| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioorval | Structured version Visualization version GIF version | ||
| Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| Ref | Expression |
|---|---|
| ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
| Ref | Expression |
|---|---|
| ioorval | ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2738 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
| 2 | infeq1 9482 | . . . 4 ⊢ (𝑥 = 𝐴 → inf(𝑥, ℝ*, < ) = inf(𝐴, ℝ*, < )) | |
| 3 | supeq1 9451 | . . . 4 ⊢ (𝑥 = 𝐴 → sup(𝑥, ℝ*, < ) = sup(𝐴, ℝ*, < )) | |
| 4 | 2, 3 | opeq12d 4854 | . . 3 ⊢ (𝑥 = 𝐴 → 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉 = 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) |
| 5 | 1, 4 | ifbieq2d 4525 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
| 6 | ioorf.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
| 7 | opex 5436 | . . 3 ⊢ 〈0, 0〉 ∈ V | |
| 8 | opex 5436 | . . 3 ⊢ 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉 ∈ V | |
| 9 | 7, 8 | ifex 4549 | . 2 ⊢ if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) ∈ V |
| 10 | 5, 6, 9 | fvmpt 6982 | 1 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∅c0 4306 ifcif 4498 〈cop 4605 ↦ cmpt 5198 ran crn 5652 ‘cfv 6527 supcsup 9446 infcinf 9447 0cc0 11121 ℝ*cxr 11260 < clt 11261 (,)cioo 13353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-iota 6480 df-fun 6529 df-fv 6535 df-sup 9448 df-inf 9449 |
| This theorem is referenced by: ioorinv2 25513 ioorinv 25514 ioorcl 25515 |
| Copyright terms: Public domain | W3C validator |