Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1o Structured version   Visualization version   GIF version

Theorem prproropf1o 47512
Description: There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropf1o.f 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1o (𝑅 Or 𝑉𝐹:𝑃1-1-onto𝑂)
Distinct variable groups:   𝑉,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1o
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
2 prproropf1o.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
31, 2prproropf1olem2 47509 . . . 4 ((𝑅 Or 𝑉𝑤𝑃) → ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩ ∈ 𝑂)
4 prproropf1o.f . . . . 5 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
5 infeq1 9435 . . . . . . 7 (𝑝 = 𝑤 → inf(𝑝, 𝑉, 𝑅) = inf(𝑤, 𝑉, 𝑅))
6 supeq1 9403 . . . . . . 7 (𝑝 = 𝑤 → sup(𝑝, 𝑉, 𝑅) = sup(𝑤, 𝑉, 𝑅))
75, 6opeq12d 4848 . . . . . 6 (𝑝 = 𝑤 → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
87cbvmptv 5214 . . . . 5 (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩) = (𝑤𝑃 ↦ ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
94, 8eqtri 2753 . . . 4 𝐹 = (𝑤𝑃 ↦ ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
103, 9fmptd 7089 . . 3 (𝑅 Or 𝑉𝐹:𝑃𝑂)
11 3ancomb 1098 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) ↔ (𝑅 Or 𝑉𝑧𝑃𝑤𝑃))
12 3anass 1094 . . . . . 6 ((𝑅 Or 𝑉𝑧𝑃𝑤𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)))
1311, 12bitri 275 . . . . 5 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)))
141, 2, 4prproropf1olem4 47511 . . . . 5 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
1513, 14sylbir 235 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
1615ralrimivva 3181 . . 3 (𝑅 Or 𝑉 → ∀𝑧𝑃𝑤𝑃 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
17 dff13 7232 . . 3 (𝐹:𝑃1-1𝑂 ↔ (𝐹:𝑃𝑂 ∧ ∀𝑧𝑃𝑤𝑃 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
1810, 16, 17sylanbrc 583 . 2 (𝑅 Or 𝑉𝐹:𝑃1-1𝑂)
191, 2prproropf1olem1 47508 . . . . 5 ((𝑅 Or 𝑉𝑤𝑂) → {(1st𝑤), (2nd𝑤)} ∈ 𝑃)
20 fveq2 6861 . . . . . . 7 (𝑧 = {(1st𝑤), (2nd𝑤)} → (𝐹𝑧) = (𝐹‘{(1st𝑤), (2nd𝑤)}))
2120eqeq2d 2741 . . . . . 6 (𝑧 = {(1st𝑤), (2nd𝑤)} → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)})))
2221adantl 481 . . . . 5 (((𝑅 Or 𝑉𝑤𝑂) ∧ 𝑧 = {(1st𝑤), (2nd𝑤)}) → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)})))
231, 2, 4prproropf1olem3 47510 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑂) → (𝐹‘{(1st𝑤), (2nd𝑤)}) = ⟨(1st𝑤), (2nd𝑤)⟩)
241prproropf1olem0 47507 . . . . . . . . 9 (𝑤𝑂 ↔ (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ ∧ ((1st𝑤) ∈ 𝑉 ∧ (2nd𝑤) ∈ 𝑉) ∧ (1st𝑤)𝑅(2nd𝑤)))
2524simp1bi 1145 . . . . . . . 8 (𝑤𝑂𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
2625eqcomd 2736 . . . . . . 7 (𝑤𝑂 → ⟨(1st𝑤), (2nd𝑤)⟩ = 𝑤)
2726adantl 481 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑂) → ⟨(1st𝑤), (2nd𝑤)⟩ = 𝑤)
2823, 27eqtr2d 2766 . . . . 5 ((𝑅 Or 𝑉𝑤𝑂) → 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)}))
2919, 22, 28rspcedvd 3593 . . . 4 ((𝑅 Or 𝑉𝑤𝑂) → ∃𝑧𝑃 𝑤 = (𝐹𝑧))
3029ralrimiva 3126 . . 3 (𝑅 Or 𝑉 → ∀𝑤𝑂𝑧𝑃 𝑤 = (𝐹𝑧))
31 dffo3 7077 . . 3 (𝐹:𝑃onto𝑂 ↔ (𝐹:𝑃𝑂 ∧ ∀𝑤𝑂𝑧𝑃 𝑤 = (𝐹𝑧)))
3210, 30, 31sylanbrc 583 . 2 (𝑅 Or 𝑉𝐹:𝑃onto𝑂)
33 df-f1o 6521 . 2 (𝐹:𝑃1-1-onto𝑂 ↔ (𝐹:𝑃1-1𝑂𝐹:𝑃onto𝑂))
3418, 32, 33sylanbrc 583 1 (𝑅 Or 𝑉𝐹:𝑃1-1-onto𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  cin 3916  𝒫 cpw 4566  {cpr 4594  cop 4598   class class class wbr 5110  cmpt 5191   Or wor 5548   × cxp 5639  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  1st c1st 7969  2nd c2nd 7970  supcsup 9398  infcinf 9399  2c2 12248  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  prproropen  47513  prproropreud  47514
  Copyright terms: Public domain W3C validator