![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ramcl2lem | Structured version Visualization version GIF version |
Description: Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
Ref | Expression |
---|---|
ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
ramval.t | ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} |
Ref | Expression |
---|---|
ramcl2lem | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2738 | . 2 ⊢ (+∞ = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) → ((𝑀 Ramsey 𝐹) = +∞ ↔ (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )))) | |
2 | eqeq2 2738 | . 2 ⊢ (inf(𝑇, ℝ, < ) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) → ((𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < ) ↔ (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )))) | |
3 | ramval.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
4 | ramval.t | . . . 4 ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} | |
5 | 3, 4 | ramval 17010 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < )) |
6 | infeq1 9519 | . . . 4 ⊢ (𝑇 = ∅ → inf(𝑇, ℝ*, < ) = inf(∅, ℝ*, < )) | |
7 | xrinf0 13371 | . . . 4 ⊢ inf(∅, ℝ*, < ) = +∞ | |
8 | 6, 7 | eqtrdi 2782 | . . 3 ⊢ (𝑇 = ∅ → inf(𝑇, ℝ*, < ) = +∞) |
9 | 5, 8 | sylan9eq 2786 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 = ∅) → (𝑀 Ramsey 𝐹) = +∞) |
10 | df-ne 2931 | . . 3 ⊢ (𝑇 ≠ ∅ ↔ ¬ 𝑇 = ∅) | |
11 | 5 | adantr 479 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < )) |
12 | xrltso 13174 | . . . . . 6 ⊢ < Or ℝ* | |
13 | 12 | a1i 11 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → < Or ℝ*) |
14 | 4 | ssrab3 4079 | . . . . . . . 8 ⊢ 𝑇 ⊆ ℕ0 |
15 | nn0ssre 12528 | . . . . . . . 8 ⊢ ℕ0 ⊆ ℝ | |
16 | 14, 15 | sstri 3989 | . . . . . . 7 ⊢ 𝑇 ⊆ ℝ |
17 | nn0uz 12916 | . . . . . . . . . 10 ⊢ ℕ0 = (ℤ≥‘0) | |
18 | 14, 17 | sseqtri 4016 | . . . . . . . . 9 ⊢ 𝑇 ⊆ (ℤ≥‘0) |
19 | 18 | a1i 11 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝑇 ⊆ (ℤ≥‘0)) |
20 | infssuzcl 12968 | . . . . . . . 8 ⊢ ((𝑇 ⊆ (ℤ≥‘0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇) | |
21 | 19, 20 | sylan 578 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇) |
22 | 16, 21 | sselid 3977 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ ℝ) |
23 | 22 | rexrd 11314 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ ℝ*) |
24 | 22 | adantr 479 | . . . . . 6 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → inf(𝑇, ℝ, < ) ∈ ℝ) |
25 | 16 | a1i 11 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ ℝ) |
26 | 25 | sselda 3979 | . . . . . 6 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → 𝑧 ∈ ℝ) |
27 | simpr 483 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → 𝑧 ∈ 𝑇) | |
28 | infssuzle 12967 | . . . . . . 7 ⊢ ((𝑇 ⊆ (ℤ≥‘0) ∧ 𝑧 ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑧) | |
29 | 18, 27, 28 | sylancr 585 | . . . . . 6 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑧) |
30 | 24, 26, 29 | lensymd 11415 | . . . . 5 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → ¬ 𝑧 < inf(𝑇, ℝ, < )) |
31 | 13, 23, 21, 30 | infmin 9537 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ*, < ) = inf(𝑇, ℝ, < )) |
32 | 11, 31 | eqtrd 2766 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < )) |
33 | 10, 32 | sylan2br 593 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ ¬ 𝑇 = ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < )) |
34 | 1, 2, 9, 33 | ifbothda 4571 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 ∀wal 1532 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 {crab 3419 Vcvv 3462 ⊆ wss 3947 ∅c0 4325 ifcif 4533 𝒫 cpw 4607 {csn 4633 class class class wbr 5153 Or wor 5593 ◡ccnv 5681 “ cima 5685 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 ∈ cmpo 7426 ↑m cmap 8855 infcinf 9484 ℝcr 11157 0cc0 11158 +∞cpnf 11295 ℝ*cxr 11297 < clt 11298 ≤ cle 11299 ℕ0cn0 12524 ℤ≥cuz 12874 ♯chash 14347 Ramsey cram 17001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-n0 12525 df-z 12611 df-uz 12875 df-ram 17003 |
This theorem is referenced by: ramtcl 17012 ramtcl2 17013 ramtub 17014 ramcl2 17018 |
Copyright terms: Public domain | W3C validator |