MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supiso Structured version   Visualization version   GIF version

Theorem supiso 9164
Description: Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
supiso.2 (𝜑𝐶𝐴)
supisoex.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
supiso.4 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
supiso (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem supiso
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supiso.4 . . 3 (𝜑𝑅 Or 𝐴)
2 supiso.1 . . . 4 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
3 isoso 7199 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Or 𝐴𝑆 Or 𝐵))
42, 3syl 17 . . 3 (𝜑 → (𝑅 Or 𝐴𝑆 Or 𝐵))
51, 4mpbid 231 . 2 (𝜑𝑆 Or 𝐵)
6 isof1o 7174 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
7 f1of 6700 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
82, 6, 73syl 18 . . 3 (𝜑𝐹:𝐴𝐵)
9 supisoex.3 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
101, 9supcl 9147 . . 3 (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴)
118, 10ffvelrnd 6944 . 2 (𝜑 → (𝐹‘sup(𝐶, 𝐴, 𝑅)) ∈ 𝐵)
121, 9supub 9148 . . . . . 6 (𝜑 → (𝑢𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑢))
1312ralrimiv 3106 . . . . 5 (𝜑 → ∀𝑢𝐶 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑢)
141, 9suplub 9149 . . . . . . 7 (𝜑 → ((𝑢𝐴𝑢𝑅sup(𝐶, 𝐴, 𝑅)) → ∃𝑧𝐶 𝑢𝑅𝑧))
1514expd 415 . . . . . 6 (𝜑 → (𝑢𝐴 → (𝑢𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧𝐶 𝑢𝑅𝑧)))
1615ralrimiv 3106 . . . . 5 (𝜑 → ∀𝑢𝐴 (𝑢𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧𝐶 𝑢𝑅𝑧))
17 supiso.2 . . . . . . 7 (𝜑𝐶𝐴)
182, 17supisolem 9162 . . . . . 6 ((𝜑 ∧ sup(𝐶, 𝐴, 𝑅) ∈ 𝐴) → ((∀𝑢𝐶 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑢 ∧ ∀𝑢𝐴 (𝑢𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧𝐶 𝑢𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
1910, 18mpdan 683 . . . . 5 (𝜑 → ((∀𝑢𝐶 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑢 ∧ ∀𝑢𝐴 (𝑢𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧𝐶 𝑢𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2013, 16, 19mpbi2and 708 . . . 4 (𝜑 → (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
2120simpld 494 . . 3 (𝜑 → ∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤)
2221r19.21bi 3132 . 2 ((𝜑𝑤 ∈ (𝐹𝐶)) → ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤)
2320simprd 495 . . . 4 (𝜑 → ∀𝑤𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))
2423r19.21bi 3132 . . 3 ((𝜑𝑤𝐵) → (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))
2524impr 454 . 2 ((𝜑 ∧ (𝑤𝐵𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)))) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)
265, 11, 22, 25eqsupd 9146 1 (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070   Or wor 5493  cima 5583  wf 6414  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419  supcsup 9129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-sup 9131
This theorem is referenced by:  infiso  9197  infrenegsup  11888
  Copyright terms: Public domain W3C validator