Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioorval | Structured version Visualization version GIF version |
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorval | ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2762 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
2 | infeq1 8973 | . . . 4 ⊢ (𝑥 = 𝐴 → inf(𝑥, ℝ*, < ) = inf(𝐴, ℝ*, < )) | |
3 | supeq1 8942 | . . . 4 ⊢ (𝑥 = 𝐴 → sup(𝑥, ℝ*, < ) = sup(𝐴, ℝ*, < )) | |
4 | 2, 3 | opeq12d 4771 | . . 3 ⊢ (𝑥 = 𝐴 → 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉 = 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) |
5 | 1, 4 | ifbieq2d 4446 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
6 | ioorf.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
7 | opex 5324 | . . 3 ⊢ 〈0, 0〉 ∈ V | |
8 | opex 5324 | . . 3 ⊢ 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉 ∈ V | |
9 | 7, 8 | ifex 4470 | . 2 ⊢ if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) ∈ V |
10 | 5, 6, 9 | fvmpt 6759 | 1 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∅c0 4225 ifcif 4420 〈cop 4528 ↦ cmpt 5112 ran crn 5525 ‘cfv 6335 supcsup 8937 infcinf 8938 0cc0 10575 ℝ*cxr 10712 < clt 10713 (,)cioo 12779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-sup 8939 df-inf 8940 |
This theorem is referenced by: ioorinv2 24275 ioorinv 24276 ioorcl 24277 |
Copyright terms: Public domain | W3C validator |