| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ramcl2lem | Structured version Visualization version GIF version | ||
| Description: Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| Ref | Expression |
|---|---|
| ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
| ramval.t | ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} |
| Ref | Expression |
|---|---|
| ramcl2lem | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2747 | . 2 ⊢ (+∞ = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) → ((𝑀 Ramsey 𝐹) = +∞ ↔ (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )))) | |
| 2 | eqeq2 2747 | . 2 ⊢ (inf(𝑇, ℝ, < ) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) → ((𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < ) ↔ (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )))) | |
| 3 | ramval.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
| 4 | ramval.t | . . . 4 ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} | |
| 5 | 3, 4 | ramval 17026 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < )) |
| 6 | infeq1 9487 | . . . 4 ⊢ (𝑇 = ∅ → inf(𝑇, ℝ*, < ) = inf(∅, ℝ*, < )) | |
| 7 | xrinf0 13353 | . . . 4 ⊢ inf(∅, ℝ*, < ) = +∞ | |
| 8 | 6, 7 | eqtrdi 2786 | . . 3 ⊢ (𝑇 = ∅ → inf(𝑇, ℝ*, < ) = +∞) |
| 9 | 5, 8 | sylan9eq 2790 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 = ∅) → (𝑀 Ramsey 𝐹) = +∞) |
| 10 | df-ne 2933 | . . 3 ⊢ (𝑇 ≠ ∅ ↔ ¬ 𝑇 = ∅) | |
| 11 | 5 | adantr 480 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < )) |
| 12 | xrltso 13155 | . . . . . 6 ⊢ < Or ℝ* | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → < Or ℝ*) |
| 14 | 4 | ssrab3 4057 | . . . . . . . 8 ⊢ 𝑇 ⊆ ℕ0 |
| 15 | nn0ssre 12503 | . . . . . . . 8 ⊢ ℕ0 ⊆ ℝ | |
| 16 | 14, 15 | sstri 3968 | . . . . . . 7 ⊢ 𝑇 ⊆ ℝ |
| 17 | nn0uz 12892 | . . . . . . . . . 10 ⊢ ℕ0 = (ℤ≥‘0) | |
| 18 | 14, 17 | sseqtri 4007 | . . . . . . . . 9 ⊢ 𝑇 ⊆ (ℤ≥‘0) |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝑇 ⊆ (ℤ≥‘0)) |
| 20 | infssuzcl 12946 | . . . . . . . 8 ⊢ ((𝑇 ⊆ (ℤ≥‘0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇) | |
| 21 | 19, 20 | sylan 580 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇) |
| 22 | 16, 21 | sselid 3956 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ ℝ) |
| 23 | 22 | rexrd 11283 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ ℝ*) |
| 24 | 22 | adantr 480 | . . . . . 6 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → inf(𝑇, ℝ, < ) ∈ ℝ) |
| 25 | 16 | a1i 11 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ ℝ) |
| 26 | 25 | sselda 3958 | . . . . . 6 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → 𝑧 ∈ ℝ) |
| 27 | simpr 484 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → 𝑧 ∈ 𝑇) | |
| 28 | infssuzle 12945 | . . . . . . 7 ⊢ ((𝑇 ⊆ (ℤ≥‘0) ∧ 𝑧 ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑧) | |
| 29 | 18, 27, 28 | sylancr 587 | . . . . . 6 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑧) |
| 30 | 24, 26, 29 | lensymd 11384 | . . . . 5 ⊢ ((((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧 ∈ 𝑇) → ¬ 𝑧 < inf(𝑇, ℝ, < )) |
| 31 | 13, 23, 21, 30 | infmin 9506 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ*, < ) = inf(𝑇, ℝ, < )) |
| 32 | 11, 31 | eqtrd 2770 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < )) |
| 33 | 10, 32 | sylan2br 595 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ ¬ 𝑇 = ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < )) |
| 34 | 1, 2, 9, 33 | ifbothda 4539 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 {crab 3415 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ifcif 4500 𝒫 cpw 4575 {csn 4601 class class class wbr 5119 Or wor 5560 ◡ccnv 5653 “ cima 5657 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 ↑m cmap 8838 infcinf 9451 ℝcr 11126 0cc0 11127 +∞cpnf 11264 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 ℕ0cn0 12499 ℤ≥cuz 12850 ♯chash 14346 Ramsey cram 17017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-ram 17019 |
| This theorem is referenced by: ramtcl 17028 ramtcl2 17029 ramtub 17030 ramcl2 17034 |
| Copyright terms: Public domain | W3C validator |