Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divge0 | Structured version Visualization version GIF version |
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
divge0 | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge0div 11851 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) | |
2 | 1 | biimpd 228 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))) |
3 | 2 | 3exp 1118 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))))) |
4 | 3 | com34 91 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 ≤ 𝐴 → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
5 | 4 | com23 86 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
6 | 5 | imp43 428 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5075 (class class class)co 7284 ℝcr 10879 0cc0 10880 < clt 11018 ≤ cle 11019 / cdiv 11641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 |
This theorem is referenced by: mulge0b 11854 ledivp1 11886 divge0i 11893 divge0d 12821 divelunit 13235 adddivflid 13547 fldiv4p1lem1div2 13564 fldiv 13589 modid 13625 modmuladdnn0 13644 expnbnd 13956 sqrtdiv 14986 sqreulem 15080 efcllem 15796 ege2le3 15808 flodddiv4 16131 hashgcdlem 16498 fldivp1 16607 4sqlem14 16668 odmodnn0 19157 prmirredlem 20703 icopnfcnv 24114 lebnumii 24138 nmoleub2lem3 24287 ncvs1 24330 minveclem4 24605 mbfi1fseqlem1 24889 mbfi1fseqlem5 24893 radcnvlem1 25581 cxpaddle 25914 log2tlbnd 26104 birthdaylem3 26112 jensenlem2 26146 amgm 26149 basellem3 26241 ppiub 26361 logfac2 26374 gausslemma2dlem0d 26516 chto1ub 26633 vmadivsum 26639 rpvmasumlem 26644 dchrvmasumlem2 26655 dchrvmasumiflem1 26658 dchrisum0fno1 26668 dchrisum0re 26670 mulog2sumlem2 26692 selberg2lem 26707 pntrmax 26721 pntrsumo1 26722 pntpbnd1 26743 ostth2lem2 26791 axpaschlem 27317 axcontlem2 27342 nv1 29046 siii 29224 minvecolem4 29251 norm1 29620 strlem1 30621 unitdivcld 31860 cvmliftlem2 33257 cvmliftlem10 33265 cvmliftlem13 33267 snmlff 33300 poimirlem29 35815 poimirlem30 35816 poimirlem31 35817 poimirlem32 35818 pellexlem1 40658 pellexlem6 40663 jm2.22 40824 jm2.23 40825 stoweidlem36 43584 stoweidlem38 43586 nn0eo 45885 dignn0flhalf 45975 |
Copyright terms: Public domain | W3C validator |