MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divge0 Structured version   Visualization version   GIF version

Theorem divge0 11983
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.)
Assertion
Ref Expression
divge0 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))

Proof of Theorem divge0
StepHypRef Expression
1 ge0div 11981 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵)))
21biimpd 229 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵)))
323exp 1119 . . . 4 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵)))))
43com34 91 . . 3 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 ≤ 𝐴 → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵)))))
54com23 86 . 2 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵)))))
65imp43 427 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2110   class class class wbr 5089  (class class class)co 7341  cr 10997  0cc0 10998   < clt 11138  cle 11139   / cdiv 11766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767
This theorem is referenced by:  mulge0b  11984  ledivp1  12016  divge0i  12023  divge0d  12966  divelunit  13386  adddivflid  13714  fldiv4p1lem1div2  13731  fldiv  13756  modid  13792  modmuladdnn0  13814  expnbnd  14131  sqrtdiv  15164  sqreulem  15259  efcllem  15976  ege2le3  15989  flodddiv4  16318  hashgcdlem  16691  fldivp1  16801  4sqlem14  16862  odmodnn0  19445  prmirredlem  21402  icopnfcnv  24860  lebnumii  24885  nmoleub2lem3  25035  ncvs1  25077  minveclem4  25352  mbfi1fseqlem1  25636  mbfi1fseqlem5  25640  radcnvlem1  26342  cxpaddle  26682  log2tlbnd  26875  birthdaylem3  26883  jensenlem2  26918  amgm  26921  basellem3  27013  ppiub  27135  logfac2  27148  gausslemma2dlem0d  27290  chto1ub  27407  vmadivsum  27413  rpvmasumlem  27418  dchrvmasumlem2  27429  dchrvmasumiflem1  27432  dchrisum0fno1  27442  dchrisum0re  27444  mulog2sumlem2  27466  selberg2lem  27481  pntrmax  27495  pntrsumo1  27496  pntpbnd1  27517  ostth2lem2  27565  axpaschlem  28911  axcontlem2  28936  nv1  30645  siii  30823  minvecolem4  30850  norm1  31219  strlem1  32220  unitdivcld  33904  cvmliftlem2  35298  cvmliftlem10  35306  cvmliftlem13  35308  snmlff  35341  poimirlem29  37668  poimirlem30  37669  poimirlem31  37670  poimirlem32  37671  pellexlem1  42841  pellexlem6  42846  jm2.22  43007  jm2.23  43008  stoweidlem36  46053  stoweidlem38  46055  nn0eo  48539  dignn0flhalf  48629
  Copyright terms: Public domain W3C validator