Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegmn1r Structured version   Visualization version   GIF version

Theorem rngonegmn1r 35219
Description: Negation in a ring is the same as right multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringneg.1 𝐺 = (1st𝑅)
ringneg.2 𝐻 = (2nd𝑅)
ringneg.3 𝑋 = ran 𝐺
ringneg.4 𝑁 = (inv‘𝐺)
ringneg.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngonegmn1r ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐻(𝑁𝑈)))

Proof of Theorem rngonegmn1r
StepHypRef Expression
1 ringneg.3 . . . . . . . . 9 𝑋 = ran 𝐺
2 ringneg.1 . . . . . . . . . 10 𝐺 = (1st𝑅)
32rneqi 5806 . . . . . . . . 9 ran 𝐺 = ran (1st𝑅)
41, 3eqtri 2844 . . . . . . . 8 𝑋 = ran (1st𝑅)
5 ringneg.2 . . . . . . . 8 𝐻 = (2nd𝑅)
6 ringneg.5 . . . . . . . 8 𝑈 = (GId‘𝐻)
74, 5, 6rngo1cl 35216 . . . . . . 7 (𝑅 ∈ RingOps → 𝑈𝑋)
8 ringneg.4 . . . . . . . 8 𝑁 = (inv‘𝐺)
92, 1, 8rngonegcl 35204 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → (𝑁𝑈) ∈ 𝑋)
107, 9mpdan 685 . . . . . 6 (𝑅 ∈ RingOps → (𝑁𝑈) ∈ 𝑋)
1110adantr 483 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝑈) ∈ 𝑋)
127adantr 483 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑈𝑋)
1311, 12jca 514 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝑈) ∈ 𝑋𝑈𝑋))
142, 5, 1rngodi 35181 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐴𝑋 ∧ (𝑁𝑈) ∈ 𝑋𝑈𝑋)) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)))
15143exp2 1350 . . . . 5 (𝑅 ∈ RingOps → (𝐴𝑋 → ((𝑁𝑈) ∈ 𝑋 → (𝑈𝑋 → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈))))))
1615imp43 430 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ ((𝑁𝑈) ∈ 𝑋𝑈𝑋)) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)))
1713, 16mpdan 685 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)))
18 eqid 2821 . . . . . . . 8 (GId‘𝐺) = (GId‘𝐺)
192, 1, 8, 18rngoaddneg2 35206 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → ((𝑁𝑈)𝐺𝑈) = (GId‘𝐺))
207, 19mpdan 685 . . . . . 6 (𝑅 ∈ RingOps → ((𝑁𝑈)𝐺𝑈) = (GId‘𝐺))
2120adantr 483 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝑈)𝐺𝑈) = (GId‘𝐺))
2221oveq2d 7171 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = (𝐴𝐻(GId‘𝐺)))
2318, 1, 2, 5rngorz 35200 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(GId‘𝐺)) = (GId‘𝐺))
2422, 23eqtrd 2856 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = (GId‘𝐺))
255, 4, 6rngoridm 35215 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑈) = 𝐴)
2625oveq2d 7171 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺𝐴))
2717, 24, 263eqtr3rd 2865 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺))
282, 5, 1rngocl 35178 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ (𝑁𝑈) ∈ 𝑋) → (𝐴𝐻(𝑁𝑈)) ∈ 𝑋)
2911, 28mpd3an3 1458 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(𝑁𝑈)) ∈ 𝑋)
302rngogrpo 35187 . . . 4 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
311, 18, 8grpoinvid2 28305 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ (𝐴𝐻(𝑁𝑈)) ∈ 𝑋) → ((𝑁𝐴) = (𝐴𝐻(𝑁𝑈)) ↔ ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺)))
3230, 31syl3an1 1159 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ (𝐴𝐻(𝑁𝑈)) ∈ 𝑋) → ((𝑁𝐴) = (𝐴𝐻(𝑁𝑈)) ↔ ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺)))
3329, 32mpd3an3 1458 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝐴) = (𝐴𝐻(𝑁𝑈)) ↔ ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺)))
3427, 33mpbird 259 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐻(𝑁𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  ran crn 5555  cfv 6354  (class class class)co 7155  1st c1st 7686  2nd c2nd 7687  GrpOpcgr 28265  GIdcgi 28266  invcgn 28267  RingOpscrngo 35171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-1st 7688  df-2nd 7689  df-grpo 28269  df-gid 28270  df-ginv 28271  df-ablo 28321  df-ass 35120  df-exid 35122  df-mgmOLD 35126  df-sgrOLD 35138  df-mndo 35144  df-rngo 35172
This theorem is referenced by:  rngonegrmul  35221
  Copyright terms: Public domain W3C validator