Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1o Structured version   Visualization version   GIF version

Theorem prproropf1o 47501
Description: There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropf1o.f 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1o (𝑅 Or 𝑉𝐹:𝑃1-1-onto𝑂)
Distinct variable groups:   𝑉,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1o
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
2 prproropf1o.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
31, 2prproropf1olem2 47498 . . . 4 ((𝑅 Or 𝑉𝑤𝑃) → ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩ ∈ 𝑂)
4 prproropf1o.f . . . . 5 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
5 infeq1 9404 . . . . . . 7 (𝑝 = 𝑤 → inf(𝑝, 𝑉, 𝑅) = inf(𝑤, 𝑉, 𝑅))
6 supeq1 9372 . . . . . . 7 (𝑝 = 𝑤 → sup(𝑝, 𝑉, 𝑅) = sup(𝑤, 𝑉, 𝑅))
75, 6opeq12d 4841 . . . . . 6 (𝑝 = 𝑤 → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
87cbvmptv 5206 . . . . 5 (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩) = (𝑤𝑃 ↦ ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
94, 8eqtri 2752 . . . 4 𝐹 = (𝑤𝑃 ↦ ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
103, 9fmptd 7068 . . 3 (𝑅 Or 𝑉𝐹:𝑃𝑂)
11 3ancomb 1098 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) ↔ (𝑅 Or 𝑉𝑧𝑃𝑤𝑃))
12 3anass 1094 . . . . . 6 ((𝑅 Or 𝑉𝑧𝑃𝑤𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)))
1311, 12bitri 275 . . . . 5 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)))
141, 2, 4prproropf1olem4 47500 . . . . 5 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
1513, 14sylbir 235 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
1615ralrimivva 3178 . . 3 (𝑅 Or 𝑉 → ∀𝑧𝑃𝑤𝑃 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
17 dff13 7211 . . 3 (𝐹:𝑃1-1𝑂 ↔ (𝐹:𝑃𝑂 ∧ ∀𝑧𝑃𝑤𝑃 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
1810, 16, 17sylanbrc 583 . 2 (𝑅 Or 𝑉𝐹:𝑃1-1𝑂)
191, 2prproropf1olem1 47497 . . . . 5 ((𝑅 Or 𝑉𝑤𝑂) → {(1st𝑤), (2nd𝑤)} ∈ 𝑃)
20 fveq2 6840 . . . . . . 7 (𝑧 = {(1st𝑤), (2nd𝑤)} → (𝐹𝑧) = (𝐹‘{(1st𝑤), (2nd𝑤)}))
2120eqeq2d 2740 . . . . . 6 (𝑧 = {(1st𝑤), (2nd𝑤)} → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)})))
2221adantl 481 . . . . 5 (((𝑅 Or 𝑉𝑤𝑂) ∧ 𝑧 = {(1st𝑤), (2nd𝑤)}) → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)})))
231, 2, 4prproropf1olem3 47499 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑂) → (𝐹‘{(1st𝑤), (2nd𝑤)}) = ⟨(1st𝑤), (2nd𝑤)⟩)
241prproropf1olem0 47496 . . . . . . . . 9 (𝑤𝑂 ↔ (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ ∧ ((1st𝑤) ∈ 𝑉 ∧ (2nd𝑤) ∈ 𝑉) ∧ (1st𝑤)𝑅(2nd𝑤)))
2524simp1bi 1145 . . . . . . . 8 (𝑤𝑂𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
2625eqcomd 2735 . . . . . . 7 (𝑤𝑂 → ⟨(1st𝑤), (2nd𝑤)⟩ = 𝑤)
2726adantl 481 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑂) → ⟨(1st𝑤), (2nd𝑤)⟩ = 𝑤)
2823, 27eqtr2d 2765 . . . . 5 ((𝑅 Or 𝑉𝑤𝑂) → 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)}))
2919, 22, 28rspcedvd 3587 . . . 4 ((𝑅 Or 𝑉𝑤𝑂) → ∃𝑧𝑃 𝑤 = (𝐹𝑧))
3029ralrimiva 3125 . . 3 (𝑅 Or 𝑉 → ∀𝑤𝑂𝑧𝑃 𝑤 = (𝐹𝑧))
31 dffo3 7056 . . 3 (𝐹:𝑃onto𝑂 ↔ (𝐹:𝑃𝑂 ∧ ∀𝑤𝑂𝑧𝑃 𝑤 = (𝐹𝑧)))
3210, 30, 31sylanbrc 583 . 2 (𝑅 Or 𝑉𝐹:𝑃onto𝑂)
33 df-f1o 6506 . 2 (𝐹:𝑃1-1-onto𝑂 ↔ (𝐹:𝑃1-1𝑂𝐹:𝑃onto𝑂))
3418, 32, 33sylanbrc 583 1 (𝑅 Or 𝑉𝐹:𝑃1-1-onto𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3402  cin 3910  𝒫 cpw 4559  {cpr 4587  cop 4591   class class class wbr 5102  cmpt 5183   Or wor 5538   × cxp 5629  wf 6495  1-1wf1 6496  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  1st c1st 7945  2nd c2nd 7946  supcsup 9367  infcinf 9368  2c2 12217  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272
This theorem is referenced by:  prproropen  47502  prproropreud  47503
  Copyright terms: Public domain W3C validator