| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divge0 | Structured version Visualization version GIF version | ||
| Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| divge0 | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge0div 12050 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) | |
| 2 | 1 | biimpd 229 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))) |
| 3 | 2 | 3exp 1119 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))))) |
| 4 | 3 | com34 91 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 ≤ 𝐴 → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
| 5 | 4 | com23 86 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
| 6 | 5 | imp43 427 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 < clt 11208 ≤ cle 11209 / cdiv 11835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 |
| This theorem is referenced by: mulge0b 12053 ledivp1 12085 divge0i 12092 divge0d 13035 divelunit 13455 adddivflid 13780 fldiv4p1lem1div2 13797 fldiv 13822 modid 13858 modmuladdnn0 13880 expnbnd 14197 sqrtdiv 15231 sqreulem 15326 efcllem 16043 ege2le3 16056 flodddiv4 16385 hashgcdlem 16758 fldivp1 16868 4sqlem14 16929 odmodnn0 19470 prmirredlem 21382 icopnfcnv 24840 lebnumii 24865 nmoleub2lem3 25015 ncvs1 25057 minveclem4 25332 mbfi1fseqlem1 25616 mbfi1fseqlem5 25620 radcnvlem1 26322 cxpaddle 26662 log2tlbnd 26855 birthdaylem3 26863 jensenlem2 26898 amgm 26901 basellem3 26993 ppiub 27115 logfac2 27128 gausslemma2dlem0d 27270 chto1ub 27387 vmadivsum 27393 rpvmasumlem 27398 dchrvmasumlem2 27409 dchrvmasumiflem1 27412 dchrisum0fno1 27422 dchrisum0re 27424 mulog2sumlem2 27446 selberg2lem 27461 pntrmax 27475 pntrsumo1 27476 pntpbnd1 27497 ostth2lem2 27545 axpaschlem 28867 axcontlem2 28892 nv1 30604 siii 30782 minvecolem4 30809 norm1 31178 strlem1 32179 unitdivcld 33891 cvmliftlem2 35273 cvmliftlem10 35281 cvmliftlem13 35283 snmlff 35316 poimirlem29 37643 poimirlem30 37644 poimirlem31 37645 poimirlem32 37646 pellexlem1 42817 pellexlem6 42822 jm2.22 42984 jm2.23 42985 stoweidlem36 46034 stoweidlem38 46036 nn0eo 48517 dignn0flhalf 48607 |
| Copyright terms: Public domain | W3C validator |