Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prproropf1o | Structured version Visualization version GIF version |
Description: There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.) |
Ref | Expression |
---|---|
prproropf1o.o | ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
prproropf1o.p | ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
prproropf1o.f | ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) |
Ref | Expression |
---|---|
prproropf1o | ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1-onto→𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prproropf1o.o | . . . . 5 ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) | |
2 | prproropf1o.p | . . . . 5 ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} | |
3 | 1, 2 | prproropf1olem2 45296 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃) → 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉 ∈ 𝑂) |
4 | prproropf1o.f | . . . . 5 ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) | |
5 | infeq1 9325 | . . . . . . 7 ⊢ (𝑝 = 𝑤 → inf(𝑝, 𝑉, 𝑅) = inf(𝑤, 𝑉, 𝑅)) | |
6 | supeq1 9294 | . . . . . . 7 ⊢ (𝑝 = 𝑤 → sup(𝑝, 𝑉, 𝑅) = sup(𝑤, 𝑉, 𝑅)) | |
7 | 5, 6 | opeq12d 4824 | . . . . . 6 ⊢ (𝑝 = 𝑤 → 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉 = 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉) |
8 | 7 | cbvmptv 5202 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) = (𝑤 ∈ 𝑃 ↦ 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉) |
9 | 4, 8 | eqtri 2764 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ 𝑃 ↦ 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉) |
10 | 3, 9 | fmptd 7038 | . . 3 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃⟶𝑂) |
11 | 3ancomb 1098 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃)) | |
12 | 3anass 1094 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃))) | |
13 | 11, 12 | bitri 274 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃))) |
14 | 1, 2, 4 | prproropf1olem4 45298 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
15 | 13, 14 | sylbir 234 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
16 | 15 | ralrimivva 3193 | . . 3 ⊢ (𝑅 Or 𝑉 → ∀𝑧 ∈ 𝑃 ∀𝑤 ∈ 𝑃 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
17 | dff13 7178 | . . 3 ⊢ (𝐹:𝑃–1-1→𝑂 ↔ (𝐹:𝑃⟶𝑂 ∧ ∀𝑧 ∈ 𝑃 ∀𝑤 ∈ 𝑃 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) | |
18 | 10, 16, 17 | sylanbrc 583 | . 2 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1→𝑂) |
19 | 1, 2 | prproropf1olem1 45295 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → {(1st ‘𝑤), (2nd ‘𝑤)} ∈ 𝑃) |
20 | fveq2 6819 | . . . . . . 7 ⊢ (𝑧 = {(1st ‘𝑤), (2nd ‘𝑤)} → (𝐹‘𝑧) = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)})) | |
21 | 20 | eqeq2d 2747 | . . . . . 6 ⊢ (𝑧 = {(1st ‘𝑤), (2nd ‘𝑤)} → (𝑤 = (𝐹‘𝑧) ↔ 𝑤 = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)}))) |
22 | 21 | adantl 482 | . . . . 5 ⊢ (((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) ∧ 𝑧 = {(1st ‘𝑤), (2nd ‘𝑤)}) → (𝑤 = (𝐹‘𝑧) ↔ 𝑤 = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)}))) |
23 | 1, 2, 4 | prproropf1olem3 45297 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)}) = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
24 | 1 | prproropf1olem0 45294 | . . . . . . . . 9 ⊢ (𝑤 ∈ 𝑂 ↔ (𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∧ ((1st ‘𝑤) ∈ 𝑉 ∧ (2nd ‘𝑤) ∈ 𝑉) ∧ (1st ‘𝑤)𝑅(2nd ‘𝑤))) |
25 | 24 | simp1bi 1144 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝑂 → 𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
26 | 25 | eqcomd 2742 | . . . . . . 7 ⊢ (𝑤 ∈ 𝑂 → 〈(1st ‘𝑤), (2nd ‘𝑤)〉 = 𝑤) |
27 | 26 | adantl 482 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → 〈(1st ‘𝑤), (2nd ‘𝑤)〉 = 𝑤) |
28 | 23, 27 | eqtr2d 2777 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → 𝑤 = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)})) |
29 | 19, 22, 28 | rspcedvd 3572 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → ∃𝑧 ∈ 𝑃 𝑤 = (𝐹‘𝑧)) |
30 | 29 | ralrimiva 3139 | . . 3 ⊢ (𝑅 Or 𝑉 → ∀𝑤 ∈ 𝑂 ∃𝑧 ∈ 𝑃 𝑤 = (𝐹‘𝑧)) |
31 | dffo3 7028 | . . 3 ⊢ (𝐹:𝑃–onto→𝑂 ↔ (𝐹:𝑃⟶𝑂 ∧ ∀𝑤 ∈ 𝑂 ∃𝑧 ∈ 𝑃 𝑤 = (𝐹‘𝑧))) | |
32 | 10, 30, 31 | sylanbrc 583 | . 2 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–onto→𝑂) |
33 | df-f1o 6480 | . 2 ⊢ (𝐹:𝑃–1-1-onto→𝑂 ↔ (𝐹:𝑃–1-1→𝑂 ∧ 𝐹:𝑃–onto→𝑂)) | |
34 | 18, 32, 33 | sylanbrc 583 | 1 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1-onto→𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 {crab 3403 ∩ cin 3896 𝒫 cpw 4546 {cpr 4574 〈cop 4578 class class class wbr 5089 ↦ cmpt 5172 Or wor 5525 × cxp 5612 ⟶wf 6469 –1-1→wf1 6470 –onto→wfo 6471 –1-1-onto→wf1o 6472 ‘cfv 6473 1st c1st 7889 2nd c2nd 7890 supcsup 9289 infcinf 9290 2c2 12121 ♯chash 14137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-oadd 8363 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-inf 9292 df-dju 9750 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-hash 14138 |
This theorem is referenced by: prproropen 45300 prproropreud 45301 |
Copyright terms: Public domain | W3C validator |