| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | infeq1 9517 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 infcinf 9482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-ss 3967 df-uni 4907 df-sup 9483 df-inf 9484 |
| This theorem is referenced by: limsupval 15511 lcmval 16630 lcmass 16652 lcmfval 16659 lcmf0val 16660 lcmfpr 16665 odzval 16830 ramval 17047 imasval 17557 imasdsval 17561 gexval 19597 nmofval 24736 nmoval 24737 metdsval 24870 lebnumlem1 24994 lebnumlem3 24996 ovolval 25509 ovolshft 25547 ioorf 25609 mbflimsup 25702 ig1pval 26216 elqaalem1 26362 elqaalem2 26363 elqaalem3 26364 elqaa 26365 omsval 34296 omsfval 34297 ballotlemi 34504 pellfundval 42896 dgraaval 43161 supminfrnmpt 45461 infxrpnf 45462 infxrpnf2 45479 supminfxr 45480 supminfxr2 45485 supminfxrrnmpt 45487 limsupval3 45712 limsupresre 45716 limsupresico 45720 limsuppnfdlem 45721 limsupvaluz 45728 limsupvaluzmpt 45737 liminfval 45779 liminfgval 45782 liminfval5 45785 limsupresxr 45786 liminfresxr 45787 liminfval2 45788 liminfresico 45791 liminf10ex 45794 liminfvalxr 45803 fourierdlem31 46158 ovnval 46561 ovnval2 46565 ovnval2b 46572 ovolval2 46664 ovnovollem3 46678 smfinf 46838 smfinfmpt 46839 prmdvdsfmtnof1 47579 |
| Copyright terms: Public domain | W3C validator |