| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | infeq1 9428 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 infcinf 9392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-ss 3931 df-uni 4872 df-sup 9393 df-inf 9394 |
| This theorem is referenced by: limsupval 15440 lcmval 16562 lcmass 16584 lcmfval 16591 lcmf0val 16592 lcmfpr 16597 odzval 16762 ramval 16979 imasval 17474 imasdsval 17478 gexval 19508 nmofval 24602 nmoval 24603 metdsval 24736 lebnumlem1 24860 lebnumlem3 24862 ovolval 25374 ovolshft 25412 ioorf 25474 mbflimsup 25567 ig1pval 26081 elqaalem1 26227 elqaalem2 26228 elqaalem3 26229 elqaa 26230 omsval 34284 omsfval 34285 ballotlemi 34492 pellfundval 42868 dgraaval 43133 supminfrnmpt 45441 infxrpnf 45442 infxrpnf2 45459 supminfxr 45460 supminfxr2 45465 supminfxrrnmpt 45467 limsupval3 45690 limsupresre 45694 limsupresico 45698 limsuppnfdlem 45699 limsupvaluz 45706 limsupvaluzmpt 45715 liminfval 45757 liminfgval 45760 liminfval5 45763 limsupresxr 45764 liminfresxr 45765 liminfval2 45766 liminfresico 45769 liminf10ex 45772 liminfvalxr 45781 fourierdlem31 46136 ovnval 46539 ovnval2 46543 ovnval2b 46550 ovolval2 46642 ovnovollem3 46656 smfinf 46816 smfinfmpt 46817 prmdvdsfmtnof1 47585 |
| Copyright terms: Public domain | W3C validator |