Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem2 Structured version   Visualization version   GIF version

Theorem prproropf1olem2 45944
Description: Lemma 2 for prproropf1o 45947. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
Assertion
Ref Expression
prproropf1olem2 ((𝑅 Or 𝑉𝑋𝑃) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ 𝑂)
Distinct variable groups:   𝑉,𝑝   𝑋,𝑝
Allowed substitution hints:   𝑃(𝑝)   𝑅(𝑝)   𝑂(𝑝)

Proof of Theorem prproropf1olem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prproropf1o.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
21prpair 45941 . . . 4 (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
3 simpll 765 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑅 Or 𝑉)
4 simplrl 775 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑎𝑉)
5 simplrr 776 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑏𝑉)
6 simprr 771 . . . . . . . . . 10 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑎𝑏)
7 infsupprpr 9481 . . . . . . . . . 10 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑎𝑏)) → inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅))
83, 4, 5, 6, 7syl13anc 1372 . . . . . . . . 9 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅))
9 df-br 5142 . . . . . . . . 9 (inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅) ↔ ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ 𝑅)
108, 9sylib 217 . . . . . . . 8 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ 𝑅)
11 infpr 9480 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏))
12 ifcl 4567 . . . . . . . . . . . . . 14 ((𝑎𝑉𝑏𝑉) → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝑉)
13123adant1 1130 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝑉)
1411, 13eqeltrd 2832 . . . . . . . . . . . 12 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)
15 suppr 9448 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏))
16 ifcl 4567 . . . . . . . . . . . . . 14 ((𝑎𝑉𝑏𝑉) → if(𝑏𝑅𝑎, 𝑎, 𝑏) ∈ 𝑉)
17163adant1 1130 . . . . . . . . . . . . 13 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → if(𝑏𝑅𝑎, 𝑎, 𝑏) ∈ 𝑉)
1815, 17eqeltrd 2832 . . . . . . . . . . . 12 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)
1914, 18jca 512 . . . . . . . . . . 11 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
20193expb 1120 . . . . . . . . . 10 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
2120adantr 481 . . . . . . . . 9 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
22 opelxp 5705 . . . . . . . . 9 (⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑉 × 𝑉) ↔ (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉))
2321, 22sylibr 233 . . . . . . . 8 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑉 × 𝑉))
2410, 23elind 4190 . . . . . . 7 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)))
25 infeq1 9453 . . . . . . . . . 10 (𝑋 = {𝑎, 𝑏} → inf(𝑋, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅))
26 supeq1 9422 . . . . . . . . . 10 (𝑋 = {𝑎, 𝑏} → sup(𝑋, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅))
2725, 26opeq12d 4874 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩)
2827eleq1d 2817 . . . . . . . 8 (𝑋 = {𝑎, 𝑏} → (⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
2928ad2antrl 726 . . . . . . 7 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
3024, 29mpbird 256 . . . . . 6 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)))
3130ex 413 . . . . 5 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
3231rexlimdvva 3210 . . . 4 (𝑅 Or 𝑉 → (∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
332, 32biimtrid 241 . . 3 (𝑅 Or 𝑉 → (𝑋𝑃 → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉))))
3433imp 407 . 2 ((𝑅 Or 𝑉𝑋𝑃) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ (𝑅 ∩ (𝑉 × 𝑉)))
35 prproropf1o.o . 2 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
3634, 35eleqtrrdi 2843 1 ((𝑅 Or 𝑉𝑋𝑃) → ⟨inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)⟩ ∈ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wrex 3069  {crab 3431  cin 3943  ifcif 4522  𝒫 cpw 4596  {cpr 4624  cop 4628   class class class wbr 5141   Or wor 5580   × cxp 5667  cfv 6532  supcsup 9417  infcinf 9418  2c2 12249  chash 14272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-oadd 8452  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-inf 9420  df-dju 9878  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-n0 12455  df-z 12541  df-uz 12805  df-fz 13467  df-hash 14273
This theorem is referenced by:  prproropf1o  45947
  Copyright terms: Public domain W3C validator