755  ax-hvdistr1 30756  ax-hvdistr2 30757  ax-hvmul0 30758  ax-hfi 30827  ax-his1 30830  ax-his2 30831  ax-his3 30832  ax-his4 30833  ax-hcompl 30950
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-acn 9934  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-q 12932  df-rp 12976  df-xneg 13093  df-xadd 13094  df-xmul 13095  df-ioo 13329  df-ico 13331  df-icc 13332  df-fz 13486  df-fzo 13629  df-fl 13758  df-seq 13968  df-exp 14029  df-hash 14292  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-rlim 15435  df-sum 15635  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-submnd 18710  df-mulg 18992  df-cntz 19229  df-cmn 19698  df-psmet 21226  df-xmet 21227  df-met 21228  df-bl 21229  df-mopn 21230  df-fbas 21231  df-fg 21232  df-cnfld 21235  df-top 22740  df-topon 22757  df-topsp 22779  df-bases 22793  df-cld 22867  df-ntr 22868  df-cls 22869  df-nei 22946  df-cn 23075  df-cnp 23076  df-lm 23077  df-haus 23163  df-tx 23410  df-hmeo 23603  df-fil 23694  df-fm 23786  df-flim 23787  df-flf 23788  df-xms 24170  df-ms 24171  df-tms 24172  df-cfil 25127  df-cau 25128  df-cmet 25129  df-grpo 30241  df-gid 30242  df-ginv 30243  df-gdiv 30244  df-ablo 30293  df-vc 30307  df-nv 30340  df-va 30343  df-ba 30344  df-sm 30345  df-0v 30346  df-vs 30347  df-nmcv 30348  df-ims 30349  df-dip 30449  df-ssp 30470  df-ph 30561  df-cbn 30611  df-hnorm 30716  df-hba 30717  df-hvsub 30719  df-hlim 30720  df-hcau 30721  df-sh 30955  df-ch 30969  df-oc 31000  df-ch0 31001  df-shs 31056  df-chj 31058  df-md 32028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator