| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divge0 | Structured version Visualization version GIF version | ||
| Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| divge0 | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge0div 12114 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) | |
| 2 | 1 | biimpd 229 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))) |
| 3 | 2 | 3exp 1119 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))))) |
| 4 | 3 | com34 91 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 ≤ 𝐴 → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
| 5 | 4 | com23 86 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
| 6 | 5 | imp43 427 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 < clt 11274 ≤ cle 11275 / cdiv 11899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 |
| This theorem is referenced by: mulge0b 12117 ledivp1 12149 divge0i 12156 divge0d 13096 divelunit 13516 adddivflid 13840 fldiv4p1lem1div2 13857 fldiv 13882 modid 13918 modmuladdnn0 13938 expnbnd 14255 sqrtdiv 15289 sqreulem 15383 efcllem 16098 ege2le3 16111 flodddiv4 16439 hashgcdlem 16812 fldivp1 16922 4sqlem14 16983 odmodnn0 19526 prmirredlem 21438 icopnfcnv 24896 lebnumii 24921 nmoleub2lem3 25071 ncvs1 25114 minveclem4 25389 mbfi1fseqlem1 25673 mbfi1fseqlem5 25677 radcnvlem1 26379 cxpaddle 26719 log2tlbnd 26912 birthdaylem3 26920 jensenlem2 26955 amgm 26958 basellem3 27050 ppiub 27172 logfac2 27185 gausslemma2dlem0d 27327 chto1ub 27444 vmadivsum 27450 rpvmasumlem 27455 dchrvmasumlem2 27466 dchrvmasumiflem1 27469 dchrisum0fno1 27479 dchrisum0re 27481 mulog2sumlem2 27503 selberg2lem 27518 pntrmax 27532 pntrsumo1 27533 pntpbnd1 27554 ostth2lem2 27602 axpaschlem 28924 axcontlem2 28949 nv1 30661 siii 30839 minvecolem4 30866 norm1 31235 strlem1 32236 unitdivcld 33937 cvmliftlem2 35313 cvmliftlem10 35321 cvmliftlem13 35323 snmlff 35356 poimirlem29 37678 poimirlem30 37679 poimirlem31 37680 poimirlem32 37681 pellexlem1 42819 pellexlem6 42824 jm2.22 42986 jm2.23 42987 stoweidlem36 46032 stoweidlem38 46034 nn0eo 48475 dignn0flhalf 48565 |
| Copyright terms: Public domain | W3C validator |