Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem2 Structured version   Visualization version   GIF version

Theorem prproropf1olem2 45686
Description: Lemma 2 for prproropf1o 45689. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
Assertion
Ref Expression
prproropf1olem2 ((𝑅 Or 𝑉𝑋𝑃) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ 𝑂)
Distinct variable groups:   𝑉,𝑝   𝑋,𝑝
Allowed substitution hints:   𝑃(𝑝)   𝑅(𝑝)   𝑂(𝑝)

Proof of Theorem prproropf1olem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prproropf1o.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
21prpair 45683 . . . 4 (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
3 simpll 765 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑅 Or 𝑉)
4 simplrl 775 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑎𝑉)
5 simplrr 776 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑏𝑉)
6 simprr 771 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑎𝑏)
7 infsupprpr 9440 . . . . . . . . . 10 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑎𝑏)) → inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅))
83, 4, 5, 6, 7syl13anc 1372 . . . . . . . . 9 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅))
9 df-br 5106 . . . . . . . . 9 (inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅) ↔ ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ 𝑅)
108, 9sylib 217 . . . . . . . 8 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ 𝑅)
11 infpr 9439 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏))
12 ifcl 4531 . . . . . . . . . . . . . 14 ((𝑎𝑉𝑏𝑉) → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝑉)
13123adant1 1130 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝑉)
1411, 13eqeltrd 2838 . . . . . . . . . . . 12 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)
15 suppr 9407 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏))
16 ifcl 4531 . . . . . . . . . . . . . 14 ((𝑎𝑉𝑏𝑉) → if(𝑏𝑅𝑎, 𝑎, 𝑏) ∈ 𝑉)
17163adant1 1130 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → if(𝑏𝑅𝑎, 𝑎, 𝑏) ∈ 𝑉)
1815, 17eqeltrd 2838 . . . . . . . . . . . 12 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)
1914, 18jca 512 . . . . . . . . . . 11 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
20193expb 1120 . . . . . . . . . 10 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
2120adantr 481 . . . . . . . . 9 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
22 opelxp 5669 . . . . . . . . 9 (⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑉 × 𝑉) ↔ (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
2321, 22sylibr 233 . . . . . . . 8 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑉 × 𝑉))
2410, 23elind 4154 . . . . . . 7 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)))
25 infeq1 9412 . . . . . . . . . 10 (𝑋 = {𝑎, 𝑏} → inf(𝑋, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅))
26 supeq1 9381 . . . . . . . . . 10 (𝑋 = {𝑎, 𝑏} → sup(𝑋, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅))
2725, 26opeq12d 4838 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩)
2827eleq1d 2822 . . . . . . . 8 (𝑋 = {𝑎, 𝑏} → (⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
2928ad2antrl 726 . . . . . . 7 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
3024, 29mpbird 256 . . . . . 6 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)))
3130ex 413 . . . . 5 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
3231rexlimdvva 3205 . . . 4 (𝑅 Or 𝑉 → (∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
332, 32biimtrid 241 . . 3 (𝑅 Or 𝑉 → (𝑋𝑃 → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
3433imp 407 . 2 ((𝑅 Or 𝑉𝑋𝑃) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)))
35 prproropf1o.o . 2 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
3634, 35eleqtrrdi 2849 1 ((𝑅 Or 𝑉𝑋𝑃) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  {crab 3407  cin 3909  ifcif 4486  𝒫 cpw 4560  {cpr 4588  cop 4592   class class class wbr 5105   Or wor 5544   × cxp 5631  cfv 6496  supcsup 9376  infcinf 9377  2c2 12208  chash 14230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231
This theorem is referenced by:  prproropf1o  45689
  Copyright terms: Public domain W3C validator