Step | Hyp | Ref
| Expression |
1 | | prproropf1o.o |
. . . . 5
β’ π = (π
β© (π Γ π)) |
2 | | prproropf1o.p |
. . . . 5
β’ π = {π β π« π β£ (β―βπ) = 2} |
3 | 1, 2 | prproropf1olem2 46657 |
. . . 4
β’ ((π
Or π β§ π€ β π) β β¨inf(π€, π, π
), sup(π€, π, π
)β© β π) |
4 | | prproropf1o.f |
. . . . 5
β’ πΉ = (π β π β¦ β¨inf(π, π, π
), sup(π, π, π
)β©) |
5 | | infeq1 9467 |
. . . . . . 7
β’ (π = π€ β inf(π, π, π
) = inf(π€, π, π
)) |
6 | | supeq1 9436 |
. . . . . . 7
β’ (π = π€ β sup(π, π, π
) = sup(π€, π, π
)) |
7 | 5, 6 | opeq12d 4873 |
. . . . . 6
β’ (π = π€ β β¨inf(π, π, π
), sup(π, π, π
)β© = β¨inf(π€, π, π
), sup(π€, π, π
)β©) |
8 | 7 | cbvmptv 5251 |
. . . . 5
β’ (π β π β¦ β¨inf(π, π, π
), sup(π, π, π
)β©) = (π€ β π β¦ β¨inf(π€, π, π
), sup(π€, π, π
)β©) |
9 | 4, 8 | eqtri 2752 |
. . . 4
β’ πΉ = (π€ β π β¦ β¨inf(π€, π, π
), sup(π€, π, π
)β©) |
10 | 3, 9 | fmptd 7105 |
. . 3
β’ (π
Or π β πΉ:πβΆπ) |
11 | | 3ancomb 1096 |
. . . . . 6
β’ ((π
Or π β§ π€ β π β§ π§ β π) β (π
Or π β§ π§ β π β§ π€ β π)) |
12 | | 3anass 1092 |
. . . . . 6
β’ ((π
Or π β§ π§ β π β§ π€ β π) β (π
Or π β§ (π§ β π β§ π€ β π))) |
13 | 11, 12 | bitri 275 |
. . . . 5
β’ ((π
Or π β§ π€ β π β§ π§ β π) β (π
Or π β§ (π§ β π β§ π€ β π))) |
14 | 1, 2, 4 | prproropf1olem4 46659 |
. . . . 5
β’ ((π
Or π β§ π€ β π β§ π§ β π) β ((πΉβπ§) = (πΉβπ€) β π§ = π€)) |
15 | 13, 14 | sylbir 234 |
. . . 4
β’ ((π
Or π β§ (π§ β π β§ π€ β π)) β ((πΉβπ§) = (πΉβπ€) β π§ = π€)) |
16 | 15 | ralrimivva 3192 |
. . 3
β’ (π
Or π β βπ§ β π βπ€ β π ((πΉβπ§) = (πΉβπ€) β π§ = π€)) |
17 | | dff13 7246 |
. . 3
β’ (πΉ:πβ1-1βπ β (πΉ:πβΆπ β§ βπ§ β π βπ€ β π ((πΉβπ§) = (πΉβπ€) β π§ = π€))) |
18 | 10, 16, 17 | sylanbrc 582 |
. 2
β’ (π
Or π β πΉ:πβ1-1βπ) |
19 | 1, 2 | prproropf1olem1 46656 |
. . . . 5
β’ ((π
Or π β§ π€ β π) β {(1st βπ€), (2nd βπ€)} β π) |
20 | | fveq2 6881 |
. . . . . . 7
β’ (π§ = {(1st βπ€), (2nd βπ€)} β (πΉβπ§) = (πΉβ{(1st βπ€), (2nd βπ€)})) |
21 | 20 | eqeq2d 2735 |
. . . . . 6
β’ (π§ = {(1st βπ€), (2nd βπ€)} β (π€ = (πΉβπ§) β π€ = (πΉβ{(1st βπ€), (2nd βπ€)}))) |
22 | 21 | adantl 481 |
. . . . 5
β’ (((π
Or π β§ π€ β π) β§ π§ = {(1st βπ€), (2nd βπ€)}) β (π€ = (πΉβπ§) β π€ = (πΉβ{(1st βπ€), (2nd βπ€)}))) |
23 | 1, 2, 4 | prproropf1olem3 46658 |
. . . . . 6
β’ ((π
Or π β§ π€ β π) β (πΉβ{(1st βπ€), (2nd βπ€)}) = β¨(1st
βπ€), (2nd
βπ€)β©) |
24 | 1 | prproropf1olem0 46655 |
. . . . . . . . 9
β’ (π€ β π β (π€ = β¨(1st βπ€), (2nd βπ€)β© β§ ((1st
βπ€) β π β§ (2nd
βπ€) β π) β§ (1st
βπ€)π
(2nd βπ€))) |
25 | 24 | simp1bi 1142 |
. . . . . . . 8
β’ (π€ β π β π€ = β¨(1st βπ€), (2nd βπ€)β©) |
26 | 25 | eqcomd 2730 |
. . . . . . 7
β’ (π€ β π β β¨(1st βπ€), (2nd βπ€)β© = π€) |
27 | 26 | adantl 481 |
. . . . . 6
β’ ((π
Or π β§ π€ β π) β β¨(1st βπ€), (2nd βπ€)β© = π€) |
28 | 23, 27 | eqtr2d 2765 |
. . . . 5
β’ ((π
Or π β§ π€ β π) β π€ = (πΉβ{(1st βπ€), (2nd βπ€)})) |
29 | 19, 22, 28 | rspcedvd 3606 |
. . . 4
β’ ((π
Or π β§ π€ β π) β βπ§ β π π€ = (πΉβπ§)) |
30 | 29 | ralrimiva 3138 |
. . 3
β’ (π
Or π β βπ€ β π βπ§ β π π€ = (πΉβπ§)) |
31 | | dffo3 7093 |
. . 3
β’ (πΉ:πβontoβπ β (πΉ:πβΆπ β§ βπ€ β π βπ§ β π π€ = (πΉβπ§))) |
32 | 10, 30, 31 | sylanbrc 582 |
. 2
β’ (π
Or π β πΉ:πβontoβπ) |
33 | | df-f1o 6540 |
. 2
β’ (πΉ:πβ1-1-ontoβπ β (πΉ:πβ1-1βπ β§ πΉ:πβontoβπ)) |
34 | 18, 32, 33 | sylanbrc 582 |
1
β’ (π
Or π β πΉ:πβ1-1-ontoβπ) |