| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prproropf1o | Structured version Visualization version GIF version | ||
| Description: There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.) |
| Ref | Expression |
|---|---|
| prproropf1o.o | ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
| prproropf1o.p | ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
| prproropf1o.f | ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) |
| Ref | Expression |
|---|---|
| prproropf1o | ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1-onto→𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prproropf1o.o | . . . . 5 ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) | |
| 2 | prproropf1o.p | . . . . 5 ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} | |
| 3 | 1, 2 | prproropf1olem2 47492 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃) → 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉 ∈ 𝑂) |
| 4 | prproropf1o.f | . . . . 5 ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) | |
| 5 | infeq1 9367 | . . . . . . 7 ⊢ (𝑝 = 𝑤 → inf(𝑝, 𝑉, 𝑅) = inf(𝑤, 𝑉, 𝑅)) | |
| 6 | supeq1 9335 | . . . . . . 7 ⊢ (𝑝 = 𝑤 → sup(𝑝, 𝑉, 𝑅) = sup(𝑤, 𝑉, 𝑅)) | |
| 7 | 5, 6 | opeq12d 4832 | . . . . . 6 ⊢ (𝑝 = 𝑤 → 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉 = 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉) |
| 8 | 7 | cbvmptv 5196 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) = (𝑤 ∈ 𝑃 ↦ 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉) |
| 9 | 4, 8 | eqtri 2752 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ 𝑃 ↦ 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉) |
| 10 | 3, 9 | fmptd 7048 | . . 3 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃⟶𝑂) |
| 11 | 3ancomb 1098 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃)) | |
| 12 | 3anass 1094 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃))) | |
| 13 | 11, 12 | bitri 275 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃))) |
| 14 | 1, 2, 4 | prproropf1olem4 47494 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 15 | 13, 14 | sylbir 235 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 16 | 15 | ralrimivva 3172 | . . 3 ⊢ (𝑅 Or 𝑉 → ∀𝑧 ∈ 𝑃 ∀𝑤 ∈ 𝑃 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 17 | dff13 7191 | . . 3 ⊢ (𝐹:𝑃–1-1→𝑂 ↔ (𝐹:𝑃⟶𝑂 ∧ ∀𝑧 ∈ 𝑃 ∀𝑤 ∈ 𝑃 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) | |
| 18 | 10, 16, 17 | sylanbrc 583 | . 2 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1→𝑂) |
| 19 | 1, 2 | prproropf1olem1 47491 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → {(1st ‘𝑤), (2nd ‘𝑤)} ∈ 𝑃) |
| 20 | fveq2 6822 | . . . . . . 7 ⊢ (𝑧 = {(1st ‘𝑤), (2nd ‘𝑤)} → (𝐹‘𝑧) = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)})) | |
| 21 | 20 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑧 = {(1st ‘𝑤), (2nd ‘𝑤)} → (𝑤 = (𝐹‘𝑧) ↔ 𝑤 = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)}))) |
| 22 | 21 | adantl 481 | . . . . 5 ⊢ (((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) ∧ 𝑧 = {(1st ‘𝑤), (2nd ‘𝑤)}) → (𝑤 = (𝐹‘𝑧) ↔ 𝑤 = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)}))) |
| 23 | 1, 2, 4 | prproropf1olem3 47493 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)}) = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
| 24 | 1 | prproropf1olem0 47490 | . . . . . . . . 9 ⊢ (𝑤 ∈ 𝑂 ↔ (𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∧ ((1st ‘𝑤) ∈ 𝑉 ∧ (2nd ‘𝑤) ∈ 𝑉) ∧ (1st ‘𝑤)𝑅(2nd ‘𝑤))) |
| 25 | 24 | simp1bi 1145 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝑂 → 𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
| 26 | 25 | eqcomd 2735 | . . . . . . 7 ⊢ (𝑤 ∈ 𝑂 → 〈(1st ‘𝑤), (2nd ‘𝑤)〉 = 𝑤) |
| 27 | 26 | adantl 481 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → 〈(1st ‘𝑤), (2nd ‘𝑤)〉 = 𝑤) |
| 28 | 23, 27 | eqtr2d 2765 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → 𝑤 = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)})) |
| 29 | 19, 22, 28 | rspcedvd 3579 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → ∃𝑧 ∈ 𝑃 𝑤 = (𝐹‘𝑧)) |
| 30 | 29 | ralrimiva 3121 | . . 3 ⊢ (𝑅 Or 𝑉 → ∀𝑤 ∈ 𝑂 ∃𝑧 ∈ 𝑃 𝑤 = (𝐹‘𝑧)) |
| 31 | dffo3 7036 | . . 3 ⊢ (𝐹:𝑃–onto→𝑂 ↔ (𝐹:𝑃⟶𝑂 ∧ ∀𝑤 ∈ 𝑂 ∃𝑧 ∈ 𝑃 𝑤 = (𝐹‘𝑧))) | |
| 32 | 10, 30, 31 | sylanbrc 583 | . 2 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–onto→𝑂) |
| 33 | df-f1o 6489 | . 2 ⊢ (𝐹:𝑃–1-1-onto→𝑂 ↔ (𝐹:𝑃–1-1→𝑂 ∧ 𝐹:𝑃–onto→𝑂)) | |
| 34 | 18, 32, 33 | sylanbrc 583 | 1 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1-onto→𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3394 ∩ cin 3902 𝒫 cpw 4551 {cpr 4579 〈cop 4583 class class class wbr 5092 ↦ cmpt 5173 Or wor 5526 × cxp 5617 ⟶wf 6478 –1-1→wf1 6479 –onto→wfo 6480 –1-1-onto→wf1o 6481 ‘cfv 6482 1st c1st 7922 2nd c2nd 7923 supcsup 9330 infcinf 9331 2c2 12183 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 |
| This theorem is referenced by: prproropen 47496 prproropreud 47497 |
| Copyright terms: Public domain | W3C validator |