| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | infeq1 9370 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 infcinf 9334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-ss 3915 df-uni 4861 df-sup 9335 df-inf 9336 |
| This theorem is referenced by: limsupval 15385 lcmval 16507 lcmass 16529 lcmfval 16536 lcmf0val 16537 lcmfpr 16542 odzval 16707 ramval 16924 imasval 17419 imasdsval 17423 gexval 19494 nmofval 24632 nmoval 24633 metdsval 24766 lebnumlem1 24890 lebnumlem3 24892 ovolval 25404 ovolshft 25442 ioorf 25504 mbflimsup 25597 ig1pval 26111 elqaalem1 26257 elqaalem2 26258 elqaalem3 26259 elqaa 26260 omsval 34329 omsfval 34330 ballotlemi 34537 pellfundval 43000 dgraaval 43264 supminfrnmpt 45570 infxrpnf 45571 infxrpnf2 45588 supminfxr 45589 supminfxr2 45594 supminfxrrnmpt 45596 limsupval3 45817 limsupresre 45821 limsupresico 45825 limsuppnfdlem 45826 limsupvaluz 45833 limsupvaluzmpt 45842 liminfval 45884 liminfgval 45887 liminfval5 45890 limsupresxr 45891 liminfresxr 45892 liminfval2 45893 liminfresico 45896 liminf10ex 45899 liminfvalxr 45908 fourierdlem31 46263 ovnval 46666 ovnval2 46670 ovnval2b 46677 ovolval2 46769 ovnovollem3 46783 smfinf 46943 smfinfmpt 46944 prmdvdsfmtnof1 47714 |
| Copyright terms: Public domain | W3C validator |