![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioorval | Structured version Visualization version GIF version |
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorval | ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2728 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
2 | infeq1 9467 | . . . 4 ⊢ (𝑥 = 𝐴 → inf(𝑥, ℝ*, < ) = inf(𝐴, ℝ*, < )) | |
3 | supeq1 9436 | . . . 4 ⊢ (𝑥 = 𝐴 → sup(𝑥, ℝ*, < ) = sup(𝐴, ℝ*, < )) | |
4 | 2, 3 | opeq12d 4873 | . . 3 ⊢ (𝑥 = 𝐴 → 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉 = 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) |
5 | 1, 4 | ifbieq2d 4546 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
6 | ioorf.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
7 | opex 5454 | . . 3 ⊢ 〈0, 0〉 ∈ V | |
8 | opex 5454 | . . 3 ⊢ 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉 ∈ V | |
9 | 7, 8 | ifex 4570 | . 2 ⊢ if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) ∈ V |
10 | 5, 6, 9 | fvmpt 6988 | 1 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∅c0 4314 ifcif 4520 〈cop 4626 ↦ cmpt 5221 ran crn 5667 ‘cfv 6533 supcsup 9431 infcinf 9432 0cc0 11106 ℝ*cxr 11244 < clt 11245 (,)cioo 13321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-iota 6485 df-fun 6535 df-fv 6541 df-sup 9433 df-inf 9434 |
This theorem is referenced by: ioorinv2 25426 ioorinv 25427 ioorcl 25428 |
Copyright terms: Public domain | W3C validator |