Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | infeq1 9235 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 infcinf 9200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-sup 9201 df-inf 9202 |
This theorem is referenced by: limsupval 15183 lcmval 16297 lcmass 16319 lcmfval 16326 lcmf0val 16327 lcmfpr 16332 odzval 16492 ramval 16709 imasval 17222 imasdsval 17226 gexval 19183 nmofval 23878 nmoval 23879 metdsval 24010 lebnumlem1 24124 lebnumlem3 24126 ovolval 24637 ovolshft 24675 ioorf 24737 mbflimsup 24830 ig1pval 25337 elqaalem1 25479 elqaalem2 25480 elqaalem3 25481 elqaa 25482 omsval 32260 omsfval 32261 ballotlemi 32467 pellfundval 40702 dgraaval 40969 supminfrnmpt 42985 infxrpnf 42986 infxrpnf2 43003 supminfxr 43004 supminfxr2 43009 supminfxrrnmpt 43011 limsupval3 43233 limsupresre 43237 limsupresico 43241 limsuppnfdlem 43242 limsupvaluz 43249 limsupvaluzmpt 43258 liminfval 43300 liminfgval 43303 liminfval5 43306 limsupresxr 43307 liminfresxr 43308 liminfval2 43309 liminfresico 43312 liminf10ex 43315 liminfvalxr 43324 fourierdlem31 43679 ovnval 44079 ovnval2 44083 ovnval2b 44090 ovolval2 44182 ovnovollem3 44196 smfinf 44351 smfinfmpt 44352 prmdvdsfmtnof1 45039 |
Copyright terms: Public domain | W3C validator |