| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | infeq1 9494 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 infcinf 9458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-ss 3948 df-uni 4889 df-sup 9459 df-inf 9460 |
| This theorem is referenced by: limsupval 15495 lcmval 16616 lcmass 16638 lcmfval 16645 lcmf0val 16646 lcmfpr 16651 odzval 16816 ramval 17033 imasval 17530 imasdsval 17534 gexval 19564 nmofval 24658 nmoval 24659 metdsval 24792 lebnumlem1 24916 lebnumlem3 24918 ovolval 25431 ovolshft 25469 ioorf 25531 mbflimsup 25624 ig1pval 26138 elqaalem1 26284 elqaalem2 26285 elqaalem3 26286 elqaa 26287 omsval 34330 omsfval 34331 ballotlemi 34538 pellfundval 42870 dgraaval 43135 supminfrnmpt 45439 infxrpnf 45440 infxrpnf2 45457 supminfxr 45458 supminfxr2 45463 supminfxrrnmpt 45465 limsupval3 45688 limsupresre 45692 limsupresico 45696 limsuppnfdlem 45697 limsupvaluz 45704 limsupvaluzmpt 45713 liminfval 45755 liminfgval 45758 liminfval5 45761 limsupresxr 45762 liminfresxr 45763 liminfval2 45764 liminfresico 45767 liminf10ex 45770 liminfvalxr 45779 fourierdlem31 46134 ovnval 46537 ovnval2 46541 ovnval2b 46548 ovolval2 46640 ovnovollem3 46654 smfinf 46814 smfinfmpt 46815 prmdvdsfmtnof1 47568 |
| Copyright terms: Public domain | W3C validator |