Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramcl2lem Structured version   Visualization version   GIF version

Theorem ramcl2lem 16338
 Description: Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramval.t 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
Assertion
Ref Expression
ramcl2lem ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )))
Distinct variable groups:   𝑓,𝑐,𝑥,𝐶   𝑛,𝑐,𝑠,𝐹,𝑓,𝑥   𝑎,𝑏,𝑐,𝑓,𝑖,𝑛,𝑠,𝑥,𝑀   𝑅,𝑐,𝑓,𝑛,𝑠,𝑥   𝑉,𝑐,𝑓,𝑛,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑖,𝑛,𝑠,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑇(𝑥,𝑓,𝑖,𝑛,𝑠,𝑎,𝑏,𝑐)   𝐹(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramcl2lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2810 . 2 (+∞ = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) → ((𝑀 Ramsey 𝐹) = +∞ ↔ (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))))
2 eqeq2 2810 . 2 (inf(𝑇, ℝ, < ) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) → ((𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < ) ↔ (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))))
3 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
4 ramval.t . . . 4 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
53, 4ramval 16337 . . 3 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < ))
6 infeq1 8927 . . . 4 (𝑇 = ∅ → inf(𝑇, ℝ*, < ) = inf(∅, ℝ*, < ))
7 xrinf0 12722 . . . 4 inf(∅, ℝ*, < ) = +∞
86, 7eqtrdi 2849 . . 3 (𝑇 = ∅ → inf(𝑇, ℝ*, < ) = +∞)
95, 8sylan9eq 2853 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 = ∅) → (𝑀 Ramsey 𝐹) = +∞)
10 df-ne 2988 . . 3 (𝑇 ≠ ∅ ↔ ¬ 𝑇 = ∅)
115adantr 484 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < ))
12 xrltso 12525 . . . . . 6 < Or ℝ*
1312a1i 11 . . . . 5 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → < Or ℝ*)
144ssrab3 4008 . . . . . . . 8 𝑇 ⊆ ℕ0
15 nn0ssre 11892 . . . . . . . 8 0 ⊆ ℝ
1614, 15sstri 3924 . . . . . . 7 𝑇 ⊆ ℝ
17 nn0uz 12271 . . . . . . . . . 10 0 = (ℤ‘0)
1814, 17sseqtri 3951 . . . . . . . . 9 𝑇 ⊆ (ℤ‘0)
1918a1i 11 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝑇 ⊆ (ℤ‘0))
20 infssuzcl 12323 . . . . . . . 8 ((𝑇 ⊆ (ℤ‘0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
2119, 20sylan 583 . . . . . . 7 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
2216, 21sseldi 3913 . . . . . 6 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ ℝ)
2322rexrd 10683 . . . . 5 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ ℝ*)
2422adantr 484 . . . . . 6 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧𝑇) → inf(𝑇, ℝ, < ) ∈ ℝ)
2516a1i 11 . . . . . . 7 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ ℝ)
2625sselda 3915 . . . . . 6 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧𝑇) → 𝑧 ∈ ℝ)
27 simpr 488 . . . . . . 7 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧𝑇) → 𝑧𝑇)
28 infssuzle 12322 . . . . . . 7 ((𝑇 ⊆ (ℤ‘0) ∧ 𝑧𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑧)
2918, 27, 28sylancr 590 . . . . . 6 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑧)
3024, 26, 29lensymd 10783 . . . . 5 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧𝑇) → ¬ 𝑧 < inf(𝑇, ℝ, < ))
3113, 23, 21, 30infmin 8945 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ*, < ) = inf(𝑇, ℝ, < ))
3211, 31eqtrd 2833 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < ))
3310, 32sylan2br 597 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ ¬ 𝑇 = ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < ))
341, 2, 9, 33ifbothda 4462 1 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084  ∀wal 1536   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  {crab 3110  Vcvv 3441   ⊆ wss 3881  ∅c0 4243  ifcif 4425  𝒫 cpw 4497  {csn 4525   class class class wbr 5031   Or wor 5438  ◡ccnv 5519   “ cima 5523  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ∈ cmpo 7138   ↑m cmap 8392  infcinf 8892  ℝcr 10528  0cc0 10529  +∞cpnf 10664  ℝ*cxr 10666   < clt 10667   ≤ cle 10668  ℕ0cn0 11888  ℤ≥cuz 12234  ♯chash 13689   Ramsey cram 16328 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-sup 8893  df-inf 8894  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-ram 16330 This theorem is referenced by:  ramtcl  16339  ramtcl2  16340  ramtub  16341  ramcl2  16345
 Copyright terms: Public domain W3C validator