| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prproropf1o | Structured version Visualization version GIF version | ||
| Description: There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.) |
| Ref | Expression |
|---|---|
| prproropf1o.o | ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
| prproropf1o.p | ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
| prproropf1o.f | ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) |
| Ref | Expression |
|---|---|
| prproropf1o | ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1-onto→𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prproropf1o.o | . . . . 5 ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) | |
| 2 | prproropf1o.p | . . . . 5 ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} | |
| 3 | 1, 2 | prproropf1olem2 47614 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃) → 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉 ∈ 𝑂) |
| 4 | prproropf1o.f | . . . . 5 ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) | |
| 5 | infeq1 9361 | . . . . . . 7 ⊢ (𝑝 = 𝑤 → inf(𝑝, 𝑉, 𝑅) = inf(𝑤, 𝑉, 𝑅)) | |
| 6 | supeq1 9329 | . . . . . . 7 ⊢ (𝑝 = 𝑤 → sup(𝑝, 𝑉, 𝑅) = sup(𝑤, 𝑉, 𝑅)) | |
| 7 | 5, 6 | opeq12d 4830 | . . . . . 6 ⊢ (𝑝 = 𝑤 → 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉 = 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉) |
| 8 | 7 | cbvmptv 5193 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) = (𝑤 ∈ 𝑃 ↦ 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉) |
| 9 | 4, 8 | eqtri 2754 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ 𝑃 ↦ 〈inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)〉) |
| 10 | 3, 9 | fmptd 7047 | . . 3 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃⟶𝑂) |
| 11 | 3ancomb 1098 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃)) | |
| 12 | 3anass 1094 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃))) | |
| 13 | 11, 12 | bitri 275 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃))) |
| 14 | 1, 2, 4 | prproropf1olem4 47616 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 15 | 13, 14 | sylbir 235 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 16 | 15 | ralrimivva 3175 | . . 3 ⊢ (𝑅 Or 𝑉 → ∀𝑧 ∈ 𝑃 ∀𝑤 ∈ 𝑃 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 17 | dff13 7188 | . . 3 ⊢ (𝐹:𝑃–1-1→𝑂 ↔ (𝐹:𝑃⟶𝑂 ∧ ∀𝑧 ∈ 𝑃 ∀𝑤 ∈ 𝑃 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) | |
| 18 | 10, 16, 17 | sylanbrc 583 | . 2 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1→𝑂) |
| 19 | 1, 2 | prproropf1olem1 47613 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → {(1st ‘𝑤), (2nd ‘𝑤)} ∈ 𝑃) |
| 20 | fveq2 6822 | . . . . . . 7 ⊢ (𝑧 = {(1st ‘𝑤), (2nd ‘𝑤)} → (𝐹‘𝑧) = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)})) | |
| 21 | 20 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑧 = {(1st ‘𝑤), (2nd ‘𝑤)} → (𝑤 = (𝐹‘𝑧) ↔ 𝑤 = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)}))) |
| 22 | 21 | adantl 481 | . . . . 5 ⊢ (((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) ∧ 𝑧 = {(1st ‘𝑤), (2nd ‘𝑤)}) → (𝑤 = (𝐹‘𝑧) ↔ 𝑤 = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)}))) |
| 23 | 1, 2, 4 | prproropf1olem3 47615 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)}) = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
| 24 | 1 | prproropf1olem0 47612 | . . . . . . . . 9 ⊢ (𝑤 ∈ 𝑂 ↔ (𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∧ ((1st ‘𝑤) ∈ 𝑉 ∧ (2nd ‘𝑤) ∈ 𝑉) ∧ (1st ‘𝑤)𝑅(2nd ‘𝑤))) |
| 25 | 24 | simp1bi 1145 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝑂 → 𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
| 26 | 25 | eqcomd 2737 | . . . . . . 7 ⊢ (𝑤 ∈ 𝑂 → 〈(1st ‘𝑤), (2nd ‘𝑤)〉 = 𝑤) |
| 27 | 26 | adantl 481 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → 〈(1st ‘𝑤), (2nd ‘𝑤)〉 = 𝑤) |
| 28 | 23, 27 | eqtr2d 2767 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → 𝑤 = (𝐹‘{(1st ‘𝑤), (2nd ‘𝑤)})) |
| 29 | 19, 22, 28 | rspcedvd 3574 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂) → ∃𝑧 ∈ 𝑃 𝑤 = (𝐹‘𝑧)) |
| 30 | 29 | ralrimiva 3124 | . . 3 ⊢ (𝑅 Or 𝑉 → ∀𝑤 ∈ 𝑂 ∃𝑧 ∈ 𝑃 𝑤 = (𝐹‘𝑧)) |
| 31 | dffo3 7035 | . . 3 ⊢ (𝐹:𝑃–onto→𝑂 ↔ (𝐹:𝑃⟶𝑂 ∧ ∀𝑤 ∈ 𝑂 ∃𝑧 ∈ 𝑃 𝑤 = (𝐹‘𝑧))) | |
| 32 | 10, 30, 31 | sylanbrc 583 | . 2 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–onto→𝑂) |
| 33 | df-f1o 6488 | . 2 ⊢ (𝐹:𝑃–1-1-onto→𝑂 ↔ (𝐹:𝑃–1-1→𝑂 ∧ 𝐹:𝑃–onto→𝑂)) | |
| 34 | 18, 32, 33 | sylanbrc 583 | 1 ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1-onto→𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 ∩ cin 3896 𝒫 cpw 4547 {cpr 4575 〈cop 4579 class class class wbr 5089 ↦ cmpt 5170 Or wor 5521 × cxp 5612 ⟶wf 6477 –1-1→wf1 6478 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 supcsup 9324 infcinf 9325 2c2 12180 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 |
| This theorem is referenced by: prproropen 47618 prproropreud 47619 |
| Copyright terms: Public domain | W3C validator |