Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divge0 | Structured version Visualization version GIF version |
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
divge0 | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge0div 11772 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) | |
2 | 1 | biimpd 228 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))) |
3 | 2 | 3exp 1117 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))))) |
4 | 3 | com34 91 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 ≤ 𝐴 → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
5 | 4 | com23 86 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
6 | 5 | imp43 427 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 < clt 10940 ≤ cle 10941 / cdiv 11562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 |
This theorem is referenced by: mulge0b 11775 ledivp1 11807 divge0i 11814 divge0d 12741 divelunit 13155 adddivflid 13466 fldiv4p1lem1div2 13483 fldiv 13508 modid 13544 modmuladdnn0 13563 expnbnd 13875 sqrtdiv 14905 sqreulem 14999 efcllem 15715 ege2le3 15727 flodddiv4 16050 hashgcdlem 16417 fldivp1 16526 4sqlem14 16587 odmodnn0 19063 prmirredlem 20606 icopnfcnv 24011 lebnumii 24035 nmoleub2lem3 24184 ncvs1 24226 minveclem4 24501 mbfi1fseqlem1 24785 mbfi1fseqlem5 24789 radcnvlem1 25477 cxpaddle 25810 log2tlbnd 26000 birthdaylem3 26008 jensenlem2 26042 amgm 26045 basellem3 26137 ppiub 26257 logfac2 26270 gausslemma2dlem0d 26412 chto1ub 26529 vmadivsum 26535 rpvmasumlem 26540 dchrvmasumlem2 26551 dchrvmasumiflem1 26554 dchrisum0fno1 26564 dchrisum0re 26566 mulog2sumlem2 26588 selberg2lem 26603 pntrmax 26617 pntrsumo1 26618 pntpbnd1 26639 ostth2lem2 26687 axpaschlem 27211 axcontlem2 27236 nv1 28938 siii 29116 minvecolem4 29143 norm1 29512 strlem1 30513 unitdivcld 31753 cvmliftlem2 33148 cvmliftlem10 33156 cvmliftlem13 33158 snmlff 33191 poimirlem29 35733 poimirlem30 35734 poimirlem31 35735 poimirlem32 35736 pellexlem1 40567 pellexlem6 40572 jm2.22 40733 jm2.23 40734 stoweidlem36 43467 stoweidlem38 43469 nn0eo 45762 dignn0flhalf 45852 |
Copyright terms: Public domain | W3C validator |