![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | infeq1 9467 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 infcinf 9432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-in 3954 df-ss 3964 df-uni 4908 df-sup 9433 df-inf 9434 |
This theorem is referenced by: limsupval 15414 lcmval 16525 lcmass 16547 lcmfval 16554 lcmf0val 16555 lcmfpr 16560 odzval 16720 ramval 16937 imasval 17453 imasdsval 17457 gexval 19440 nmofval 24222 nmoval 24223 metdsval 24354 lebnumlem1 24468 lebnumlem3 24470 ovolval 24981 ovolshft 25019 ioorf 25081 mbflimsup 25174 ig1pval 25681 elqaalem1 25823 elqaalem2 25824 elqaalem3 25825 elqaa 25826 omsval 33280 omsfval 33281 ballotlemi 33487 pellfundval 41603 dgraaval 41871 supminfrnmpt 44141 infxrpnf 44142 infxrpnf2 44159 supminfxr 44160 supminfxr2 44165 supminfxrrnmpt 44167 limsupval3 44394 limsupresre 44398 limsupresico 44402 limsuppnfdlem 44403 limsupvaluz 44410 limsupvaluzmpt 44419 liminfval 44461 liminfgval 44464 liminfval5 44467 limsupresxr 44468 liminfresxr 44469 liminfval2 44470 liminfresico 44473 liminf10ex 44476 liminfvalxr 44485 fourierdlem31 44840 ovnval 45243 ovnval2 45247 ovnval2b 45254 ovolval2 45346 ovnovollem3 45360 smfinf 45520 smfinfmpt 45521 prmdvdsfmtnof1 46241 |
Copyright terms: Public domain | W3C validator |