Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | infeq1 9165 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 infcinf 9130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-sup 9131 df-inf 9132 |
This theorem is referenced by: limsupval 15111 lcmval 16225 lcmass 16247 lcmfval 16254 lcmf0val 16255 lcmfpr 16260 odzval 16420 ramval 16637 imasval 17139 imasdsval 17143 gexval 19098 nmofval 23784 nmoval 23785 metdsval 23916 lebnumlem1 24030 lebnumlem3 24032 ovolval 24542 ovolshft 24580 ioorf 24642 mbflimsup 24735 ig1pval 25242 elqaalem1 25384 elqaalem2 25385 elqaalem3 25386 elqaa 25387 omsval 32160 omsfval 32161 ballotlemi 32367 pellfundval 40618 dgraaval 40885 supminfrnmpt 42875 infxrpnf 42876 infxrpnf2 42893 supminfxr 42894 supminfxr2 42899 supminfxrrnmpt 42901 limsupval3 43123 limsupresre 43127 limsupresico 43131 limsuppnfdlem 43132 limsupvaluz 43139 limsupvaluzmpt 43148 liminfval 43190 liminfgval 43193 liminfval5 43196 limsupresxr 43197 liminfresxr 43198 liminfval2 43199 liminfresico 43202 liminf10ex 43205 liminfvalxr 43214 fourierdlem31 43569 ovnval 43969 ovnval2 43973 ovnval2b 43980 ovolval2 44072 ovnovollem3 44086 smfinf 44238 smfinfmpt 44239 prmdvdsfmtnof1 44927 |
Copyright terms: Public domain | W3C validator |