Step | Hyp | Ref
| Expression |
1 | | prproropf1o.p |
. . . . 5
⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
2 | 1 | prpair 44953 |
. . . 4
⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
3 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 𝑅 Or 𝑉) |
4 | | simplrl 774 |
. . . . . . . . . 10
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 𝑎 ∈ 𝑉) |
5 | | simplrr 775 |
. . . . . . . . . 10
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 𝑏 ∈ 𝑉) |
6 | | simprr 770 |
. . . . . . . . . 10
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 𝑎 ≠ 𝑏) |
7 | | infsupprpr 9263 |
. . . . . . . . . 10
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑎 ≠ 𝑏)) → inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅)) |
8 | 3, 4, 5, 6, 7 | syl13anc 1371 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅)) |
9 | | df-br 5075 |
. . . . . . . . 9
⊢
(inf({𝑎, 𝑏}, 𝑉, 𝑅)𝑅sup({𝑎, 𝑏}, 𝑉, 𝑅) ↔ 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ 𝑅) |
10 | 8, 9 | sylib 217 |
. . . . . . . 8
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ 𝑅) |
11 | | infpr 9262 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏)) |
12 | | ifcl 4504 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝑉) |
13 | 12 | 3adant1 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝑉) |
14 | 11, 13 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉) |
15 | | suppr 9230 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏)) |
16 | | ifcl 4504 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → if(𝑏𝑅𝑎, 𝑎, 𝑏) ∈ 𝑉) |
17 | 16 | 3adant1 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → if(𝑏𝑅𝑎, 𝑎, 𝑏) ∈ 𝑉) |
18 | 15, 17 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉) |
19 | 14, 18 | jca 512 |
. . . . . . . . . . 11
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)) |
20 | 19 | 3expb 1119 |
. . . . . . . . . 10
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)) |
21 | 20 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)) |
22 | | opelxp 5625 |
. . . . . . . . 9
⊢
(〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ (𝑉 × 𝑉) ↔ (inf({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉 ∧ sup({𝑎, 𝑏}, 𝑉, 𝑅) ∈ 𝑉)) |
23 | 21, 22 | sylibr 233 |
. . . . . . . 8
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ (𝑉 × 𝑉)) |
24 | 10, 23 | elind 4128 |
. . . . . . 7
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉))) |
25 | | infeq1 9235 |
. . . . . . . . . 10
⊢ (𝑋 = {𝑎, 𝑏} → inf(𝑋, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅)) |
26 | | supeq1 9204 |
. . . . . . . . . 10
⊢ (𝑋 = {𝑎, 𝑏} → sup(𝑋, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) |
27 | 25, 26 | opeq12d 4812 |
. . . . . . . . 9
⊢ (𝑋 = {𝑎, 𝑏} → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉) |
28 | 27 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑋 = {𝑎, 𝑏} → (〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)))) |
29 | 28 | ad2antrl 725 |
. . . . . . 7
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)))) |
30 | 24, 29 | mpbird 256 |
. . . . . 6
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉))) |
31 | 30 | ex 413 |
. . . . 5
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)))) |
32 | 31 | rexlimdvva 3223 |
. . . 4
⊢ (𝑅 Or 𝑉 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)))) |
33 | 2, 32 | syl5bi 241 |
. . 3
⊢ (𝑅 Or 𝑉 → (𝑋 ∈ 𝑃 → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉)))) |
34 | 33 | imp 407 |
. 2
⊢ ((𝑅 Or 𝑉 ∧ 𝑋 ∈ 𝑃) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ (𝑅 ∩ (𝑉 × 𝑉))) |
35 | | prproropf1o.o |
. 2
⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
36 | 34, 35 | eleqtrrdi 2850 |
1
⊢ ((𝑅 Or 𝑉 ∧ 𝑋 ∈ 𝑃) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ 𝑂) |