Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linepsubN Structured version   Visualization version   GIF version

Theorem linepsubN 35551
Description: A line is a projective subspace. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
linepsub.n 𝑁 = (Lines‘𝐾)
linepsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
linepsubN ((𝐾 ∈ Lat ∧ 𝑋𝑁) → 𝑋𝑆)

Proof of Theorem linepsubN
Dummy variables 𝑎 𝑏 𝑐 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3895 . . . . . . . 8 {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ⊆ (Atoms‘𝐾)
2 sseq1 3834 . . . . . . . 8 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑋 ⊆ (Atoms‘𝐾) ↔ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ⊆ (Atoms‘𝐾)))
31, 2mpbiri 249 . . . . . . 7 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → 𝑋 ⊆ (Atoms‘𝐾))
43a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → 𝑋 ⊆ (Atoms‘𝐾)))
5 eqid 2817 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2817 . . . . . . . . . 10 (Atoms‘𝐾) = (Atoms‘𝐾)
75, 6atbase 35088 . . . . . . . . 9 (𝑎 ∈ (Atoms‘𝐾) → 𝑎 ∈ (Base‘𝐾))
85, 6atbase 35088 . . . . . . . . 9 (𝑏 ∈ (Atoms‘𝐾) → 𝑏 ∈ (Base‘𝐾))
97, 8anim12i 602 . . . . . . . 8 ((𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾)) → (𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾)))
10 eqid 2817 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
115, 10latjcl 17276 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾)) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
12113expb 1142 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾))) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
139, 12sylan2 582 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
14 eleq2 2885 . . . . . . . . . . . . . . . . . . 19 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝𝑋𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
15 breq1 4858 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑝 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
1615elrab 3570 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
175, 6atbase 35088 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
1817anim1i 604 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
1916, 18sylbi 208 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2014, 19syl6bi 244 . . . . . . . . . . . . . . . . . 18 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝𝑋 → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
21 eleq2 2885 . . . . . . . . . . . . . . . . . . 19 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞𝑋𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
22 breq1 4858 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑞 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2322elrab 3570 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
245, 6atbase 35088 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ (Base‘𝐾))
2524anim1i 604 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2623, 25sylbi 208 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2721, 26syl6bi 244 . . . . . . . . . . . . . . . . . 18 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞𝑋 → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
2820, 27anim12d 598 . . . . . . . . . . . . . . . . 17 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ((𝑝𝑋𝑞𝑋) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
29 an4 638 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))) ↔ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
3028, 29syl6ib 242 . . . . . . . . . . . . . . . 16 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ((𝑝𝑋𝑞𝑋) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
3130imp 395 . . . . . . . . . . . . . . 15 ((𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ∧ (𝑝𝑋𝑞𝑋)) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
3231anim2i 605 . . . . . . . . . . . . . 14 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ∧ (𝑝𝑋𝑞𝑋))) → ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
3332anassrs 455 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) → ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
345, 6atbase 35088 . . . . . . . . . . . . 13 (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ (Base‘𝐾))
35 eqid 2817 . . . . . . . . . . . . . . . . . . . . 21 (le‘𝐾) = (le‘𝐾)
365, 35, 10latjle12 17287 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
3736biimpd 220 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
38373exp2 1456 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Lat → (𝑝 ∈ (Base‘𝐾) → (𝑞 ∈ (Base‘𝐾) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
3938impd 398 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
4039com23 86 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
4140imp43 416 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))
4241adantr 468 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))
435, 10latjcl 17276 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
44433expib 1145 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)))
455, 35lattr 17281 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑟 ∈ (Base‘𝐾) ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
46453exp2 1456 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Lat → (𝑟 ∈ (Base‘𝐾) → ((𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4746com24 95 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) → (𝑟 ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4844, 47syl5d 73 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑟 ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4948imp41 414 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾))) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5049adantlrr 703 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5142, 50mpan2d 677 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5233, 34, 51syl2an 585 . . . . . . . . . . . 12 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
53 simpr 473 . . . . . . . . . . . 12 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾))
5452, 53jctild 517 . . . . . . . . . . 11 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
55 eleq2 2885 . . . . . . . . . . . . 13 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑟𝑋𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
56 breq1 4858 . . . . . . . . . . . . . 14 (𝑐 = 𝑟 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5756elrab 3570 . . . . . . . . . . . . 13 (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5855, 57syl6bb 278 . . . . . . . . . . . 12 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑟𝑋 ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
5958ad3antlr 713 . . . . . . . . . . 11 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟𝑋 ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
6054, 59sylibrd 250 . . . . . . . . . 10 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6160ralrimiva 3165 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6261ralrimivva 3170 . . . . . . . 8 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6362ex 399 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋)))
6413, 63syldan 581 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋)))
654, 64jcad 504 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
6665adantld 480 . . . 4 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → ((𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
6766rexlimdvva 3237 . . 3 (𝐾 ∈ Lat → (∃𝑎 ∈ (Atoms‘𝐾)∃𝑏 ∈ (Atoms‘𝐾)(𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
68 linepsub.n . . . 4 𝑁 = (Lines‘𝐾)
6935, 10, 6, 68isline 35538 . . 3 (𝐾 ∈ Lat → (𝑋𝑁 ↔ ∃𝑎 ∈ (Atoms‘𝐾)∃𝑏 ∈ (Atoms‘𝐾)(𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)})))
70 linepsub.s . . . 4 𝑆 = (PSubSp‘𝐾)
7135, 10, 6, 70ispsubsp 35544 . . 3 (𝐾 ∈ Lat → (𝑋𝑆 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
7267, 69, 713imtr4d 285 . 2 (𝐾 ∈ Lat → (𝑋𝑁𝑋𝑆))
7372imp 395 1 ((𝐾 ∈ Lat ∧ 𝑋𝑁) → 𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157  wne 2989  wral 3107  wrex 3108  {crab 3111  wss 3780   class class class wbr 4855  cfv 6111  (class class class)co 6884  Basecbs 16088  lecple 16180  joincjn 17169  Latclat 17270  Atomscatm 35062  Linesclines 35293  PSubSpcpsubsp 35295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5232  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-poset 17171  df-lub 17199  df-glb 17200  df-join 17201  df-meet 17202  df-lat 17271  df-ats 35066  df-lines 35300  df-psubsp 35302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator