MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq1 Structured version   Visualization version   GIF version

Theorem supeq1 9134
Description: Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
Assertion
Ref Expression
supeq1 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))

Proof of Theorem supeq1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3333 . . . . 5 (𝐵 = 𝐶 → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐶 ¬ 𝑥𝑅𝑦))
2 rexeq 3334 . . . . . . 7 (𝐵 = 𝐶 → (∃𝑧𝐵 𝑦𝑅𝑧 ↔ ∃𝑧𝐶 𝑦𝑅𝑧))
32imbi2d 340 . . . . . 6 (𝐵 = 𝐶 → ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
43ralbidv 3120 . . . . 5 (𝐵 = 𝐶 → (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
51, 4anbi12d 630 . . . 4 (𝐵 = 𝐶 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))))
65rabbidv 3404 . . 3 (𝐵 = 𝐶 → {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = {𝑥𝐴 ∣ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))})
76unieqd 4850 . 2 (𝐵 = 𝐶 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = {𝑥𝐴 ∣ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))})
8 df-sup 9131 . 2 sup(𝐵, 𝐴, 𝑅) = {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}
9 df-sup 9131 . 2 sup(𝐶, 𝐴, 𝑅) = {𝑥𝐴 ∣ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))}
107, 8, 93eqtr4g 2804 1 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wral 3063  wrex 3064  {crab 3067   cuni 4836   class class class wbr 5070  supcsup 9129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837  df-sup 9131
This theorem is referenced by:  supeq1d  9135  supeq1i  9136  infeq1  9165  bndth  24027  ioorval  24643  uniioombllem6  24657  mdegcl  25139  suplesup  42768  supminfxr  42894  prproropf1olem2  44844  prproropf1olem3  44845  prproropf1olem4  44846  prproropf1o  44847  prproropreud  44849
  Copyright terms: Public domain W3C validator