Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinf Structured version   Visualization version   GIF version

Theorem infleinf 40226
Description: If any element of 𝐵 can be approximated from above by members of 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinf.a (𝜑𝐴 ⊆ ℝ*)
infleinf.b (𝜑𝐵 ⊆ ℝ*)
infleinf.c ((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦))
Assertion
Ref Expression
infleinf (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infleinf
Dummy variables 𝑟 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infleinf.a . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
2 infxrcl 12365 . . . . . 6 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
31, 2syl 17 . . . . 5 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
4 pnfge 12164 . . . . 5 (inf(𝐴, ℝ*, < ) ∈ ℝ* → inf(𝐴, ℝ*, < ) ≤ +∞)
53, 4syl 17 . . . 4 (𝜑 → inf(𝐴, ℝ*, < ) ≤ +∞)
65adantr 472 . . 3 ((𝜑𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ +∞)
7 infeq1 8589 . . . . . 6 (𝐵 = ∅ → inf(𝐵, ℝ*, < ) = inf(∅, ℝ*, < ))
8 xrinf0 12370 . . . . . . 7 inf(∅, ℝ*, < ) = +∞
98a1i 11 . . . . . 6 (𝐵 = ∅ → inf(∅, ℝ*, < ) = +∞)
107, 9eqtrd 2799 . . . . 5 (𝐵 = ∅ → inf(𝐵, ℝ*, < ) = +∞)
1110eqcomd 2771 . . . 4 (𝐵 = ∅ → +∞ = inf(𝐵, ℝ*, < ))
1211adantl 473 . . 3 ((𝜑𝐵 = ∅) → +∞ = inf(𝐵, ℝ*, < ))
136, 12breqtrd 4835 . 2 ((𝜑𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
14 neqne 2945 . . . 4 𝐵 = ∅ → 𝐵 ≠ ∅)
1514adantl 473 . . 3 ((𝜑 ∧ ¬ 𝐵 = ∅) → 𝐵 ≠ ∅)
163adantr 472 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
17 id 22 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ)
18 2re 11346 . . . . . . . . . . . . . 14 2 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ → 2 ∈ ℝ)
2017, 19resubcld 10712 . . . . . . . . . . . 12 (𝑟 ∈ ℝ → (𝑟 − 2) ∈ ℝ)
2120adantl 473 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (𝑟 − 2) ∈ ℝ)
22 simpr 477 . . . . . . . . . . . . 13 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐵, ℝ*, < ) = -∞)
23 infleinf.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ ℝ*)
24 infxrunb2 40222 . . . . . . . . . . . . . . 15 (𝐵 ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2523, 24syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2625adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2722, 26mpbird 248 . . . . . . . . . . . 12 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦)
2827adantr 472 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦)
29 breq2 4813 . . . . . . . . . . . . 13 (𝑦 = (𝑟 − 2) → (𝑥 < 𝑦𝑥 < (𝑟 − 2)))
3029rexbidv 3199 . . . . . . . . . . . 12 (𝑦 = (𝑟 − 2) → (∃𝑥𝐵 𝑥 < 𝑦 ↔ ∃𝑥𝐵 𝑥 < (𝑟 − 2)))
3130rspcva 3459 . . . . . . . . . . 11 (((𝑟 − 2) ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦) → ∃𝑥𝐵 𝑥 < (𝑟 − 2))
3221, 28, 31syl2anc 579 . . . . . . . . . 10 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∃𝑥𝐵 𝑥 < (𝑟 − 2))
33 simpl 474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝜑)
34 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝑥𝐵)
35 1rp 12032 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 1 ∈ ℝ+)
37 1ex 10289 . . . . . . . . . . . . . . . . . 18 1 ∈ V
38 eleq1 2832 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (𝑦 ∈ ℝ+ ↔ 1 ∈ ℝ+))
39383anbi3d 1566 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → ((𝜑𝑥𝐵𝑦 ∈ ℝ+) ↔ (𝜑𝑥𝐵 ∧ 1 ∈ ℝ+)))
40 oveq2 6850 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 1 → (𝑥 +𝑒 𝑦) = (𝑥 +𝑒 1))
4140breq2d 4821 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ 𝑧 ≤ (𝑥 +𝑒 1)))
4241rexbidv 3199 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1)))
4339, 42imbi12d 335 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦)) ↔ ((𝜑𝑥𝐵 ∧ 1 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))))
44 infleinf.c . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦))
4537, 43, 44vtocl 3411 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵 ∧ 1 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
4633, 34, 36, 45syl3anc 1490 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
4746adantlr 706 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
48473adant3 1162 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
49 simp1l 1254 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝜑)
5049ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝜑)
5150, 1syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝐴 ⊆ ℝ*)
5250, 23syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝐵 ⊆ ℝ*)
53 simp1r 1255 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝑟 ∈ ℝ)
5453ad2antrr 717 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑟 ∈ ℝ)
55 simp2 1167 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝑥𝐵)
5655ad2antrr 717 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑥𝐵)
57 simpll3 1273 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑥 < (𝑟 − 2))
58 simplr 785 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧𝐴)
59 simpr 477 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧 ≤ (𝑥 +𝑒 1))
6051, 52, 54, 56, 57, 58, 59infleinflem2 40225 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧 < 𝑟)
6160ex 401 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) → (𝑧 ≤ (𝑥 +𝑒 1) → 𝑧 < 𝑟))
6261reximdva 3163 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1) → ∃𝑧𝐴 𝑧 < 𝑟))
6348, 62mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → ∃𝑧𝐴 𝑧 < 𝑟)
64633exp 1148 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ) → (𝑥𝐵 → (𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟)))
6564adantlr 706 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (𝑥𝐵 → (𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟)))
6665rexlimdv 3177 . . . . . . . . . 10 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (∃𝑥𝐵 𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟))
6732, 66mpd 15 . . . . . . . . 9 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∃𝑧𝐴 𝑧 < 𝑟)
6867ralrimiva 3113 . . . . . . . 8 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → ∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟)
69 infxrunb2 40222 . . . . . . . . . 10 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
701, 69syl 17 . . . . . . . . 9 (𝜑 → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
7170adantr 472 . . . . . . . 8 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
7268, 71mpbid 223 . . . . . . 7 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) = -∞)
7372, 22eqtr4d 2802 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) = inf(𝐵, ℝ*, < ))
7416, 73xreqled 40184 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
7574adantlr 706 . . . 4 (((𝜑𝐵 ≠ ∅) ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
76 mnfxr 10350 . . . . . . . 8 -∞ ∈ ℝ*
7776a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
7877ad2antrr 717 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ∈ ℝ*)
79 infxrcl 12365 . . . . . . . 8 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
8023, 79syl 17 . . . . . . 7 (𝜑 → inf(𝐵, ℝ*, < ) ∈ ℝ*)
8180ad2antrr 717 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
82 mnfle 12169 . . . . . . 7 (inf(𝐵, ℝ*, < ) ∈ ℝ* → -∞ ≤ inf(𝐵, ℝ*, < ))
8381, 82syl 17 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ≤ inf(𝐵, ℝ*, < ))
84 neqne 2945 . . . . . . . 8 (¬ inf(𝐵, ℝ*, < ) = -∞ → inf(𝐵, ℝ*, < ) ≠ -∞)
8584necomd 2992 . . . . . . 7 (¬ inf(𝐵, ℝ*, < ) = -∞ → -∞ ≠ inf(𝐵, ℝ*, < ))
8685adantl 473 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ≠ inf(𝐵, ℝ*, < ))
8778, 81, 83, 86xrleneltd 40177 . . . . 5 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ < inf(𝐵, ℝ*, < ))
883ad2antrr 717 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
8980ad2antrr 717 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
90 nfv 2009 . . . . . . . 8 𝑏(((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+)
9123ad3antrrr 721 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝐵 ⊆ ℝ*)
92 simpllr 793 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝐵 ≠ ∅)
93 simpr 477 . . . . . . . . . 10 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → -∞ < inf(𝐵, ℝ*, < ))
94 infxrbnd2 40223 . . . . . . . . . . . 12 (𝐵 ⊆ ℝ* → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9523, 94syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9695adantr 472 . . . . . . . . . 10 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9793, 96mpbird 248 . . . . . . . . 9 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → ∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥)
9897ad4ant13 757 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → ∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥)
99 simpr 477 . . . . . . . . 9 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
10099rphalfcld 12082 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
10190, 91, 92, 98, 100infrpge 40205 . . . . . . 7 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → ∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
102 simpll 783 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → 𝜑)
103 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → 𝑥𝐵)
104 rphalfcl 12056 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
105104ad2antlr 718 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → (𝑤 / 2) ∈ ℝ+)
106 ovex 6874 . . . . . . . . . . . . . 14 (𝑤 / 2) ∈ V
107 eleq1 2832 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 / 2) → (𝑦 ∈ ℝ+ ↔ (𝑤 / 2) ∈ ℝ+))
1081073anbi3d 1566 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 / 2) → ((𝜑𝑥𝐵𝑦 ∈ ℝ+) ↔ (𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+)))
109 oveq2 6850 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑤 / 2) → (𝑥 +𝑒 𝑦) = (𝑥 +𝑒 (𝑤 / 2)))
110109breq2d 4821 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 / 2) → (𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))))
111110rexbidv 3199 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 / 2) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))))
112108, 111imbi12d 335 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 / 2) → (((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦)) ↔ ((𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))))
113106, 112, 44vtocl 3411 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
114102, 103, 105, 113syl3anc 1490 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
1151143adant3 1162 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
116 simp11l 1383 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝜑)
117116, 1syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝐴 ⊆ ℝ*)
118116, 23syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝐵 ⊆ ℝ*)
119 simp11 1260 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → (𝜑𝑤 ∈ ℝ+))
120119simprd 489 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑤 ∈ ℝ+)
121 simp12 1261 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑥𝐵)
122 simp3 1168 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
1231223ad2ant1 1163 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
124 simp2 1167 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑧𝐴)
125 simp3 1168 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
126117, 118, 120, 121, 123, 124, 125infleinflem1 40224 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
1271263exp 1148 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → (𝑧𝐴 → (𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))))
128127rexlimdv 3177 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
129115, 128mpd 15 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
1301293exp 1148 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → (𝑥𝐵 → (𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))))
131130rexlimdv 3177 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ+) → (∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
132131ad4ant14 759 . . . . . . 7 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → (∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
133101, 132mpd 15 . . . . . 6 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
13488, 89, 133xrlexaddrp 40206 . . . . 5 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13587, 134syldan 585 . . . 4 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13675, 135pm2.61dan 847 . . 3 ((𝜑𝐵 ≠ ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13715, 136syldan 585 . 2 ((𝜑 ∧ ¬ 𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13813, 137pm2.61dan 847 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3732  c0 4079   class class class wbr 4809  (class class class)co 6842  infcinf 8554  cr 10188  1c1 10190  +∞cpnf 10325  -∞cmnf 10326  *cxr 10327   < clt 10328  cle 10329  cmin 10520   / cdiv 10938  2c2 11327  +crp 12028   +𝑒 cxad 12144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147
This theorem is referenced by:  ovolval5lem3  41508
  Copyright terms: Public domain W3C validator