MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorval Structured version   Visualization version   GIF version

Theorem ioorval 25634
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorval (𝐴 ∈ ran (,) → (𝐹𝐴) = if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ioorval
StepHypRef Expression
1 eqeq1 2741 . . 3 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
2 infeq1 9523 . . . 4 (𝑥 = 𝐴 → inf(𝑥, ℝ*, < ) = inf(𝐴, ℝ*, < ))
3 supeq1 9492 . . . 4 (𝑥 = 𝐴 → sup(𝑥, ℝ*, < ) = sup(𝐴, ℝ*, < ))
42, 3opeq12d 4889 . . 3 (𝑥 = 𝐴 → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ = ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩)
51, 4ifbieq2d 4560 . 2 (𝑥 = 𝐴 → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) = if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩))
6 ioorf.1 . 2 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
7 opex 5478 . . 3 ⟨0, 0⟩ ∈ V
8 opex 5478 . . 3 ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩ ∈ V
97, 8ifex 4584 . 2 if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩) ∈ V
105, 6, 9fvmpt 7023 1 (𝐴 ∈ ran (,) → (𝐹𝐴) = if(𝐴 = ∅, ⟨0, 0⟩, ⟨inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  c0 4342  ifcif 4534  cop 4640  cmpt 5234  ran crn 5694  cfv 6569  supcsup 9487  infcinf 9488  0cc0 11162  *cxr 11301   < clt 11302  (,)cioo 13393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-sup 9489  df-inf 9490
This theorem is referenced by:  ioorinv2  25635  ioorinv  25636  ioorcl  25637
  Copyright terms: Public domain W3C validator