![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | infeq1 9473 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 infcinf 9438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-in 3954 df-ss 3964 df-uni 4908 df-sup 9439 df-inf 9440 |
This theorem is referenced by: limsupval 15422 lcmval 16533 lcmass 16555 lcmfval 16562 lcmf0val 16563 lcmfpr 16568 odzval 16728 ramval 16945 imasval 17461 imasdsval 17465 gexval 19487 nmofval 24451 nmoval 24452 metdsval 24583 lebnumlem1 24707 lebnumlem3 24709 ovolval 25222 ovolshft 25260 ioorf 25322 mbflimsup 25415 ig1pval 25925 elqaalem1 26068 elqaalem2 26069 elqaalem3 26070 elqaa 26071 omsval 33590 omsfval 33591 ballotlemi 33797 pellfundval 41920 dgraaval 42188 supminfrnmpt 44453 infxrpnf 44454 infxrpnf2 44471 supminfxr 44472 supminfxr2 44477 supminfxrrnmpt 44479 limsupval3 44706 limsupresre 44710 limsupresico 44714 limsuppnfdlem 44715 limsupvaluz 44722 limsupvaluzmpt 44731 liminfval 44773 liminfgval 44776 liminfval5 44779 limsupresxr 44780 liminfresxr 44781 liminfval2 44782 liminfresico 44785 liminf10ex 44788 liminfvalxr 44797 fourierdlem31 45152 ovnval 45555 ovnval2 45559 ovnval2b 45566 ovolval2 45658 ovnovollem3 45672 smfinf 45832 smfinfmpt 45833 prmdvdsfmtnof1 46553 |
Copyright terms: Public domain | W3C validator |