![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | infeq1 9466 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 infcinf 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-in 3947 df-ss 3957 df-uni 4900 df-sup 9432 df-inf 9433 |
This theorem is referenced by: limsupval 15414 lcmval 16525 lcmass 16547 lcmfval 16554 lcmf0val 16555 lcmfpr 16560 odzval 16722 ramval 16939 imasval 17455 imasdsval 17459 gexval 19487 nmofval 24552 nmoval 24553 metdsval 24684 lebnumlem1 24808 lebnumlem3 24810 ovolval 25323 ovolshft 25361 ioorf 25423 mbflimsup 25516 ig1pval 26029 elqaalem1 26172 elqaalem2 26173 elqaalem3 26174 elqaa 26175 omsval 33747 omsfval 33748 ballotlemi 33954 pellfundval 42073 dgraaval 42341 supminfrnmpt 44606 infxrpnf 44607 infxrpnf2 44624 supminfxr 44625 supminfxr2 44630 supminfxrrnmpt 44632 limsupval3 44859 limsupresre 44863 limsupresico 44867 limsuppnfdlem 44868 limsupvaluz 44875 limsupvaluzmpt 44884 liminfval 44926 liminfgval 44929 liminfval5 44932 limsupresxr 44933 liminfresxr 44934 liminfval2 44935 liminfresico 44938 liminf10ex 44941 liminfvalxr 44950 fourierdlem31 45305 ovnval 45708 ovnval2 45712 ovnval2b 45719 ovolval2 45811 ovnovollem3 45825 smfinf 45985 smfinfmpt 45986 prmdvdsfmtnof1 46706 |
Copyright terms: Public domain | W3C validator |