| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| infeq1d | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | infeq1 9361 | . 2 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 infcinf 9325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-ss 3919 df-uni 4860 df-sup 9326 df-inf 9327 |
| This theorem is referenced by: limsupval 15381 lcmval 16503 lcmass 16525 lcmfval 16532 lcmf0val 16533 lcmfpr 16538 odzval 16703 ramval 16920 imasval 17415 imasdsval 17419 gexval 19491 nmofval 24630 nmoval 24631 metdsval 24764 lebnumlem1 24888 lebnumlem3 24890 ovolval 25402 ovolshft 25440 ioorf 25502 mbflimsup 25595 ig1pval 26109 elqaalem1 26255 elqaalem2 26256 elqaalem3 26257 elqaa 26258 omsval 34304 omsfval 34305 ballotlemi 34512 pellfundval 42919 dgraaval 43183 supminfrnmpt 45489 infxrpnf 45490 infxrpnf2 45507 supminfxr 45508 supminfxr2 45513 supminfxrrnmpt 45515 limsupval3 45736 limsupresre 45740 limsupresico 45744 limsuppnfdlem 45745 limsupvaluz 45752 limsupvaluzmpt 45761 liminfval 45803 liminfgval 45806 liminfval5 45809 limsupresxr 45810 liminfresxr 45811 liminfval2 45812 liminfresico 45815 liminf10ex 45818 liminfvalxr 45827 fourierdlem31 46182 ovnval 46585 ovnval2 46589 ovnval2b 46596 ovolval2 46688 ovnovollem3 46702 smfinf 46862 smfinfmpt 46863 prmdvdsfmtnof1 47624 |
| Copyright terms: Public domain | W3C validator |