Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linepsubN Structured version   Visualization version   GIF version

Theorem linepsubN 39755
Description: A line is a projective subspace. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
linepsub.n 𝑁 = (Lines‘𝐾)
linepsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
linepsubN ((𝐾 ∈ Lat ∧ 𝑋𝑁) → 𝑋𝑆)

Proof of Theorem linepsubN
Dummy variables 𝑎 𝑏 𝑐 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4079 . . . . . . . 8 {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ⊆ (Atoms‘𝐾)
2 sseq1 4008 . . . . . . . 8 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑋 ⊆ (Atoms‘𝐾) ↔ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ⊆ (Atoms‘𝐾)))
31, 2mpbiri 258 . . . . . . 7 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → 𝑋 ⊆ (Atoms‘𝐾))
43a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → 𝑋 ⊆ (Atoms‘𝐾)))
5 eqid 2736 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2736 . . . . . . . . . 10 (Atoms‘𝐾) = (Atoms‘𝐾)
75, 6atbase 39291 . . . . . . . . 9 (𝑎 ∈ (Atoms‘𝐾) → 𝑎 ∈ (Base‘𝐾))
85, 6atbase 39291 . . . . . . . . 9 (𝑏 ∈ (Atoms‘𝐾) → 𝑏 ∈ (Base‘𝐾))
97, 8anim12i 613 . . . . . . . 8 ((𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾)) → (𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾)))
10 eqid 2736 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
115, 10latjcl 18485 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾)) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
12113expb 1120 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾))) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
139, 12sylan2 593 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
14 eleq2 2829 . . . . . . . . . . . . . . . . . . 19 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝𝑋𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
15 breq1 5145 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑝 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
1615elrab 3691 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
175, 6atbase 39291 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
1817anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
1916, 18sylbi 217 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2014, 19biimtrdi 253 . . . . . . . . . . . . . . . . . 18 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝𝑋 → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
21 eleq2 2829 . . . . . . . . . . . . . . . . . . 19 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞𝑋𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
22 breq1 5145 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑞 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2322elrab 3691 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
245, 6atbase 39291 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ (Base‘𝐾))
2524anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2623, 25sylbi 217 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2721, 26biimtrdi 253 . . . . . . . . . . . . . . . . . 18 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞𝑋 → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
2820, 27anim12d 609 . . . . . . . . . . . . . . . . 17 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ((𝑝𝑋𝑞𝑋) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
29 an4 656 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))) ↔ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
3028, 29imbitrdi 251 . . . . . . . . . . . . . . . 16 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ((𝑝𝑋𝑞𝑋) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
3130imp 406 . . . . . . . . . . . . . . 15 ((𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ∧ (𝑝𝑋𝑞𝑋)) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
3231anim2i 617 . . . . . . . . . . . . . 14 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ∧ (𝑝𝑋𝑞𝑋))) → ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
3332anassrs 467 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) → ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
345, 6atbase 39291 . . . . . . . . . . . . 13 (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ (Base‘𝐾))
35 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (le‘𝐾) = (le‘𝐾)
365, 35, 10latjle12 18496 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
3736biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
38373exp2 1354 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Lat → (𝑝 ∈ (Base‘𝐾) → (𝑞 ∈ (Base‘𝐾) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
3938impd 410 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
4039com23 86 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
4140imp43 427 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))
4241adantr 480 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))
435, 10latjcl 18485 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
44433expib 1122 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)))
455, 35lattr 18490 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑟 ∈ (Base‘𝐾) ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
46453exp2 1354 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Lat → (𝑟 ∈ (Base‘𝐾) → ((𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4746com24 95 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) → (𝑟 ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4844, 47syl5d 73 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑟 ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4948imp41 425 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾))) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5049adantlrr 721 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5142, 50mpan2d 694 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5233, 34, 51syl2an 596 . . . . . . . . . . . 12 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
53 simpr 484 . . . . . . . . . . . 12 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾))
5452, 53jctild 525 . . . . . . . . . . 11 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
55 eleq2 2829 . . . . . . . . . . . . 13 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑟𝑋𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
56 breq1 5145 . . . . . . . . . . . . . 14 (𝑐 = 𝑟 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5756elrab 3691 . . . . . . . . . . . . 13 (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5855, 57bitrdi 287 . . . . . . . . . . . 12 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑟𝑋 ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
5958ad3antlr 731 . . . . . . . . . . 11 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟𝑋 ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
6054, 59sylibrd 259 . . . . . . . . . 10 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6160ralrimiva 3145 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6261ralrimivva 3201 . . . . . . . 8 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6362ex 412 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋)))
6413, 63syldan 591 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋)))
654, 64jcad 512 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
6665adantld 490 . . . 4 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → ((𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
6766rexlimdvva 3212 . . 3 (𝐾 ∈ Lat → (∃𝑎 ∈ (Atoms‘𝐾)∃𝑏 ∈ (Atoms‘𝐾)(𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
68 linepsub.n . . . 4 𝑁 = (Lines‘𝐾)
6935, 10, 6, 68isline 39742 . . 3 (𝐾 ∈ Lat → (𝑋𝑁 ↔ ∃𝑎 ∈ (Atoms‘𝐾)∃𝑏 ∈ (Atoms‘𝐾)(𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)})))
70 linepsub.s . . . 4 𝑆 = (PSubSp‘𝐾)
7135, 10, 6, 70ispsubsp 39748 . . 3 (𝐾 ∈ Lat → (𝑋𝑆 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
7267, 69, 713imtr4d 294 . 2 (𝐾 ∈ Lat → (𝑋𝑁𝑋𝑆))
7372imp 406 1 ((𝐾 ∈ Lat ∧ 𝑋𝑁) → 𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  {crab 3435  wss 3950   class class class wbr 5142  cfv 6560  (class class class)co 7432  Basecbs 17248  lecple 17305  joincjn 18358  Latclat 18477  Atomscatm 39265  Linesclines 39497  PSubSpcpsubsp 39499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-poset 18360  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-lat 18478  df-ats 39269  df-lines 39504  df-psubsp 39506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator