MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem6 Structured version   Visualization version   GIF version

Theorem uniioombllem6 25510
Description: Lemma for uniioombl 25511. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem6 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem6
Dummy variables 𝑎 𝑖 𝑗 𝑘 𝑛 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12889 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12617 . . . 4 (𝜑 → 1 ∈ ℤ)
3 uniioombl.c . . . 4 (𝜑𝐶 ∈ ℝ+)
4 eqidd 2729 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) = (𝑇𝑚))
5 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
6 eqidd 2729 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) = (((abs ∘ − ) ∘ 𝐺)‘𝑎))
7 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
8 eqid 2728 . . . . . . . . . . 11 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
98ovolfsf 25393 . . . . . . . . . 10 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
107, 9syl 17 . . . . . . . . 9 (𝜑 → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
1110ffvelcdmda 7088 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ (0[,)+∞))
12 elrege0 13457 . . . . . . . 8 ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎)))
1311, 12sylib 217 . . . . . . 7 ((𝜑𝑎 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎)))
1413simpld 494 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ)
1513simprd 495 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎))
16 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
17 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
18 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
19 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
20 uniioombl.e . . . . . . . 8 (𝜑 → (vol*‘𝐸) ∈ ℝ)
21 uniioombl.s . . . . . . . 8 (𝜑𝐸 ran ((,) ∘ 𝐺))
22 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2316, 17, 18, 19, 20, 3, 7, 21, 5, 22uniioombllem1 25503 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
248, 5ovolsf 25394 . . . . . . . . . . . . 13 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
257, 24syl 17 . . . . . . . . . . . 12 (𝜑𝑇:ℕ⟶(0[,)+∞))
2625frnd 6724 . . . . . . . . . . 11 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
27 icossxr 13435 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ*
2826, 27sstrdi 3990 . . . . . . . . . 10 (𝜑 → ran 𝑇 ⊆ ℝ*)
29 supxrub 13329 . . . . . . . . . 10 ((ran 𝑇 ⊆ ℝ*𝑥 ∈ ran 𝑇) → 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
3028, 29sylan 579 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝑇) → 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
3130ralrimiva 3142 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
3225ffnd 6717 . . . . . . . . 9 (𝜑𝑇 Fn ℕ)
33 breq1 5145 . . . . . . . . . 10 (𝑥 = (𝑇𝑚) → (𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3433ralrn 7092 . . . . . . . . 9 (𝑇 Fn ℕ → (∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3532, 34syl 17 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3631, 35mpbid 231 . . . . . . 7 (𝜑 → ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < ))
37 brralrspcev 5202 . . . . . . 7 ((sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ 𝑥)
3823, 36, 37syl2anc 583 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ 𝑥)
391, 5, 2, 6, 14, 15, 38isumsup2 15818 . . . . 5 (𝜑𝑇 ⇝ sup(ran 𝑇, ℝ, < ))
40 rge0ssre 13459 . . . . . . 7 (0[,)+∞) ⊆ ℝ
4126, 40sstrdi 3990 . . . . . 6 (𝜑 → ran 𝑇 ⊆ ℝ)
42 1nn 12247 . . . . . . . . 9 1 ∈ ℕ
4325fdmd 6727 . . . . . . . . 9 (𝜑 → dom 𝑇 = ℕ)
4442, 43eleqtrrid 2836 . . . . . . . 8 (𝜑 → 1 ∈ dom 𝑇)
4544ne0d 4331 . . . . . . 7 (𝜑 → dom 𝑇 ≠ ∅)
46 dm0rn0 5921 . . . . . . . 8 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
4746necon3bii 2989 . . . . . . 7 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
4845, 47sylib 217 . . . . . 6 (𝜑 → ran 𝑇 ≠ ∅)
49 brralrspcev 5202 . . . . . . 7 ((sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ ∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < )) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦)
5023, 31, 49syl2anc 583 . . . . . 6 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦)
51 supxrre 13332 . . . . . 6 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦) → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
5241, 48, 50, 51syl3anc 1369 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
5339, 52breqtrrd 5170 . . . 4 (𝜑𝑇 ⇝ sup(ran 𝑇, ℝ*, < ))
541, 2, 3, 4, 53climi2 15481 . . 3 (𝜑 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
551r19.2uz 15324 . . 3 (∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶 → ∃𝑚 ∈ ℕ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
5654, 55syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
57 1zzd 12617 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 1 ∈ ℤ)
583ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝐶 ∈ ℝ+)
59 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝑚 ∈ ℕ)
6059nnrpd 13040 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝑚 ∈ ℝ+)
6158, 60rpdivcld 13059 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐶 / 𝑚) ∈ ℝ+)
62 fvex 6904 . . . . . . . . . . . . . . . 16 ((,)‘(𝐹𝑧)) ∈ V
6362inex1 5311 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V
6463rgenw 3061 . . . . . . . . . . . . . 14 𝑧 ∈ ℕ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V
65 eqid 2728 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
6665fnmpt 6689 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ℕ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V → (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ)
6764, 66mp1i 13 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ)
68 elfznn 13556 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℕ)
69 fvco2 6989 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ ∧ 𝑖 ∈ ℕ) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)))
7067, 68, 69syl2an 595 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)))
7168adantl 481 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℕ)
72 2fveq3 6896 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑖 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑖)))
7372ineq1d 4207 . . . . . . . . . . . . . . 15 (𝑧 = 𝑖 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
74 fvex 6904 . . . . . . . . . . . . . . . 16 ((,)‘(𝐹𝑖)) ∈ V
7574inex1 5311 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ V
7673, 65, 75fvmpt 6999 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
7771, 76syl 17 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
7877fveq2d 6895 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
7970, 78eqtrd 2768 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
80 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
8180, 1eleqtrdi 2839 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
82 inss2 4225 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗))
837adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
84 elfznn 13556 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (1...𝑚) → 𝑗 ∈ ℕ)
85 ffvelcdm 7085 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
8683, 84, 85syl2an 595 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
8786elin2d 4195 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) ∈ (ℝ × ℝ))
88 1st2nd2 8026 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
8987, 88syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
9089fveq2d 6895 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
91 df-ov 7417 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
9290, 91eqtr4di 2786 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
93 ioossre 13411 . . . . . . . . . . . . . . 15 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
9492, 93eqsstrdi 4032 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
9594ad2antrr 725 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
9692fveq2d 6895 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
97 ovolfcl 25388 . . . . . . . . . . . . . . . . . 18 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
9883, 84, 97syl2an 595 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
99 ovolioo 25490 . . . . . . . . . . . . . . . . 17 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
10098, 99syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
10196, 100eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
10298simp2d 1141 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
10398simp1d 1140 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
104102, 103resubcld 11666 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
105101, 104eqeltrd 2829 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
106105ad2antrr 725 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
107 ovolsscl 25408 . . . . . . . . . . . . 13 (((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
10882, 95, 106, 107mp3an2i 1463 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
109108recnd 11266 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℂ)
11079, 81, 109fsumser 15702 . . . . . . . . . 10 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))))‘𝑛))
111110eqcomd 2734 . . . . . . . . 9 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → (seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))))‘𝑛) = Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
112 2fveq3 6896 . . . . . . . . . . . . . 14 (𝑧 = 𝑘 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑘)))
113112ineq1d 4207 . . . . . . . . . . . . 13 (𝑧 = 𝑘 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑘)) ∩ ((,)‘(𝐺𝑗))))
114113cbvmptv 5255 . . . . . . . . . . . 12 (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (𝑘 ∈ ℕ ↦ (((,)‘(𝐹𝑘)) ∩ ((,)‘(𝐺𝑗))))
115 eqeq1 2732 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 = ∅ ↔ 𝑥 = ∅))
116 infeq1 9493 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → inf(𝑧, ℝ*, < ) = inf(𝑥, ℝ*, < ))
117 supeq1 9462 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → sup(𝑧, ℝ*, < ) = sup(𝑥, ℝ*, < ))
118116, 117opeq12d 4877 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩ = ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩)
119115, 118ifbieq2d 4550 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → if(𝑧 = ∅, ⟨0, 0⟩, ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩) = if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
120119cbvmptv 5255 . . . . . . . . . . . 12 (𝑧 ∈ ran (,) ↦ if(𝑧 = ∅, ⟨0, 0⟩, ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩)) = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
12116, 17, 18, 19, 20, 3, 7, 21, 5, 22, 114, 120uniioombllem2 25505 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
12284, 121sylan2 592 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑚)) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
123122adantlr 714 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
1241, 57, 61, 111, 123climi2 15481 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
125 1z 12616 . . . . . . . . 9 1 ∈ ℤ
1261rexuz3 15321 . . . . . . . . 9 (1 ∈ ℤ → (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
127125, 126ax-mp 5 . . . . . . . 8 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
128124, 127sylib 217 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
129128ralrimiva 3142 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
130 fzfi 13963 . . . . . . 7 (1...𝑚) ∈ Fin
131 rexfiuz 15320 . . . . . . 7 ((1...𝑚) ∈ Fin → (∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
132130, 131ax-mp 5 . . . . . 6 (∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
133129, 132sylibr 233 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
1341rexuz3 15321 . . . . . 6 (1 ∈ ℤ → (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
135125, 134ax-mp 5 . . . . 5 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
136133, 135sylibr 233 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
1371r19.2uz 15324 . . . 4 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) → ∃𝑛 ∈ ℕ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
138136, 137syl 17 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑛 ∈ ℕ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
13916adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
14017adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
14120adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → (vol*‘𝐸) ∈ ℝ)
1423adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐶 ∈ ℝ+)
1437adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
14421adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐸 ran ((,) ∘ 𝐺))
14522adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
146 simprll 778 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝑚 ∈ ℕ)
147 simprlr 779 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
148 eqid 2728 . . . . 5 (((,) ∘ 𝐺) “ (1...𝑚)) = (((,) ∘ 𝐺) “ (1...𝑚))
149 simprrl 780 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝑛 ∈ ℕ)
150 simprrr 781 . . . . . 6 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
151 2fveq3 6896 . . . . . . . . . . . . . 14 (𝑖 = 𝑧 → ((,)‘(𝐹𝑖)) = ((,)‘(𝐹𝑧)))
152151ineq1d 4207 . . . . . . . . . . . . 13 (𝑖 = 𝑧 → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
153152fveq2d 6895 . . . . . . . . . . . 12 (𝑖 = 𝑧 → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))
154153cbvsumv 15668 . . . . . . . . . . 11 Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
155 2fveq3 6896 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((,)‘(𝐺𝑗)) = ((,)‘(𝐺𝑘)))
156155ineq2d 4208 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘))))
157156fveq2d 6895 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
158157sumeq2sdv 15676 . . . . . . . . . . 11 (𝑗 = 𝑘 → Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
159154, 158eqtrid 2780 . . . . . . . . . 10 (𝑗 = 𝑘 → Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
160155ineq1d 4207 . . . . . . . . . . 11 (𝑗 = 𝑘 → (((,)‘(𝐺𝑗)) ∩ 𝐴) = (((,)‘(𝐺𝑘)) ∩ 𝐴))
161160fveq2d 6895 . . . . . . . . . 10 (𝑗 = 𝑘 → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))
162159, 161oveq12d 7432 . . . . . . . . 9 (𝑗 = 𝑘 → (Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴))) = (Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴))))
163162fveq2d 6895 . . . . . . . 8 (𝑗 = 𝑘 → (abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) = (abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))))
164163breq1d 5152 . . . . . . 7 (𝑗 = 𝑘 → ((abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ (abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
165164cbvralvw 3230 . . . . . 6 (∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑘 ∈ (1...𝑚)(abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚))
166150, 165sylib 217 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ∀𝑘 ∈ (1...𝑚)(abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚))
167 eqid 2728 . . . . 5 (((,) ∘ 𝐹) “ (1...𝑛)) = (((,) ∘ 𝐹) “ (1...𝑛))
168139, 140, 18, 19, 141, 142, 143, 144, 5, 145, 146, 147, 148, 149, 166, 167uniioombllem5 25509 . . . 4 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
169168anassrs 467 . . 3 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
170138, 169rexlimddv 3157 . 2 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
17156, 170rexlimddv 3157 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2936  wral 3057  wrex 3066  Vcvv 3470  cdif 3942  cin 3944  wss 3945  c0 4318  ifcif 4524  cop 4630   cuni 4903  Disj wdisj 5107   class class class wbr 5142  cmpt 5225   × cxp 5670  dom cdm 5672  ran crn 5673  cima 5675  ccom 5676   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  1st c1st 7985  2nd c2nd 7986  Fincfn 8957  supcsup 9457  infcinf 9458  cr 11131  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137  +∞cpnf 11269  *cxr 11271   < clt 11272  cle 11273  cmin 11468   / cdiv 11895  cn 12236  4c4 12293  cz 12582  cuz 12846  +crp 13000  (,)cioo 13350  [,)cico 13352  ...cfz 13510  seqcseq 13992  abscabs 15207  cli 15454  Σcsu 15658  vol*covol 25384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-dju 9918  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-n0 12497  df-z 12583  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-rlim 15459  df-sum 15659  df-rest 17397  df-topgen 17418  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-top 22789  df-topon 22806  df-bases 22842  df-cmp 23284  df-ovol 25386  df-vol 25387
This theorem is referenced by:  uniioombl  25511
  Copyright terms: Public domain W3C validator