| Step | Hyp | Ref
| Expression |
| 1 | | prproropf1o.p |
. . . . 5
⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
| 2 | 1 | prpair 47482 |
. . . 4
⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
| 3 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 𝑅 Or 𝑉) |
| 4 | | simplrl 776 |
. . . . . . . . . 10
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 𝑎 ∈ 𝑉) |
| 5 | | simplrr 777 |
. . . . . . . . . 10
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 𝑏 ∈ 𝑉) |
| 6 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 𝑎 ≠ 𝑏) |
| 7 | | infsupprpr 9523 |
. . . . . . . . . 10
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑎 ≠ 𝑏)) → inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅)) |
| 8 | 3, 4, 5, 6, 7 | syl13anc 1374 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅)) |
| 9 | | df-br 5125 |
. . . . . . . . 9
⊢
(inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅) ↔ 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ 𝑅) |
| 10 | 8, 9 | sylib 218 |
. . . . . . . 8
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ 𝑅) |
| 11 | | infpr 9522 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏)) |
| 12 | | ifcl 4551 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝑉) |
| 13 | 12 | 3adant1 1130 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝑉) |
| 14 | 11, 13 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉) |
| 15 | | suppr 9489 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏)) |
| 16 | | ifcl 4551 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → if(𝑏𝑅𝑎, 𝑎, 𝑏) ∈ 𝑉) |
| 17 | 16 | 3adant1 1130 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → if(𝑏𝑅𝑎, 𝑎, 𝑏) ∈ 𝑉) |
| 18 | 15, 17 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉) |
| 19 | 14, 18 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)) |
| 20 | 19 | 3expb 1120 |
. . . . . . . . . 10
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)) |
| 21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)) |
| 22 | | opelxp 5695 |
. . . . . . . . 9
⊢
(〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ (𝑉 × 𝑉) ↔ (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)) |
| 23 | 21, 22 | sylibr 234 |
. . . . . . . 8
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ (𝑉 × 𝑉)) |
| 24 | 10, 23 | elind 4180 |
. . . . . . 7
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉))) |
| 25 | | infeq1 9494 |
. . . . . . . . . 10
⊢ (𝑋 = {𝑎, 𝑏} → inf(𝑋, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅)) |
| 26 | | supeq1 9462 |
. . . . . . . . . 10
⊢ (𝑋 = {𝑎, 𝑏} → sup(𝑋, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) |
| 27 | 25, 26 | opeq12d 4862 |
. . . . . . . . 9
⊢ (𝑋 = {𝑎, 𝑏} → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉) |
| 28 | 27 | eleq1d 2820 |
. . . . . . . 8
⊢ (𝑋 = {𝑎, 𝑏} → (〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)))) |
| 29 | 28 | ad2antrl 728 |
. . . . . . 7
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)))) |
| 30 | 24, 29 | mpbird 257 |
. . . . . 6
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉))) |
| 31 | 30 | ex 412 |
. . . . 5
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)))) |
| 32 | 31 | rexlimdvva 3202 |
. . . 4
⊢ (𝑅 Or 𝑉 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)))) |
| 33 | 2, 32 | biimtrid 242 |
. . 3
⊢ (𝑅 Or 𝑉 → (𝑋 ∈ 𝑃 → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)))) |
| 34 | 33 | imp 406 |
. 2
⊢ ((𝑅 Or 𝑉 ∧ 𝑋 ∈ 𝑃) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉))) |
| 35 | | prproropf1o.o |
. 2
⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
| 36 | 34, 35 | eleqtrrdi 2846 |
1
⊢ ((𝑅 Or 𝑉 ∧ 𝑋 ∈ 𝑃) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ 𝑂) |