| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divge0 | Structured version Visualization version GIF version | ||
| Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| divge0 | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge0div 11999 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) | |
| 2 | 1 | biimpd 229 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))) |
| 3 | 2 | 3exp 1119 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))))) |
| 4 | 3 | com34 91 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 ≤ 𝐴 → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
| 5 | 4 | com23 86 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
| 6 | 5 | imp43 427 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11015 0cc0 11016 < clt 11156 ≤ cle 11157 / cdiv 11784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 |
| This theorem is referenced by: mulge0b 12002 ledivp1 12034 divge0i 12041 divge0d 12984 divelunit 13404 adddivflid 13732 fldiv4p1lem1div2 13749 fldiv 13774 modid 13810 modmuladdnn0 13832 expnbnd 14149 sqrtdiv 15182 sqreulem 15277 efcllem 15994 ege2le3 16007 flodddiv4 16336 hashgcdlem 16709 fldivp1 16819 4sqlem14 16880 odmodnn0 19462 prmirredlem 21419 icopnfcnv 24877 lebnumii 24902 nmoleub2lem3 25052 ncvs1 25094 minveclem4 25369 mbfi1fseqlem1 25653 mbfi1fseqlem5 25657 radcnvlem1 26359 cxpaddle 26699 log2tlbnd 26892 birthdaylem3 26900 jensenlem2 26935 amgm 26938 basellem3 27030 ppiub 27152 logfac2 27165 gausslemma2dlem0d 27307 chto1ub 27424 vmadivsum 27430 rpvmasumlem 27435 dchrvmasumlem2 27446 dchrvmasumiflem1 27449 dchrisum0fno1 27459 dchrisum0re 27461 mulog2sumlem2 27483 selberg2lem 27498 pntrmax 27512 pntrsumo1 27513 pntpbnd1 27534 ostth2lem2 27582 axpaschlem 28929 axcontlem2 28954 nv1 30666 siii 30844 minvecolem4 30871 norm1 31240 strlem1 32241 unitdivcld 33925 cvmliftlem2 35341 cvmliftlem10 35349 cvmliftlem13 35351 snmlff 35384 poimirlem29 37699 poimirlem30 37700 poimirlem31 37701 poimirlem32 37702 pellexlem1 42936 pellexlem6 42941 jm2.22 43102 jm2.23 43103 stoweidlem36 46148 stoweidlem38 46150 nn0eo 48643 dignn0flhalf 48733 |
| Copyright terms: Public domain | W3C validator |