Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1o Structured version   Visualization version   GIF version

Theorem prproropf1o 46660
Description: There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 Γ— 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (β™―β€˜π‘) = 2}
prproropf1o.f 𝐹 = (𝑝 ∈ 𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1o (𝑅 Or 𝑉 β†’ 𝐹:𝑃–1-1-onto→𝑂)
Distinct variable groups:   𝑉,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1o
Dummy variables 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 Γ— 𝑉))
2 prproropf1o.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (β™―β€˜π‘) = 2}
31, 2prproropf1olem2 46657 . . . 4 ((𝑅 Or 𝑉 ∧ 𝑀 ∈ 𝑃) β†’ ⟨inf(𝑀, 𝑉, 𝑅), sup(𝑀, 𝑉, 𝑅)⟩ ∈ 𝑂)
4 prproropf1o.f . . . . 5 𝐹 = (𝑝 ∈ 𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
5 infeq1 9467 . . . . . . 7 (𝑝 = 𝑀 β†’ inf(𝑝, 𝑉, 𝑅) = inf(𝑀, 𝑉, 𝑅))
6 supeq1 9436 . . . . . . 7 (𝑝 = 𝑀 β†’ sup(𝑝, 𝑉, 𝑅) = sup(𝑀, 𝑉, 𝑅))
75, 6opeq12d 4873 . . . . . 6 (𝑝 = 𝑀 β†’ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑀, 𝑉, 𝑅), sup(𝑀, 𝑉, 𝑅)⟩)
87cbvmptv 5251 . . . . 5 (𝑝 ∈ 𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩) = (𝑀 ∈ 𝑃 ↦ ⟨inf(𝑀, 𝑉, 𝑅), sup(𝑀, 𝑉, 𝑅)⟩)
94, 8eqtri 2752 . . . 4 𝐹 = (𝑀 ∈ 𝑃 ↦ ⟨inf(𝑀, 𝑉, 𝑅), sup(𝑀, 𝑉, 𝑅)⟩)
103, 9fmptd 7105 . . 3 (𝑅 Or 𝑉 β†’ 𝐹:π‘ƒβŸΆπ‘‚)
11 3ancomb 1096 . . . . . 6 ((𝑅 Or 𝑉 ∧ 𝑀 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ 𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝑃))
12 3anass 1092 . . . . . 6 ((𝑅 Or 𝑉 ∧ 𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝑃)))
1311, 12bitri 275 . . . . 5 ((𝑅 Or 𝑉 ∧ 𝑀 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝑃)))
141, 2, 4prproropf1olem4 46659 . . . . 5 ((𝑅 Or 𝑉 ∧ 𝑀 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) β†’ 𝑧 = 𝑀))
1513, 14sylbir 234 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝑃)) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) β†’ 𝑧 = 𝑀))
1615ralrimivva 3192 . . 3 (𝑅 Or 𝑉 β†’ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝑃 ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) β†’ 𝑧 = 𝑀))
17 dff13 7246 . . 3 (𝐹:𝑃–1-1→𝑂 ↔ (𝐹:π‘ƒβŸΆπ‘‚ ∧ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝑃 ((πΉβ€˜π‘§) = (πΉβ€˜π‘€) β†’ 𝑧 = 𝑀)))
1810, 16, 17sylanbrc 582 . 2 (𝑅 Or 𝑉 β†’ 𝐹:𝑃–1-1→𝑂)
191, 2prproropf1olem1 46656 . . . . 5 ((𝑅 Or 𝑉 ∧ 𝑀 ∈ 𝑂) β†’ {(1st β€˜π‘€), (2nd β€˜π‘€)} ∈ 𝑃)
20 fveq2 6881 . . . . . . 7 (𝑧 = {(1st β€˜π‘€), (2nd β€˜π‘€)} β†’ (πΉβ€˜π‘§) = (πΉβ€˜{(1st β€˜π‘€), (2nd β€˜π‘€)}))
2120eqeq2d 2735 . . . . . 6 (𝑧 = {(1st β€˜π‘€), (2nd β€˜π‘€)} β†’ (𝑀 = (πΉβ€˜π‘§) ↔ 𝑀 = (πΉβ€˜{(1st β€˜π‘€), (2nd β€˜π‘€)})))
2221adantl 481 . . . . 5 (((𝑅 Or 𝑉 ∧ 𝑀 ∈ 𝑂) ∧ 𝑧 = {(1st β€˜π‘€), (2nd β€˜π‘€)}) β†’ (𝑀 = (πΉβ€˜π‘§) ↔ 𝑀 = (πΉβ€˜{(1st β€˜π‘€), (2nd β€˜π‘€)})))
231, 2, 4prproropf1olem3 46658 . . . . . 6 ((𝑅 Or 𝑉 ∧ 𝑀 ∈ 𝑂) β†’ (πΉβ€˜{(1st β€˜π‘€), (2nd β€˜π‘€)}) = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩)
241prproropf1olem0 46655 . . . . . . . . 9 (𝑀 ∈ 𝑂 ↔ (𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ ∧ ((1st β€˜π‘€) ∈ 𝑉 ∧ (2nd β€˜π‘€) ∈ 𝑉) ∧ (1st β€˜π‘€)𝑅(2nd β€˜π‘€)))
2524simp1bi 1142 . . . . . . . 8 (𝑀 ∈ 𝑂 β†’ 𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩)
2625eqcomd 2730 . . . . . . 7 (𝑀 ∈ 𝑂 β†’ ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ = 𝑀)
2726adantl 481 . . . . . 6 ((𝑅 Or 𝑉 ∧ 𝑀 ∈ 𝑂) β†’ ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ = 𝑀)
2823, 27eqtr2d 2765 . . . . 5 ((𝑅 Or 𝑉 ∧ 𝑀 ∈ 𝑂) β†’ 𝑀 = (πΉβ€˜{(1st β€˜π‘€), (2nd β€˜π‘€)}))
2919, 22, 28rspcedvd 3606 . . . 4 ((𝑅 Or 𝑉 ∧ 𝑀 ∈ 𝑂) β†’ βˆƒπ‘§ ∈ 𝑃 𝑀 = (πΉβ€˜π‘§))
3029ralrimiva 3138 . . 3 (𝑅 Or 𝑉 β†’ βˆ€π‘€ ∈ 𝑂 βˆƒπ‘§ ∈ 𝑃 𝑀 = (πΉβ€˜π‘§))
31 dffo3 7093 . . 3 (𝐹:𝑃–onto→𝑂 ↔ (𝐹:π‘ƒβŸΆπ‘‚ ∧ βˆ€π‘€ ∈ 𝑂 βˆƒπ‘§ ∈ 𝑃 𝑀 = (πΉβ€˜π‘§)))
3210, 30, 31sylanbrc 582 . 2 (𝑅 Or 𝑉 β†’ 𝐹:𝑃–onto→𝑂)
33 df-f1o 6540 . 2 (𝐹:𝑃–1-1-onto→𝑂 ↔ (𝐹:𝑃–1-1→𝑂 ∧ 𝐹:𝑃–onto→𝑂))
3418, 32, 33sylanbrc 582 1 (𝑅 Or 𝑉 β†’ 𝐹:𝑃–1-1-onto→𝑂)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  βˆƒwrex 3062  {crab 3424   ∩ cin 3939  π’« cpw 4594  {cpr 4622  βŸ¨cop 4626   class class class wbr 5138   ↦ cmpt 5221   Or wor 5577   Γ— cxp 5664  βŸΆwf 6529  β€“1-1β†’wf1 6530  β€“ontoβ†’wfo 6531  β€“1-1-ontoβ†’wf1o 6532  β€˜cfv 6533  1st c1st 7966  2nd c2nd 7967  supcsup 9431  infcinf 9432  2c2 12264  β™―chash 14287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-hash 14288
This theorem is referenced by:  prproropen  46661  prproropreud  46662
  Copyright terms: Public domain W3C validator