|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > supeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for supremum. (Contributed by NM, 22-May-1999.) | 
| Ref | Expression | 
|---|---|
| supeq1 | ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | raleq 3322 | . . . . 5 ⊢ (𝐵 = 𝐶 → (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦)) | |
| 2 | rexeq 3321 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (∃𝑧 ∈ 𝐵 𝑦𝑅𝑧 ↔ ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) | |
| 3 | 2 | imbi2d 340 | . . . . . 6 ⊢ (𝐵 = 𝐶 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) | 
| 4 | 3 | ralbidv 3177 | . . . . 5 ⊢ (𝐵 = 𝐶 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) | 
| 5 | 1, 4 | anbi12d 632 | . . . 4 ⊢ (𝐵 = 𝐶 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ↔ (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)))) | 
| 6 | 5 | rabbidv 3443 | . . 3 ⊢ (𝐵 = 𝐶 → {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))}) | 
| 7 | 6 | unieqd 4919 | . 2 ⊢ (𝐵 = 𝐶 → ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))}) | 
| 8 | df-sup 9483 | . 2 ⊢ sup(𝐵, 𝐴, 𝑅) = ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} | |
| 9 | df-sup 9483 | . 2 ⊢ sup(𝐶, 𝐴, 𝑅) = ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))} | |
| 10 | 7, 8, 9 | 3eqtr4g 2801 | 1 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∀wral 3060 ∃wrex 3069 {crab 3435 ∪ cuni 4906 class class class wbr 5142 supcsup 9481 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-ss 3967 df-uni 4907 df-sup 9483 | 
| This theorem is referenced by: supeq1d 9487 supeq1i 9488 infeq1 9517 bndth 24991 ioorval 25610 uniioombllem6 25624 mdegcl 26109 limexissupab 43301 suplesup 45355 supminfxr 45480 prproropf1olem2 47496 prproropf1olem3 47497 prproropf1olem4 47498 prproropf1o 47499 prproropreud 47501 | 
| Copyright terms: Public domain | W3C validator |