Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem2 Structured version   Visualization version   GIF version

Theorem prproropf1olem2 47603
Description: Lemma 2 for prproropf1o 47606. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
Assertion
Ref Expression
prproropf1olem2 ((𝑅 Or 𝑉𝑋𝑃) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ 𝑂)
Distinct variable groups:   𝑉,𝑝   𝑋,𝑝
Allowed substitution hints:   𝑃(𝑝)   𝑅(𝑝)   𝑂(𝑝)

Proof of Theorem prproropf1olem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prproropf1o.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
21prpair 47600 . . . 4 (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
3 simpll 766 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑅 Or 𝑉)
4 simplrl 776 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑎𝑉)
5 simplrr 777 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑏𝑉)
6 simprr 772 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑎𝑏)
7 infsupprpr 9390 . . . . . . . . . 10 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑎𝑏)) → inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅))
83, 4, 5, 6, 7syl13anc 1374 . . . . . . . . 9 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅))
9 df-br 5090 . . . . . . . . 9 (inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅) ↔ ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ 𝑅)
108, 9sylib 218 . . . . . . . 8 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ 𝑅)
11 infpr 9389 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏))
12 ifcl 4518 . . . . . . . . . . . . . 14 ((𝑎𝑉𝑏𝑉) → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝑉)
13123adant1 1130 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝑉)
1411, 13eqeltrd 2831 . . . . . . . . . . . 12 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)
15 suppr 9356 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏))
16 ifcl 4518 . . . . . . . . . . . . . 14 ((𝑎𝑉𝑏𝑉) → if(𝑏𝑅𝑎, 𝑎, 𝑏) ∈ 𝑉)
17163adant1 1130 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → if(𝑏𝑅𝑎, 𝑎, 𝑏) ∈ 𝑉)
1815, 17eqeltrd 2831 . . . . . . . . . . . 12 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)
1914, 18jca 511 . . . . . . . . . . 11 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
20193expb 1120 . . . . . . . . . 10 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
2120adantr 480 . . . . . . . . 9 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
22 opelxp 5650 . . . . . . . . 9 (⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑉 × 𝑉) ↔ (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
2321, 22sylibr 234 . . . . . . . 8 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑉 × 𝑉))
2410, 23elind 4147 . . . . . . 7 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)))
25 infeq1 9361 . . . . . . . . . 10 (𝑋 = {𝑎, 𝑏} → inf(𝑋, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅))
26 supeq1 9329 . . . . . . . . . 10 (𝑋 = {𝑎, 𝑏} → sup(𝑋, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅))
2725, 26opeq12d 4830 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩)
2827eleq1d 2816 . . . . . . . 8 (𝑋 = {𝑎, 𝑏} → (⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
2928ad2antrl 728 . . . . . . 7 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
3024, 29mpbird 257 . . . . . 6 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)))
3130ex 412 . . . . 5 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
3231rexlimdvva 3189 . . . 4 (𝑅 Or 𝑉 → (∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
332, 32biimtrid 242 . . 3 (𝑅 Or 𝑉 → (𝑋𝑃 → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
3433imp 406 . 2 ((𝑅 Or 𝑉𝑋𝑃) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)))
35 prproropf1o.o . 2 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
3634, 35eleqtrrdi 2842 1 ((𝑅 Or 𝑉𝑋𝑃) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  cin 3896  ifcif 4472  𝒫 cpw 4547  {cpr 4575  cop 4579   class class class wbr 5089   Or wor 5521   × cxp 5612  cfv 6481  supcsup 9324  infcinf 9325  2c2 12180  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238
This theorem is referenced by:  prproropf1o  47606
  Copyright terms: Public domain W3C validator