MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq1 Structured version   Visualization version   GIF version

Theorem supeq1 9462
Description: Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
Assertion
Ref Expression
supeq1 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))

Proof of Theorem supeq1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3306 . . . . 5 (𝐵 = 𝐶 → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐶 ¬ 𝑥𝑅𝑦))
2 rexeq 3305 . . . . . . 7 (𝐵 = 𝐶 → (∃𝑧𝐵 𝑦𝑅𝑧 ↔ ∃𝑧𝐶 𝑦𝑅𝑧))
32imbi2d 340 . . . . . 6 (𝐵 = 𝐶 → ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
43ralbidv 3164 . . . . 5 (𝐵 = 𝐶 → (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
51, 4anbi12d 632 . . . 4 (𝐵 = 𝐶 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))))
65rabbidv 3428 . . 3 (𝐵 = 𝐶 → {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = {𝑥𝐴 ∣ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))})
76unieqd 4901 . 2 (𝐵 = 𝐶 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = {𝑥𝐴 ∣ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))})
8 df-sup 9459 . 2 sup(𝐵, 𝐴, 𝑅) = {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}
9 df-sup 9459 . 2 sup(𝐶, 𝐴, 𝑅) = {𝑥𝐴 ∣ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))}
107, 8, 93eqtr4g 2796 1 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wral 3052  wrex 3061  {crab 3420   cuni 4888   class class class wbr 5124  supcsup 9457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-ss 3948  df-uni 4889  df-sup 9459
This theorem is referenced by:  supeq1d  9463  supeq1i  9464  infeq1  9494  bndth  24913  ioorval  25532  uniioombllem6  25546  mdegcl  26031  limexissupab  43274  suplesup  45333  supminfxr  45458  prproropf1olem2  47485  prproropf1olem3  47486  prproropf1olem4  47487  prproropf1o  47488  prproropreud  47490
  Copyright terms: Public domain W3C validator