MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramcl2lem Structured version   Visualization version   GIF version

Theorem ramcl2lem 17056
Description: Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramval.t 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
Assertion
Ref Expression
ramcl2lem ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )))
Distinct variable groups:   𝑓,𝑐,𝑥,𝐶   𝑛,𝑐,𝑠,𝐹,𝑓,𝑥   𝑎,𝑏,𝑐,𝑓,𝑖,𝑛,𝑠,𝑥,𝑀   𝑅,𝑐,𝑓,𝑛,𝑠,𝑥   𝑉,𝑐,𝑓,𝑛,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑖,𝑛,𝑠,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑇(𝑥,𝑓,𝑖,𝑛,𝑠,𝑎,𝑏,𝑐)   𝐹(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramcl2lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2752 . 2 (+∞ = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) → ((𝑀 Ramsey 𝐹) = +∞ ↔ (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))))
2 eqeq2 2752 . 2 (inf(𝑇, ℝ, < ) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) → ((𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < ) ↔ (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))))
3 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
4 ramval.t . . . 4 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
53, 4ramval 17055 . . 3 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < ))
6 infeq1 9545 . . . 4 (𝑇 = ∅ → inf(𝑇, ℝ*, < ) = inf(∅, ℝ*, < ))
7 xrinf0 13400 . . . 4 inf(∅, ℝ*, < ) = +∞
86, 7eqtrdi 2796 . . 3 (𝑇 = ∅ → inf(𝑇, ℝ*, < ) = +∞)
95, 8sylan9eq 2800 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 = ∅) → (𝑀 Ramsey 𝐹) = +∞)
10 df-ne 2947 . . 3 (𝑇 ≠ ∅ ↔ ¬ 𝑇 = ∅)
115adantr 480 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < ))
12 xrltso 13203 . . . . . 6 < Or ℝ*
1312a1i 11 . . . . 5 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → < Or ℝ*)
144ssrab3 4105 . . . . . . . 8 𝑇 ⊆ ℕ0
15 nn0ssre 12557 . . . . . . . 8 0 ⊆ ℝ
1614, 15sstri 4018 . . . . . . 7 𝑇 ⊆ ℝ
17 nn0uz 12945 . . . . . . . . . 10 0 = (ℤ‘0)
1814, 17sseqtri 4045 . . . . . . . . 9 𝑇 ⊆ (ℤ‘0)
1918a1i 11 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝑇 ⊆ (ℤ‘0))
20 infssuzcl 12997 . . . . . . . 8 ((𝑇 ⊆ (ℤ‘0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
2119, 20sylan 579 . . . . . . 7 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
2216, 21sselid 4006 . . . . . 6 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ ℝ)
2322rexrd 11340 . . . . 5 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ ℝ*)
2422adantr 480 . . . . . 6 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧𝑇) → inf(𝑇, ℝ, < ) ∈ ℝ)
2516a1i 11 . . . . . . 7 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → 𝑇 ⊆ ℝ)
2625sselda 4008 . . . . . 6 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧𝑇) → 𝑧 ∈ ℝ)
27 simpr 484 . . . . . . 7 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧𝑇) → 𝑧𝑇)
28 infssuzle 12996 . . . . . . 7 ((𝑇 ⊆ (ℤ‘0) ∧ 𝑧𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑧)
2918, 27, 28sylancr 586 . . . . . 6 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑧)
3024, 26, 29lensymd 11441 . . . . 5 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) ∧ 𝑧𝑇) → ¬ 𝑧 < inf(𝑇, ℝ, < ))
3113, 23, 21, 30infmin 9563 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ*, < ) = inf(𝑇, ℝ, < ))
3211, 31eqtrd 2780 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ 𝑇 ≠ ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < ))
3310, 32sylan2br 594 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ ¬ 𝑇 = ∅) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < ))
341, 2, 9, 33ifbothda 4586 1 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622  {csn 4648   class class class wbr 5166   Or wor 5606  ccnv 5699  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  infcinf 9510  cr 11183  0cc0 11184  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  0cn0 12553  cuz 12903  chash 14379   Ramsey cram 17046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-ram 17048
This theorem is referenced by:  ramtcl  17057  ramtcl2  17058  ramtub  17059  ramcl2  17063
  Copyright terms: Public domain W3C validator