![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | infeq1 9471 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 infcinf 9436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-uni 4910 df-sup 9437 df-inf 9438 |
This theorem is referenced by: limsupval 15418 lcmval 16529 lcmass 16551 lcmfval 16558 lcmf0val 16559 lcmfpr 16564 odzval 16724 ramval 16941 imasval 17457 imasdsval 17461 gexval 19446 nmofval 24231 nmoval 24232 metdsval 24363 lebnumlem1 24477 lebnumlem3 24479 ovolval 24990 ovolshft 25028 ioorf 25090 mbflimsup 25183 ig1pval 25690 elqaalem1 25832 elqaalem2 25833 elqaalem3 25834 elqaa 25835 omsval 33292 omsfval 33293 ballotlemi 33499 pellfundval 41618 dgraaval 41886 supminfrnmpt 44155 infxrpnf 44156 infxrpnf2 44173 supminfxr 44174 supminfxr2 44179 supminfxrrnmpt 44181 limsupval3 44408 limsupresre 44412 limsupresico 44416 limsuppnfdlem 44417 limsupvaluz 44424 limsupvaluzmpt 44433 liminfval 44475 liminfgval 44478 liminfval5 44481 limsupresxr 44482 liminfresxr 44483 liminfval2 44484 liminfresico 44487 liminf10ex 44490 liminfvalxr 44499 fourierdlem31 44854 ovnval 45257 ovnval2 45261 ovnval2b 45268 ovolval2 45360 ovnovollem3 45374 smfinf 45534 smfinfmpt 45535 prmdvdsfmtnof1 46255 |
Copyright terms: Public domain | W3C validator |