Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linepsubN Structured version   Visualization version   GIF version

Theorem linepsubN 36997
Description: A line is a projective subspace. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
linepsub.n 𝑁 = (Lines‘𝐾)
linepsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
linepsubN ((𝐾 ∈ Lat ∧ 𝑋𝑁) → 𝑋𝑆)

Proof of Theorem linepsubN
Dummy variables 𝑎 𝑏 𝑐 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4042 . . . . . . . 8 {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ⊆ (Atoms‘𝐾)
2 sseq1 3978 . . . . . . . 8 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑋 ⊆ (Atoms‘𝐾) ↔ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ⊆ (Atoms‘𝐾)))
31, 2mpbiri 261 . . . . . . 7 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → 𝑋 ⊆ (Atoms‘𝐾))
43a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → 𝑋 ⊆ (Atoms‘𝐾)))
5 eqid 2824 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2824 . . . . . . . . . 10 (Atoms‘𝐾) = (Atoms‘𝐾)
75, 6atbase 36534 . . . . . . . . 9 (𝑎 ∈ (Atoms‘𝐾) → 𝑎 ∈ (Base‘𝐾))
85, 6atbase 36534 . . . . . . . . 9 (𝑏 ∈ (Atoms‘𝐾) → 𝑏 ∈ (Base‘𝐾))
97, 8anim12i 615 . . . . . . . 8 ((𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾)) → (𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾)))
10 eqid 2824 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
115, 10latjcl 17661 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾)) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
12113expb 1117 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾))) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
139, 12sylan2 595 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
14 eleq2 2904 . . . . . . . . . . . . . . . . . . 19 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝𝑋𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
15 breq1 5055 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑝 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
1615elrab 3666 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
175, 6atbase 36534 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
1817anim1i 617 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
1916, 18sylbi 220 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2014, 19syl6bi 256 . . . . . . . . . . . . . . . . . 18 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝𝑋 → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
21 eleq2 2904 . . . . . . . . . . . . . . . . . . 19 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞𝑋𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
22 breq1 5055 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑞 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2322elrab 3666 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
245, 6atbase 36534 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ (Base‘𝐾))
2524anim1i 617 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2623, 25sylbi 220 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2721, 26syl6bi 256 . . . . . . . . . . . . . . . . . 18 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞𝑋 → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
2820, 27anim12d 611 . . . . . . . . . . . . . . . . 17 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ((𝑝𝑋𝑞𝑋) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
29 an4 655 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))) ↔ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
3028, 29syl6ib 254 . . . . . . . . . . . . . . . 16 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ((𝑝𝑋𝑞𝑋) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
3130imp 410 . . . . . . . . . . . . . . 15 ((𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ∧ (𝑝𝑋𝑞𝑋)) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
3231anim2i 619 . . . . . . . . . . . . . 14 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ∧ (𝑝𝑋𝑞𝑋))) → ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
3332anassrs 471 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) → ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
345, 6atbase 36534 . . . . . . . . . . . . 13 (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ (Base‘𝐾))
35 eqid 2824 . . . . . . . . . . . . . . . . . . . . 21 (le‘𝐾) = (le‘𝐾)
365, 35, 10latjle12 17672 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
3736biimpd 232 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
38373exp2 1351 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Lat → (𝑝 ∈ (Base‘𝐾) → (𝑞 ∈ (Base‘𝐾) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
3938impd 414 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
4039com23 86 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
4140imp43 431 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))
4241adantr 484 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))
435, 10latjcl 17661 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
44433expib 1119 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)))
455, 35lattr 17666 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑟 ∈ (Base‘𝐾) ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
46453exp2 1351 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Lat → (𝑟 ∈ (Base‘𝐾) → ((𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4746com24 95 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) → (𝑟 ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4844, 47syl5d 73 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑟 ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4948imp41 429 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾))) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5049adantlrr 720 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5142, 50mpan2d 693 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5233, 34, 51syl2an 598 . . . . . . . . . . . 12 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
53 simpr 488 . . . . . . . . . . . 12 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾))
5452, 53jctild 529 . . . . . . . . . . 11 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
55 eleq2 2904 . . . . . . . . . . . . 13 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑟𝑋𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
56 breq1 5055 . . . . . . . . . . . . . 14 (𝑐 = 𝑟 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5756elrab 3666 . . . . . . . . . . . . 13 (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5855, 57syl6bb 290 . . . . . . . . . . . 12 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑟𝑋 ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
5958ad3antlr 730 . . . . . . . . . . 11 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟𝑋 ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
6054, 59sylibrd 262 . . . . . . . . . 10 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6160ralrimiva 3177 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6261ralrimivva 3186 . . . . . . . 8 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6362ex 416 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋)))
6413, 63syldan 594 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋)))
654, 64jcad 516 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
6665adantld 494 . . . 4 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → ((𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
6766rexlimdvva 3286 . . 3 (𝐾 ∈ Lat → (∃𝑎 ∈ (Atoms‘𝐾)∃𝑏 ∈ (Atoms‘𝐾)(𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
68 linepsub.n . . . 4 𝑁 = (Lines‘𝐾)
6935, 10, 6, 68isline 36984 . . 3 (𝐾 ∈ Lat → (𝑋𝑁 ↔ ∃𝑎 ∈ (Atoms‘𝐾)∃𝑏 ∈ (Atoms‘𝐾)(𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)})))
70 linepsub.s . . . 4 𝑆 = (PSubSp‘𝐾)
7135, 10, 6, 70ispsubsp 36990 . . 3 (𝐾 ∈ Lat → (𝑋𝑆 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
7267, 69, 713imtr4d 297 . 2 (𝐾 ∈ Lat → (𝑋𝑁𝑋𝑆))
7372imp 410 1 ((𝐾 ∈ Lat ∧ 𝑋𝑁) → 𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  {crab 3137  wss 3919   class class class wbr 5052  cfv 6343  (class class class)co 7149  Basecbs 16483  lecple 16572  joincjn 17554  Latclat 17655  Atomscatm 36508  Linesclines 36739  PSubSpcpsubsp 36741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-poset 17556  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-lat 17656  df-ats 36512  df-lines 36746  df-psubsp 36748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator