![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divge0 | Structured version Visualization version GIF version |
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
divge0 | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge0div 12133 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) | |
2 | 1 | biimpd 229 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))) |
3 | 2 | 3exp 1118 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))))) |
4 | 3 | com34 91 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 ≤ 𝐴 → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
5 | 4 | com23 86 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
6 | 5 | imp43 427 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 < clt 11293 ≤ cle 11294 / cdiv 11918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 |
This theorem is referenced by: mulge0b 12136 ledivp1 12168 divge0i 12175 divge0d 13115 divelunit 13531 adddivflid 13855 fldiv4p1lem1div2 13872 fldiv 13897 modid 13933 modmuladdnn0 13953 expnbnd 14268 sqrtdiv 15301 sqreulem 15395 efcllem 16110 ege2le3 16123 flodddiv4 16449 hashgcdlem 16822 fldivp1 16931 4sqlem14 16992 odmodnn0 19573 prmirredlem 21501 icopnfcnv 24987 lebnumii 25012 nmoleub2lem3 25162 ncvs1 25205 minveclem4 25480 mbfi1fseqlem1 25765 mbfi1fseqlem5 25769 radcnvlem1 26471 cxpaddle 26810 log2tlbnd 27003 birthdaylem3 27011 jensenlem2 27046 amgm 27049 basellem3 27141 ppiub 27263 logfac2 27276 gausslemma2dlem0d 27418 chto1ub 27535 vmadivsum 27541 rpvmasumlem 27546 dchrvmasumlem2 27557 dchrvmasumiflem1 27560 dchrisum0fno1 27570 dchrisum0re 27572 mulog2sumlem2 27594 selberg2lem 27609 pntrmax 27623 pntrsumo1 27624 pntpbnd1 27645 ostth2lem2 27693 axpaschlem 28970 axcontlem2 28995 nv1 30704 siii 30882 minvecolem4 30909 norm1 31278 strlem1 32279 unitdivcld 33862 cvmliftlem2 35271 cvmliftlem10 35279 cvmliftlem13 35281 snmlff 35314 poimirlem29 37636 poimirlem30 37637 poimirlem31 37638 poimirlem32 37639 pellexlem1 42817 pellexlem6 42822 jm2.22 42984 jm2.23 42985 stoweidlem36 45992 stoweidlem38 45994 nn0eo 48378 dignn0flhalf 48468 |
Copyright terms: Public domain | W3C validator |