MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supiso Structured version   Visualization version   GIF version

Theorem supiso 9091
Description: Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
supiso.2 (𝜑𝐶𝐴)
supisoex.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
supiso.4 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
supiso (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem supiso
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supiso.4 . . 3 (𝜑𝑅 Or 𝐴)
2 supiso.1 . . . 4 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
3 isoso 7157 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Or 𝐴𝑆 Or 𝐵))
42, 3syl 17 . . 3 (𝜑 → (𝑅 Or 𝐴𝑆 Or 𝐵))
51, 4mpbid 235 . 2 (𝜑𝑆 Or 𝐵)
6 isof1o 7132 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
7 f1of 6661 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
82, 6, 73syl 18 . . 3 (𝜑𝐹:𝐴𝐵)
9 supisoex.3 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
101, 9supcl 9074 . . 3 (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴)
118, 10ffvelrnd 6905 . 2 (𝜑 → (𝐹‘sup(𝐶, 𝐴, 𝑅)) ∈ 𝐵)
121, 9supub 9075 . . . . . 6 (𝜑 → (𝑢𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑢))
1312ralrimiv 3104 . . . . 5 (𝜑 → ∀𝑢𝐶 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑢)
141, 9suplub 9076 . . . . . . 7 (𝜑 → ((𝑢𝐴𝑢𝑅sup(𝐶, 𝐴, 𝑅)) → ∃𝑧𝐶 𝑢𝑅𝑧))
1514expd 419 . . . . . 6 (𝜑 → (𝑢𝐴 → (𝑢𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧𝐶 𝑢𝑅𝑧)))
1615ralrimiv 3104 . . . . 5 (𝜑 → ∀𝑢𝐴 (𝑢𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧𝐶 𝑢𝑅𝑧))
17 supiso.2 . . . . . . 7 (𝜑𝐶𝐴)
182, 17supisolem 9089 . . . . . 6 ((𝜑 ∧ sup(𝐶, 𝐴, 𝑅) ∈ 𝐴) → ((∀𝑢𝐶 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑢 ∧ ∀𝑢𝐴 (𝑢𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧𝐶 𝑢𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
1910, 18mpdan 687 . . . . 5 (𝜑 → ((∀𝑢𝐶 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑢 ∧ ∀𝑢𝐴 (𝑢𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧𝐶 𝑢𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2013, 16, 19mpbi2and 712 . . . 4 (𝜑 → (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
2120simpld 498 . . 3 (𝜑 → ∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤)
2221r19.21bi 3130 . 2 ((𝜑𝑤 ∈ (𝐹𝐶)) → ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤)
2320simprd 499 . . . 4 (𝜑 → ∀𝑤𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))
2423r19.21bi 3130 . . 3 ((𝜑𝑤𝐵) → (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))
2524impr 458 . 2 ((𝜑 ∧ (𝑤𝐵𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)))) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)
265, 11, 22, 25eqsupd 9073 1 (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  wss 3866   class class class wbr 5053   Or wor 5467  cima 5554  wf 6376  1-1-ontowf1o 6379  cfv 6380   Isom wiso 6381  supcsup 9056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-sup 9058
This theorem is referenced by:  infiso  9124  infrenegsup  11815
  Copyright terms: Public domain W3C validator