MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorval Structured version   Visualization version   GIF version

Theorem ioorval 25491
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorval (𝐴 ∈ ran (,) → (𝐹𝐴) = if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ioorval
StepHypRef Expression
1 eqeq1 2733 . . 3 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
2 infeq1 9386 . . . 4 (𝑥 = 𝐴 → inf(𝑥, ℝ*, < ) = inf(𝐴, ℝ*, < ))
3 supeq1 9354 . . . 4 (𝑥 = 𝐴 → sup(𝑥, ℝ*, < ) = sup(𝐴, ℝ*, < ))
42, 3opeq12d 4835 . . 3 (𝑥 = 𝐴 → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ = ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩)
51, 4ifbieq2d 4505 . 2 (𝑥 = 𝐴 → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) = if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩))
6 ioorf.1 . 2 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
7 opex 5411 . . 3 ⟨0, 0⟩ ∈ V
8 opex 5411 . . 3 ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩ ∈ V
97, 8ifex 4529 . 2 if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩) ∈ V
105, 6, 9fvmpt 6934 1 (𝐴 ∈ ran (,) → (𝐹𝐴) = if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  c0 4286  ifcif 4478  cop 4585  cmpt 5176  ran crn 5624  cfv 6486  supcsup 9349  infcinf 9350  0cc0 11028  *cxr 11167   < clt 11168  (,)cioo 13266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-sup 9351  df-inf 9352
This theorem is referenced by:  ioorinv2  25492  ioorinv  25493  ioorcl  25494
  Copyright terms: Public domain W3C validator