MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divge0 Structured version   Visualization version   GIF version

Theorem divge0 12138
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.)
Assertion
Ref Expression
divge0 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))

Proof of Theorem divge0
StepHypRef Expression
1 ge0div 12136 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵)))
21biimpd 229 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵)))
323exp 1119 . . . 4 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵)))))
43com34 91 . . 3 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 ≤ 𝐴 → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵)))))
54com23 86 . 2 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵)))))
65imp43 427 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2107   class class class wbr 5142  (class class class)co 7432  cr 11155  0cc0 11156   < clt 11296  cle 11297   / cdiv 11921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922
This theorem is referenced by:  mulge0b  12139  ledivp1  12171  divge0i  12178  divge0d  13118  divelunit  13535  adddivflid  13859  fldiv4p1lem1div2  13876  fldiv  13901  modid  13937  modmuladdnn0  13957  expnbnd  14272  sqrtdiv  15305  sqreulem  15399  efcllem  16114  ege2le3  16127  flodddiv4  16453  hashgcdlem  16826  fldivp1  16936  4sqlem14  16997  odmodnn0  19559  prmirredlem  21484  icopnfcnv  24974  lebnumii  24999  nmoleub2lem3  25149  ncvs1  25192  minveclem4  25467  mbfi1fseqlem1  25751  mbfi1fseqlem5  25755  radcnvlem1  26457  cxpaddle  26796  log2tlbnd  26989  birthdaylem3  26997  jensenlem2  27032  amgm  27035  basellem3  27127  ppiub  27249  logfac2  27262  gausslemma2dlem0d  27404  chto1ub  27521  vmadivsum  27527  rpvmasumlem  27532  dchrvmasumlem2  27543  dchrvmasumiflem1  27546  dchrisum0fno1  27556  dchrisum0re  27558  mulog2sumlem2  27580  selberg2lem  27595  pntrmax  27609  pntrsumo1  27610  pntpbnd1  27631  ostth2lem2  27679  axpaschlem  28956  axcontlem2  28981  nv1  30695  siii  30873  minvecolem4  30900  norm1  31269  strlem1  32270  unitdivcld  33901  cvmliftlem2  35292  cvmliftlem10  35300  cvmliftlem13  35302  snmlff  35335  poimirlem29  37657  poimirlem30  37658  poimirlem31  37659  poimirlem32  37660  pellexlem1  42845  pellexlem6  42850  jm2.22  43012  jm2.23  43013  stoweidlem36  46056  stoweidlem38  46058  nn0eo  48454  dignn0flhalf  48544
  Copyright terms: Public domain W3C validator