![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | infeq1 9545 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 infcinf 9510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-ss 3993 df-uni 4932 df-sup 9511 df-inf 9512 |
This theorem is referenced by: limsupval 15520 lcmval 16639 lcmass 16661 lcmfval 16668 lcmf0val 16669 lcmfpr 16674 odzval 16838 ramval 17055 imasval 17571 imasdsval 17575 gexval 19620 nmofval 24756 nmoval 24757 metdsval 24888 lebnumlem1 25012 lebnumlem3 25014 ovolval 25527 ovolshft 25565 ioorf 25627 mbflimsup 25720 ig1pval 26235 elqaalem1 26379 elqaalem2 26380 elqaalem3 26381 elqaa 26382 omsval 34258 omsfval 34259 ballotlemi 34465 pellfundval 42836 dgraaval 43101 supminfrnmpt 45360 infxrpnf 45361 infxrpnf2 45378 supminfxr 45379 supminfxr2 45384 supminfxrrnmpt 45386 limsupval3 45613 limsupresre 45617 limsupresico 45621 limsuppnfdlem 45622 limsupvaluz 45629 limsupvaluzmpt 45638 liminfval 45680 liminfgval 45683 liminfval5 45686 limsupresxr 45687 liminfresxr 45688 liminfval2 45689 liminfresico 45692 liminf10ex 45695 liminfvalxr 45704 fourierdlem31 46059 ovnval 46462 ovnval2 46466 ovnval2b 46473 ovolval2 46565 ovnovollem3 46579 smfinf 46739 smfinfmpt 46740 prmdvdsfmtnof1 47461 |
Copyright terms: Public domain | W3C validator |