Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinf Structured version   Visualization version   GIF version

Theorem infleinf 44754
Description: If any element of 𝐵 can be approximated from above by members of 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinf.a (𝜑𝐴 ⊆ ℝ*)
infleinf.b (𝜑𝐵 ⊆ ℝ*)
infleinf.c ((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦))
Assertion
Ref Expression
infleinf (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infleinf
Dummy variables 𝑟 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infleinf.a . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
2 infxrcl 13345 . . . . . 6 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
31, 2syl 17 . . . . 5 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
4 pnfge 13143 . . . . 5 (inf(𝐴, ℝ*, < ) ∈ ℝ* → inf(𝐴, ℝ*, < ) ≤ +∞)
53, 4syl 17 . . . 4 (𝜑 → inf(𝐴, ℝ*, < ) ≤ +∞)
65adantr 480 . . 3 ((𝜑𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ +∞)
7 infeq1 9500 . . . . . 6 (𝐵 = ∅ → inf(𝐵, ℝ*, < ) = inf(∅, ℝ*, < ))
8 xrinf0 13350 . . . . . . 7 inf(∅, ℝ*, < ) = +∞
98a1i 11 . . . . . 6 (𝐵 = ∅ → inf(∅, ℝ*, < ) = +∞)
107, 9eqtrd 2768 . . . . 5 (𝐵 = ∅ → inf(𝐵, ℝ*, < ) = +∞)
1110eqcomd 2734 . . . 4 (𝐵 = ∅ → +∞ = inf(𝐵, ℝ*, < ))
1211adantl 481 . . 3 ((𝜑𝐵 = ∅) → +∞ = inf(𝐵, ℝ*, < ))
136, 12breqtrd 5174 . 2 ((𝜑𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
14 neqne 2945 . . . 4 𝐵 = ∅ → 𝐵 ≠ ∅)
1514adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐵 = ∅) → 𝐵 ≠ ∅)
163adantr 480 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
17 id 22 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ)
18 2re 12317 . . . . . . . . . . . . . 14 2 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ → 2 ∈ ℝ)
2017, 19resubcld 11673 . . . . . . . . . . . 12 (𝑟 ∈ ℝ → (𝑟 − 2) ∈ ℝ)
2120adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (𝑟 − 2) ∈ ℝ)
22 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐵, ℝ*, < ) = -∞)
23 infleinf.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ ℝ*)
24 infxrunb2 44750 . . . . . . . . . . . . . . 15 (𝐵 ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2523, 24syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2625adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2722, 26mpbird 257 . . . . . . . . . . . 12 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦)
2827adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦)
29 breq2 5152 . . . . . . . . . . . . 13 (𝑦 = (𝑟 − 2) → (𝑥 < 𝑦𝑥 < (𝑟 − 2)))
3029rexbidv 3175 . . . . . . . . . . . 12 (𝑦 = (𝑟 − 2) → (∃𝑥𝐵 𝑥 < 𝑦 ↔ ∃𝑥𝐵 𝑥 < (𝑟 − 2)))
3130rspcva 3607 . . . . . . . . . . 11 (((𝑟 − 2) ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦) → ∃𝑥𝐵 𝑥 < (𝑟 − 2))
3221, 28, 31syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∃𝑥𝐵 𝑥 < (𝑟 − 2))
33 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝜑)
34 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝑥𝐵)
35 1rp 13011 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 1 ∈ ℝ+)
37 1ex 11241 . . . . . . . . . . . . . . . . . 18 1 ∈ V
38 eleq1 2817 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (𝑦 ∈ ℝ+ ↔ 1 ∈ ℝ+))
39383anbi3d 1439 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → ((𝜑𝑥𝐵𝑦 ∈ ℝ+) ↔ (𝜑𝑥𝐵 ∧ 1 ∈ ℝ+)))
40 oveq2 7428 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 1 → (𝑥 +𝑒 𝑦) = (𝑥 +𝑒 1))
4140breq2d 5160 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ 𝑧 ≤ (𝑥 +𝑒 1)))
4241rexbidv 3175 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1)))
4339, 42imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦)) ↔ ((𝜑𝑥𝐵 ∧ 1 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))))
44 infleinf.c . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦))
4537, 43, 44vtocl 3543 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵 ∧ 1 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
4633, 34, 36, 45syl3anc 1369 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
4746adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
48473adant3 1130 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
49 simp1l 1195 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝜑)
5049ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝜑)
5150, 1syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝐴 ⊆ ℝ*)
5250, 23syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝐵 ⊆ ℝ*)
53 simp1r 1196 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝑟 ∈ ℝ)
5453ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑟 ∈ ℝ)
55 simp2 1135 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝑥𝐵)
5655ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑥𝐵)
57 simpll3 1212 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑥 < (𝑟 − 2))
58 simplr 768 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧𝐴)
59 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧 ≤ (𝑥 +𝑒 1))
6051, 52, 54, 56, 57, 58, 59infleinflem2 44753 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧 < 𝑟)
6160ex 412 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) → (𝑧 ≤ (𝑥 +𝑒 1) → 𝑧 < 𝑟))
6261reximdva 3165 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1) → ∃𝑧𝐴 𝑧 < 𝑟))
6348, 62mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → ∃𝑧𝐴 𝑧 < 𝑟)
64633exp 1117 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ) → (𝑥𝐵 → (𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟)))
6564adantlr 714 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (𝑥𝐵 → (𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟)))
6665rexlimdv 3150 . . . . . . . . . 10 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (∃𝑥𝐵 𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟))
6732, 66mpd 15 . . . . . . . . 9 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∃𝑧𝐴 𝑧 < 𝑟)
6867ralrimiva 3143 . . . . . . . 8 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → ∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟)
69 infxrunb2 44750 . . . . . . . . . 10 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
701, 69syl 17 . . . . . . . . 9 (𝜑 → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
7170adantr 480 . . . . . . . 8 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
7268, 71mpbid 231 . . . . . . 7 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) = -∞)
7372, 22eqtr4d 2771 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) = inf(𝐵, ℝ*, < ))
7416, 73xreqled 44712 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
7574adantlr 714 . . . 4 (((𝜑𝐵 ≠ ∅) ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
76 mnfxr 11302 . . . . . . . 8 -∞ ∈ ℝ*
7776a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
7877ad2antrr 725 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ∈ ℝ*)
79 infxrcl 13345 . . . . . . . 8 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
8023, 79syl 17 . . . . . . 7 (𝜑 → inf(𝐵, ℝ*, < ) ∈ ℝ*)
8180ad2antrr 725 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
82 mnfle 13147 . . . . . . 7 (inf(𝐵, ℝ*, < ) ∈ ℝ* → -∞ ≤ inf(𝐵, ℝ*, < ))
8381, 82syl 17 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ≤ inf(𝐵, ℝ*, < ))
84 neqne 2945 . . . . . . . 8 (¬ inf(𝐵, ℝ*, < ) = -∞ → inf(𝐵, ℝ*, < ) ≠ -∞)
8584necomd 2993 . . . . . . 7 (¬ inf(𝐵, ℝ*, < ) = -∞ → -∞ ≠ inf(𝐵, ℝ*, < ))
8685adantl 481 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ≠ inf(𝐵, ℝ*, < ))
8778, 81, 83, 86xrleneltd 44705 . . . . 5 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ < inf(𝐵, ℝ*, < ))
883ad2antrr 725 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
8980ad2antrr 725 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
90 nfv 1910 . . . . . . . 8 𝑏(((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+)
9123ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝐵 ⊆ ℝ*)
92 simpllr 775 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝐵 ≠ ∅)
93 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → -∞ < inf(𝐵, ℝ*, < ))
94 infxrbnd2 44751 . . . . . . . . . . . 12 (𝐵 ⊆ ℝ* → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9523, 94syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9695adantr 480 . . . . . . . . . 10 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9793, 96mpbird 257 . . . . . . . . 9 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → ∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥)
9897ad4ant13 750 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → ∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥)
99 simpr 484 . . . . . . . . 9 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
10099rphalfcld 13061 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
10190, 91, 92, 98, 100infrpge 44733 . . . . . . 7 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → ∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
102 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → 𝜑)
103 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → 𝑥𝐵)
104 rphalfcl 13034 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
105104ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → (𝑤 / 2) ∈ ℝ+)
106 ovex 7453 . . . . . . . . . . . . . 14 (𝑤 / 2) ∈ V
107 eleq1 2817 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 / 2) → (𝑦 ∈ ℝ+ ↔ (𝑤 / 2) ∈ ℝ+))
1081073anbi3d 1439 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 / 2) → ((𝜑𝑥𝐵𝑦 ∈ ℝ+) ↔ (𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+)))
109 oveq2 7428 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑤 / 2) → (𝑥 +𝑒 𝑦) = (𝑥 +𝑒 (𝑤 / 2)))
110109breq2d 5160 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 / 2) → (𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))))
111110rexbidv 3175 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 / 2) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))))
112108, 111imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 / 2) → (((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦)) ↔ ((𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))))
113106, 112, 44vtocl 3543 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
114102, 103, 105, 113syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
1151143adant3 1130 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
116 simp11l 1282 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝜑)
117116, 1syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝐴 ⊆ ℝ*)
118116, 23syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝐵 ⊆ ℝ*)
119 simp11 1201 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → (𝜑𝑤 ∈ ℝ+))
120119simprd 495 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑤 ∈ ℝ+)
121 simp12 1202 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑥𝐵)
122 simp3 1136 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
1231223ad2ant1 1131 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
124 simp2 1135 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑧𝐴)
125 simp3 1136 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
126117, 118, 120, 121, 123, 124, 125infleinflem1 44752 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
1271263exp 1117 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → (𝑧𝐴 → (𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))))
128127rexlimdv 3150 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
129115, 128mpd 15 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
1301293exp 1117 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → (𝑥𝐵 → (𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))))
131130rexlimdv 3150 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ+) → (∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
132131ad4ant14 751 . . . . . . 7 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → (∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
133101, 132mpd 15 . . . . . 6 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
13488, 89, 133xrlexaddrp 44734 . . . . 5 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13587, 134syldan 590 . . . 4 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13675, 135pm2.61dan 812 . . 3 ((𝜑𝐵 ≠ ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13715, 136syldan 590 . 2 ((𝜑 ∧ ¬ 𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13813, 137pm2.61dan 812 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wral 3058  wrex 3067  wss 3947  c0 4323   class class class wbr 5148  (class class class)co 7420  infcinf 9465  cr 11138  1c1 11140  +∞cpnf 11276  -∞cmnf 11277  *cxr 11278   < clt 11279  cle 11280  cmin 11475   / cdiv 11902  2c2 12298  +crp 13007   +𝑒 cxad 13123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-n0 12504  df-z 12590  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126
This theorem is referenced by:  ovolval5lem3  46042
  Copyright terms: Public domain W3C validator