Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinf Structured version   Visualization version   GIF version

Theorem infleinf 45383
Description: If any element of 𝐵 can be approximated from above by members of 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinf.a (𝜑𝐴 ⊆ ℝ*)
infleinf.b (𝜑𝐵 ⊆ ℝ*)
infleinf.c ((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦))
Assertion
Ref Expression
infleinf (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infleinf
Dummy variables 𝑟 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infleinf.a . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
2 infxrcl 13375 . . . . . 6 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
31, 2syl 17 . . . . 5 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
4 pnfge 13172 . . . . 5 (inf(𝐴, ℝ*, < ) ∈ ℝ* → inf(𝐴, ℝ*, < ) ≤ +∞)
53, 4syl 17 . . . 4 (𝜑 → inf(𝐴, ℝ*, < ) ≤ +∞)
65adantr 480 . . 3 ((𝜑𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ +∞)
7 infeq1 9516 . . . . . 6 (𝐵 = ∅ → inf(𝐵, ℝ*, < ) = inf(∅, ℝ*, < ))
8 xrinf0 13380 . . . . . . 7 inf(∅, ℝ*, < ) = +∞
98a1i 11 . . . . . 6 (𝐵 = ∅ → inf(∅, ℝ*, < ) = +∞)
107, 9eqtrd 2777 . . . . 5 (𝐵 = ∅ → inf(𝐵, ℝ*, < ) = +∞)
1110eqcomd 2743 . . . 4 (𝐵 = ∅ → +∞ = inf(𝐵, ℝ*, < ))
1211adantl 481 . . 3 ((𝜑𝐵 = ∅) → +∞ = inf(𝐵, ℝ*, < ))
136, 12breqtrd 5169 . 2 ((𝜑𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
14 neqne 2948 . . . 4 𝐵 = ∅ → 𝐵 ≠ ∅)
1514adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐵 = ∅) → 𝐵 ≠ ∅)
163adantr 480 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
17 id 22 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ)
18 2re 12340 . . . . . . . . . . . . . 14 2 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ → 2 ∈ ℝ)
2017, 19resubcld 11691 . . . . . . . . . . . 12 (𝑟 ∈ ℝ → (𝑟 − 2) ∈ ℝ)
2120adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (𝑟 − 2) ∈ ℝ)
22 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐵, ℝ*, < ) = -∞)
23 infleinf.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ ℝ*)
24 infxrunb2 45379 . . . . . . . . . . . . . . 15 (𝐵 ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2523, 24syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2625adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2722, 26mpbird 257 . . . . . . . . . . . 12 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦)
2827adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦)
29 breq2 5147 . . . . . . . . . . . . 13 (𝑦 = (𝑟 − 2) → (𝑥 < 𝑦𝑥 < (𝑟 − 2)))
3029rexbidv 3179 . . . . . . . . . . . 12 (𝑦 = (𝑟 − 2) → (∃𝑥𝐵 𝑥 < 𝑦 ↔ ∃𝑥𝐵 𝑥 < (𝑟 − 2)))
3130rspcva 3620 . . . . . . . . . . 11 (((𝑟 − 2) ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦) → ∃𝑥𝐵 𝑥 < (𝑟 − 2))
3221, 28, 31syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∃𝑥𝐵 𝑥 < (𝑟 − 2))
33 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝜑)
34 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝑥𝐵)
35 1rp 13038 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 1 ∈ ℝ+)
37 1ex 11257 . . . . . . . . . . . . . . . . . 18 1 ∈ V
38 eleq1 2829 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (𝑦 ∈ ℝ+ ↔ 1 ∈ ℝ+))
39383anbi3d 1444 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → ((𝜑𝑥𝐵𝑦 ∈ ℝ+) ↔ (𝜑𝑥𝐵 ∧ 1 ∈ ℝ+)))
40 oveq2 7439 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 1 → (𝑥 +𝑒 𝑦) = (𝑥 +𝑒 1))
4140breq2d 5155 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ 𝑧 ≤ (𝑥 +𝑒 1)))
4241rexbidv 3179 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1)))
4339, 42imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦)) ↔ ((𝜑𝑥𝐵 ∧ 1 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))))
44 infleinf.c . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦))
4537, 43, 44vtocl 3558 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵 ∧ 1 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
4633, 34, 36, 45syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
4746adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
48473adant3 1133 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
49 simp1l 1198 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝜑)
5049ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝜑)
5150, 1syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝐴 ⊆ ℝ*)
5250, 23syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝐵 ⊆ ℝ*)
53 simp1r 1199 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝑟 ∈ ℝ)
5453ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑟 ∈ ℝ)
55 simp2 1138 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝑥𝐵)
5655ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑥𝐵)
57 simpll3 1215 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑥 < (𝑟 − 2))
58 simplr 769 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧𝐴)
59 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧 ≤ (𝑥 +𝑒 1))
6051, 52, 54, 56, 57, 58, 59infleinflem2 45382 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧 < 𝑟)
6160ex 412 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) → (𝑧 ≤ (𝑥 +𝑒 1) → 𝑧 < 𝑟))
6261reximdva 3168 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1) → ∃𝑧𝐴 𝑧 < 𝑟))
6348, 62mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → ∃𝑧𝐴 𝑧 < 𝑟)
64633exp 1120 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ) → (𝑥𝐵 → (𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟)))
6564adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (𝑥𝐵 → (𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟)))
6665rexlimdv 3153 . . . . . . . . . 10 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (∃𝑥𝐵 𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟))
6732, 66mpd 15 . . . . . . . . 9 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∃𝑧𝐴 𝑧 < 𝑟)
6867ralrimiva 3146 . . . . . . . 8 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → ∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟)
69 infxrunb2 45379 . . . . . . . . . 10 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
701, 69syl 17 . . . . . . . . 9 (𝜑 → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
7170adantr 480 . . . . . . . 8 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
7268, 71mpbid 232 . . . . . . 7 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) = -∞)
7372, 22eqtr4d 2780 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) = inf(𝐵, ℝ*, < ))
7416, 73xreqled 45341 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
7574adantlr 715 . . . 4 (((𝜑𝐵 ≠ ∅) ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
76 mnfxr 11318 . . . . . . . 8 -∞ ∈ ℝ*
7776a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
7877ad2antrr 726 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ∈ ℝ*)
79 infxrcl 13375 . . . . . . . 8 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
8023, 79syl 17 . . . . . . 7 (𝜑 → inf(𝐵, ℝ*, < ) ∈ ℝ*)
8180ad2antrr 726 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
82 mnfle 13177 . . . . . . 7 (inf(𝐵, ℝ*, < ) ∈ ℝ* → -∞ ≤ inf(𝐵, ℝ*, < ))
8381, 82syl 17 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ≤ inf(𝐵, ℝ*, < ))
84 neqne 2948 . . . . . . . 8 (¬ inf(𝐵, ℝ*, < ) = -∞ → inf(𝐵, ℝ*, < ) ≠ -∞)
8584necomd 2996 . . . . . . 7 (¬ inf(𝐵, ℝ*, < ) = -∞ → -∞ ≠ inf(𝐵, ℝ*, < ))
8685adantl 481 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ≠ inf(𝐵, ℝ*, < ))
8778, 81, 83, 86xrleneltd 45334 . . . . 5 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ < inf(𝐵, ℝ*, < ))
883ad2antrr 726 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
8980ad2antrr 726 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
90 nfv 1914 . . . . . . . 8 𝑏(((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+)
9123ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝐵 ⊆ ℝ*)
92 simpllr 776 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝐵 ≠ ∅)
93 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → -∞ < inf(𝐵, ℝ*, < ))
94 infxrbnd2 45380 . . . . . . . . . . . 12 (𝐵 ⊆ ℝ* → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9523, 94syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9695adantr 480 . . . . . . . . . 10 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9793, 96mpbird 257 . . . . . . . . 9 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → ∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥)
9897ad4ant13 751 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → ∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥)
99 simpr 484 . . . . . . . . 9 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
10099rphalfcld 13089 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
10190, 91, 92, 98, 100infrpge 45362 . . . . . . 7 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → ∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
102 simpll 767 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → 𝜑)
103 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → 𝑥𝐵)
104 rphalfcl 13062 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
105104ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → (𝑤 / 2) ∈ ℝ+)
106 ovex 7464 . . . . . . . . . . . . . 14 (𝑤 / 2) ∈ V
107 eleq1 2829 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 / 2) → (𝑦 ∈ ℝ+ ↔ (𝑤 / 2) ∈ ℝ+))
1081073anbi3d 1444 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 / 2) → ((𝜑𝑥𝐵𝑦 ∈ ℝ+) ↔ (𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+)))
109 oveq2 7439 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑤 / 2) → (𝑥 +𝑒 𝑦) = (𝑥 +𝑒 (𝑤 / 2)))
110109breq2d 5155 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 / 2) → (𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))))
111110rexbidv 3179 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 / 2) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))))
112108, 111imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 / 2) → (((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦)) ↔ ((𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))))
113106, 112, 44vtocl 3558 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
114102, 103, 105, 113syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
1151143adant3 1133 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
116 simp11l 1285 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝜑)
117116, 1syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝐴 ⊆ ℝ*)
118116, 23syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝐵 ⊆ ℝ*)
119 simp11 1204 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → (𝜑𝑤 ∈ ℝ+))
120119simprd 495 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑤 ∈ ℝ+)
121 simp12 1205 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑥𝐵)
122 simp3 1139 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
1231223ad2ant1 1134 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
124 simp2 1138 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑧𝐴)
125 simp3 1139 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
126117, 118, 120, 121, 123, 124, 125infleinflem1 45381 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
1271263exp 1120 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → (𝑧𝐴 → (𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))))
128127rexlimdv 3153 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
129115, 128mpd 15 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
1301293exp 1120 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → (𝑥𝐵 → (𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))))
131130rexlimdv 3153 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ+) → (∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
132131ad4ant14 752 . . . . . . 7 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → (∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
133101, 132mpd 15 . . . . . 6 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
13488, 89, 133xrlexaddrp 45363 . . . . 5 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13587, 134syldan 591 . . . 4 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13675, 135pm2.61dan 813 . . 3 ((𝜑𝐵 ≠ ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13715, 136syldan 591 . 2 ((𝜑 ∧ ¬ 𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13813, 137pm2.61dan 813 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951  c0 4333   class class class wbr 5143  (class class class)co 7431  infcinf 9481  cr 11154  1c1 11156  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  +crp 13034   +𝑒 cxad 13152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155
This theorem is referenced by:  ovolval5lem3  46669
  Copyright terms: Public domain W3C validator