Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ramcl2lem | Structured version Visualization version GIF version |
Description: Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
Ref | Expression |
---|---|
ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
ramval.t | ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} |
Ref | Expression |
---|---|
ramcl2lem | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2751 | . 2 ⊢ (+∞ = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) → ((𝑀 Ramsey 𝐹) = +∞ ↔ (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )))) | |
2 | eqeq2 2751 | . 2 ⊢ (inf(𝑇, ℝ, < ) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) → ((𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < ) ↔ (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )))) | |
3 | ramval.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
4 | ramval.t | . . . 4 ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} | |
5 | 3, 4 | ramval 16690 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < )) |
6 | infeq1 9196 | . . . 4 ⊢ (𝑇 = ∅ → inf(𝑇, ℝ*, < ) = inf(∅, ℝ*, < )) | |
7 | xrinf0 13054 | . . . 4 ⊢ inf(∅, ℝ*, < ) = +∞ | |
8 | 6, 7 | eqtrdi 2795 | . . 3 ⊢ (𝑇 = ∅ → inf(𝑇, ℝ*, < ) = +∞) |
9 | 5, 8 | sylan9eq 2799 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 = ∅) → (𝑀 Ramsey 𝐹) = +∞) |
10 | df-ne 2945 | . . 3 ⊢ (𝑇 ≠ ∅ ↔ ¬ 𝑇 = ∅) | |
11 | 5 | adantr 480 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < )) |
12 | xrltso 12857 | . . . . . 6 ⊢ < Or ℝ* | |
13 | 12 | a1i 11 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → < Or ℝ*) |
14 | 4 | ssrab3 4019 | . . . . . . . 8 ⊢ 𝑇 ⊆ ℕ0 |
15 | nn0ssre 12220 | . . . . . . . 8 ⊢ ℕ0 ⊆ ℝ | |
16 | 14, 15 | sstri 3934 | . . . . . . 7 ⊢ 𝑇 ⊆ ℝ |
17 | nn0uz 12602 | . . . . . . . . . 10 ⊢ ℕ0 = (ℤ≥‘0) | |
18 | 14, 17 | sseqtri 3961 | . . . . . . . . 9 ⊢ 𝑇 ⊆ (ℤ≥‘0) |
19 | 18 | a1i 11 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝑇 ⊆ (ℤ≥‘0)) |
20 | infssuzcl 12654 | . . . . . . . 8 ⊢ ((𝑇 ⊆ (ℤ≥‘0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇) | |
21 | 19, 20 | sylan 579 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇) |
22 | 16, 21 | sselid 3923 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ ℝ) |
23 | 22 | rexrd 11009 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ ℝ*) |
24 | 22 | adantr 480 | . . . . . 6 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → inf(𝑇, ℝ, < ) ∈ ℝ) |
25 | 16 | a1i 11 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ ℝ) |
26 | 25 | sselda 3925 | . . . . . 6 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → 𝑧 ∈ ℝ) |
27 | simpr 484 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → 𝑧 ∈ 𝑇) | |
28 | infssuzle 12653 | . . . . . . 7 ⊢ ((𝑇 ⊆ (ℤ≥‘0) ∧ 𝑧 ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑧) | |
29 | 18, 27, 28 | sylancr 586 | . . . . . 6 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑧) |
30 | 24, 26, 29 | lensymd 11109 | . . . . 5 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → ¬ 𝑧 < inf(𝑇, ℝ, < )) |
31 | 13, 23, 21, 30 | infmin 9214 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ*, < ) = inf(𝑇, ℝ, < )) |
32 | 11, 31 | eqtrd 2779 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < )) |
33 | 10, 32 | sylan2br 594 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ ¬ 𝑇 = ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < )) |
34 | 1, 2, 9, 33 | ifbothda 4502 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 ∀wal 1539 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 {crab 3069 Vcvv 3430 ⊆ wss 3891 ∅c0 4261 ifcif 4464 𝒫 cpw 4538 {csn 4566 class class class wbr 5078 Or wor 5501 ◡ccnv 5587 “ cima 5591 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 ↑m cmap 8589 infcinf 9161 ℝcr 10854 0cc0 10855 +∞cpnf 10990 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 ℕ0cn0 12216 ℤ≥cuz 12564 ♯chash 14025 Ramsey cram 16681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-ram 16683 |
This theorem is referenced by: ramtcl 16692 ramtcl2 16693 ramtub 16694 ramcl2 16698 |
Copyright terms: Public domain | W3C validator |