| Step | Hyp | Ref
| Expression |
| 1 | | ssrab2 4060 |
. . . . . . . 8
⊢ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ⊆ (Atoms‘𝐾) |
| 2 | | sseq1 3989 |
. . . . . . . 8
⊢ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑋 ⊆ (Atoms‘𝐾) ↔ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ⊆ (Atoms‘𝐾))) |
| 3 | 1, 2 | mpbiri 258 |
. . . . . . 7
⊢ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → 𝑋 ⊆ (Atoms‘𝐾)) |
| 4 | 3 | a1i 11 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → 𝑋 ⊆ (Atoms‘𝐾))) |
| 5 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 6 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 7 | 5, 6 | atbase 39312 |
. . . . . . . . 9
⊢ (𝑎 ∈ (Atoms‘𝐾) → 𝑎 ∈ (Base‘𝐾)) |
| 8 | 5, 6 | atbase 39312 |
. . . . . . . . 9
⊢ (𝑏 ∈ (Atoms‘𝐾) → 𝑏 ∈ (Base‘𝐾)) |
| 9 | 7, 8 | anim12i 613 |
. . . . . . . 8
⊢ ((𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾)) → (𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾))) |
| 10 | | eqid 2736 |
. . . . . . . . . 10
⊢
(join‘𝐾) =
(join‘𝐾) |
| 11 | 5, 10 | latjcl 18454 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾)) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) |
| 12 | 11 | 3expb 1120 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾))) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) |
| 13 | 9, 12 | sylan2 593 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) |
| 14 | | eleq2 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝 ∈ 𝑋 ↔ 𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)})) |
| 15 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑝 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 16 | 15 | elrab 3676 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 17 | 5, 6 | atbase 39312 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
| 18 | 17 | anim1i 615 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 19 | 16, 18 | sylbi 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 20 | 14, 19 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝 ∈ 𝑋 → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) |
| 21 | | eleq2 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞 ∈ 𝑋 ↔ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)})) |
| 22 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑞 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 23 | 22 | elrab 3676 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 24 | 5, 6 | atbase 39312 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ (Base‘𝐾)) |
| 25 | 24 | anim1i 615 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 26 | 23, 25 | sylbi 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 27 | 21, 26 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞 ∈ 𝑋 → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) |
| 28 | 20, 27 | anim12d 609 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ((𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))) |
| 29 | | an4 656 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))) ↔ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) |
| 30 | 28, 29 | imbitrdi 251 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ((𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))) |
| 31 | 30 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) |
| 32 | 31 | anim2i 617 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋))) → ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))) |
| 33 | 32 | anassrs 467 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))) |
| 34 | 5, 6 | atbase 39312 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ (Base‘𝐾)) |
| 35 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(le‘𝐾) =
(le‘𝐾) |
| 36 | 5, 35, 10 | latjle12 18465 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 37 | 36 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 38 | 37 | 3exp2 1355 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ Lat → (𝑝 ∈ (Base‘𝐾) → (𝑞 ∈ (Base‘𝐾) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))) |
| 39 | 38 | impd 410 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ Lat → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))))) |
| 40 | 39 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))))) |
| 41 | 40 | imp43 427 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) |
| 42 | 41 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) |
| 43 | 5, 10 | latjcl 18454 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) |
| 44 | 43 | 3expib 1122 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ Lat → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))) |
| 45 | 5, 35 | lattr 18459 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ Lat ∧ (𝑟 ∈ (Base‘𝐾) ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 46 | 45 | 3exp2 1355 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ Lat → (𝑟 ∈ (Base‘𝐾) → ((𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))) |
| 47 | 46 | com24 95 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) → (𝑟 ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))) |
| 48 | 44, 47 | syl5d 73 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑟 ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))) |
| 49 | 48 | imp41 425 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾))) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 50 | 49 | adantlrr 721 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 51 | 42, 50 | mpan2d 694 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 52 | 33, 34, 51 | syl2an 596 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ Lat
∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 53 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ Lat
∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾)) |
| 54 | 52, 53 | jctild 525 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ Lat
∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) |
| 55 | | eleq2 2824 |
. . . . . . . . . . . . 13
⊢ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑟 ∈ 𝑋 ↔ 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)})) |
| 56 | | breq1 5127 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑟 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 57 | 56 | elrab 3676 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))) |
| 58 | 55, 57 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑟 ∈ 𝑋 ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) |
| 59 | 58 | ad3antlr 731 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ Lat
∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟 ∈ 𝑋 ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) |
| 60 | 54, 59 | sylibrd 259 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ Lat
∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝑋)) |
| 61 | 60 | ralrimiva 3133 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝑋)) |
| 62 | 61 | ralrimivva 3188 |
. . . . . . . 8
⊢ (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝑋)) |
| 63 | 62 | ex 412 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝑋))) |
| 64 | 13, 63 | syldan 591 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝑋))) |
| 65 | 4, 64 | jcad 512 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝑋)))) |
| 66 | 65 | adantld 490 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → ((𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝑋)))) |
| 67 | 66 | rexlimdvva 3202 |
. . 3
⊢ (𝐾 ∈ Lat → (∃𝑎 ∈ (Atoms‘𝐾)∃𝑏 ∈ (Atoms‘𝐾)(𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝑋)))) |
| 68 | | linepsub.n |
. . . 4
⊢ 𝑁 = (Lines‘𝐾) |
| 69 | 35, 10, 6, 68 | isline 39763 |
. . 3
⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑎 ∈ (Atoms‘𝐾)∃𝑏 ∈ (Atoms‘𝐾)(𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))) |
| 70 | | linepsub.s |
. . . 4
⊢ 𝑆 = (PSubSp‘𝐾) |
| 71 | 35, 10, 6, 70 | ispsubsp 39769 |
. . 3
⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝑋)))) |
| 72 | 67, 69, 71 | 3imtr4d 294 |
. 2
⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝑆)) |
| 73 | 72 | imp 406 |
1
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝑆) |