![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | infeq1 9514 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 infcinf 9479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-ss 3980 df-uni 4913 df-sup 9480 df-inf 9481 |
This theorem is referenced by: limsupval 15507 lcmval 16626 lcmass 16648 lcmfval 16655 lcmf0val 16656 lcmfpr 16661 odzval 16825 ramval 17042 imasval 17558 imasdsval 17562 gexval 19611 nmofval 24751 nmoval 24752 metdsval 24883 lebnumlem1 25007 lebnumlem3 25009 ovolval 25522 ovolshft 25560 ioorf 25622 mbflimsup 25715 ig1pval 26230 elqaalem1 26376 elqaalem2 26377 elqaalem3 26378 elqaa 26379 omsval 34275 omsfval 34276 ballotlemi 34482 pellfundval 42868 dgraaval 43133 supminfrnmpt 45395 infxrpnf 45396 infxrpnf2 45413 supminfxr 45414 supminfxr2 45419 supminfxrrnmpt 45421 limsupval3 45648 limsupresre 45652 limsupresico 45656 limsuppnfdlem 45657 limsupvaluz 45664 limsupvaluzmpt 45673 liminfval 45715 liminfgval 45718 liminfval5 45721 limsupresxr 45722 liminfresxr 45723 liminfval2 45724 liminfresico 45727 liminf10ex 45730 liminfvalxr 45739 fourierdlem31 46094 ovnval 46497 ovnval2 46501 ovnval2b 46508 ovolval2 46600 ovnovollem3 46614 smfinf 46774 smfinfmpt 46775 prmdvdsfmtnof1 47512 |
Copyright terms: Public domain | W3C validator |