Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1o Structured version   Visualization version   GIF version

Theorem prproropf1o 47495
Description: There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropf1o.f 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1o (𝑅 Or 𝑉𝐹:𝑃1-1-onto𝑂)
Distinct variable groups:   𝑉,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1o
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
2 prproropf1o.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
31, 2prproropf1olem2 47492 . . . 4 ((𝑅 Or 𝑉𝑤𝑃) → ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩ ∈ 𝑂)
4 prproropf1o.f . . . . 5 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
5 infeq1 9367 . . . . . . 7 (𝑝 = 𝑤 → inf(𝑝, 𝑉, 𝑅) = inf(𝑤, 𝑉, 𝑅))
6 supeq1 9335 . . . . . . 7 (𝑝 = 𝑤 → sup(𝑝, 𝑉, 𝑅) = sup(𝑤, 𝑉, 𝑅))
75, 6opeq12d 4832 . . . . . 6 (𝑝 = 𝑤 → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
87cbvmptv 5196 . . . . 5 (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩) = (𝑤𝑃 ↦ ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
94, 8eqtri 2752 . . . 4 𝐹 = (𝑤𝑃 ↦ ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
103, 9fmptd 7048 . . 3 (𝑅 Or 𝑉𝐹:𝑃𝑂)
11 3ancomb 1098 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) ↔ (𝑅 Or 𝑉𝑧𝑃𝑤𝑃))
12 3anass 1094 . . . . . 6 ((𝑅 Or 𝑉𝑧𝑃𝑤𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)))
1311, 12bitri 275 . . . . 5 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)))
141, 2, 4prproropf1olem4 47494 . . . . 5 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
1513, 14sylbir 235 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
1615ralrimivva 3172 . . 3 (𝑅 Or 𝑉 → ∀𝑧𝑃𝑤𝑃 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
17 dff13 7191 . . 3 (𝐹:𝑃1-1𝑂 ↔ (𝐹:𝑃𝑂 ∧ ∀𝑧𝑃𝑤𝑃 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
1810, 16, 17sylanbrc 583 . 2 (𝑅 Or 𝑉𝐹:𝑃1-1𝑂)
191, 2prproropf1olem1 47491 . . . . 5 ((𝑅 Or 𝑉𝑤𝑂) → {(1st𝑤), (2nd𝑤)} ∈ 𝑃)
20 fveq2 6822 . . . . . . 7 (𝑧 = {(1st𝑤), (2nd𝑤)} → (𝐹𝑧) = (𝐹‘{(1st𝑤), (2nd𝑤)}))
2120eqeq2d 2740 . . . . . 6 (𝑧 = {(1st𝑤), (2nd𝑤)} → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)})))
2221adantl 481 . . . . 5 (((𝑅 Or 𝑉𝑤𝑂) ∧ 𝑧 = {(1st𝑤), (2nd𝑤)}) → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)})))
231, 2, 4prproropf1olem3 47493 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑂) → (𝐹‘{(1st𝑤), (2nd𝑤)}) = ⟨(1st𝑤), (2nd𝑤)⟩)
241prproropf1olem0 47490 . . . . . . . . 9 (𝑤𝑂 ↔ (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ ∧ ((1st𝑤) ∈ 𝑉 ∧ (2nd𝑤) ∈ 𝑉) ∧ (1st𝑤)𝑅(2nd𝑤)))
2524simp1bi 1145 . . . . . . . 8 (𝑤𝑂𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
2625eqcomd 2735 . . . . . . 7 (𝑤𝑂 → ⟨(1st𝑤), (2nd𝑤)⟩ = 𝑤)
2726adantl 481 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑂) → ⟨(1st𝑤), (2nd𝑤)⟩ = 𝑤)
2823, 27eqtr2d 2765 . . . . 5 ((𝑅 Or 𝑉𝑤𝑂) → 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)}))
2919, 22, 28rspcedvd 3579 . . . 4 ((𝑅 Or 𝑉𝑤𝑂) → ∃𝑧𝑃 𝑤 = (𝐹𝑧))
3029ralrimiva 3121 . . 3 (𝑅 Or 𝑉 → ∀𝑤𝑂𝑧𝑃 𝑤 = (𝐹𝑧))
31 dffo3 7036 . . 3 (𝐹:𝑃onto𝑂 ↔ (𝐹:𝑃𝑂 ∧ ∀𝑤𝑂𝑧𝑃 𝑤 = (𝐹𝑧)))
3210, 30, 31sylanbrc 583 . 2 (𝑅 Or 𝑉𝐹:𝑃onto𝑂)
33 df-f1o 6489 . 2 (𝐹:𝑃1-1-onto𝑂 ↔ (𝐹:𝑃1-1𝑂𝐹:𝑃onto𝑂))
3418, 32, 33sylanbrc 583 1 (𝑅 Or 𝑉𝐹:𝑃1-1-onto𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  cin 3902  𝒫 cpw 4551  {cpr 4579  cop 4583   class class class wbr 5092  cmpt 5173   Or wor 5526   × cxp 5617  wf 6478  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  1st c1st 7922  2nd c2nd 7923  supcsup 9330  infcinf 9331  2c2 12183  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238
This theorem is referenced by:  prproropen  47496  prproropreud  47497
  Copyright terms: Public domain W3C validator