| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divge0 | Structured version Visualization version GIF version | ||
| Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| divge0 | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge0div 11981 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) | |
| 2 | 1 | biimpd 229 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))) |
| 3 | 2 | 3exp 1119 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))))) |
| 4 | 3 | com34 91 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 ≤ 𝐴 → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
| 5 | 4 | com23 86 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
| 6 | 5 | imp43 427 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2110 class class class wbr 5089 (class class class)co 7341 ℝcr 10997 0cc0 10998 < clt 11138 ≤ cle 11139 / cdiv 11766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 |
| This theorem is referenced by: mulge0b 11984 ledivp1 12016 divge0i 12023 divge0d 12966 divelunit 13386 adddivflid 13714 fldiv4p1lem1div2 13731 fldiv 13756 modid 13792 modmuladdnn0 13814 expnbnd 14131 sqrtdiv 15164 sqreulem 15259 efcllem 15976 ege2le3 15989 flodddiv4 16318 hashgcdlem 16691 fldivp1 16801 4sqlem14 16862 odmodnn0 19445 prmirredlem 21402 icopnfcnv 24860 lebnumii 24885 nmoleub2lem3 25035 ncvs1 25077 minveclem4 25352 mbfi1fseqlem1 25636 mbfi1fseqlem5 25640 radcnvlem1 26342 cxpaddle 26682 log2tlbnd 26875 birthdaylem3 26883 jensenlem2 26918 amgm 26921 basellem3 27013 ppiub 27135 logfac2 27148 gausslemma2dlem0d 27290 chto1ub 27407 vmadivsum 27413 rpvmasumlem 27418 dchrvmasumlem2 27429 dchrvmasumiflem1 27432 dchrisum0fno1 27442 dchrisum0re 27444 mulog2sumlem2 27466 selberg2lem 27481 pntrmax 27495 pntrsumo1 27496 pntpbnd1 27517 ostth2lem2 27565 axpaschlem 28911 axcontlem2 28936 nv1 30645 siii 30823 minvecolem4 30850 norm1 31219 strlem1 32220 unitdivcld 33904 cvmliftlem2 35298 cvmliftlem10 35306 cvmliftlem13 35308 snmlff 35341 poimirlem29 37668 poimirlem30 37669 poimirlem31 37670 poimirlem32 37671 pellexlem1 42841 pellexlem6 42846 jm2.22 43007 jm2.23 43008 stoweidlem36 46053 stoweidlem38 46055 nn0eo 48539 dignn0flhalf 48629 |
| Copyright terms: Public domain | W3C validator |