| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | infeq1 9386 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 infcinf 9350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-ss 3922 df-uni 4862 df-sup 9351 df-inf 9352 |
| This theorem is referenced by: limsupval 15399 lcmval 16521 lcmass 16543 lcmfval 16550 lcmf0val 16551 lcmfpr 16556 odzval 16721 ramval 16938 imasval 17433 imasdsval 17437 gexval 19475 nmofval 24618 nmoval 24619 metdsval 24752 lebnumlem1 24876 lebnumlem3 24878 ovolval 25390 ovolshft 25428 ioorf 25490 mbflimsup 25583 ig1pval 26097 elqaalem1 26243 elqaalem2 26244 elqaalem3 26245 elqaa 26246 omsval 34263 omsfval 34264 ballotlemi 34471 pellfundval 42856 dgraaval 43120 supminfrnmpt 45428 infxrpnf 45429 infxrpnf2 45446 supminfxr 45447 supminfxr2 45452 supminfxrrnmpt 45454 limsupval3 45677 limsupresre 45681 limsupresico 45685 limsuppnfdlem 45686 limsupvaluz 45693 limsupvaluzmpt 45702 liminfval 45744 liminfgval 45747 liminfval5 45750 limsupresxr 45751 liminfresxr 45752 liminfval2 45753 liminfresico 45756 liminf10ex 45759 liminfvalxr 45768 fourierdlem31 46123 ovnval 46526 ovnval2 46530 ovnval2b 46537 ovolval2 46629 ovnovollem3 46643 smfinf 46803 smfinfmpt 46804 prmdvdsfmtnof1 47575 |
| Copyright terms: Public domain | W3C validator |