MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem6 Structured version   Visualization version   GIF version

Theorem uniioombllem6 25487
Description: Lemma for uniioombl 25488. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem6 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem6
Dummy variables 𝑎 𝑖 𝑗 𝑘 𝑛 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12778 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12506 . . . 4 (𝜑 → 1 ∈ ℤ)
3 uniioombl.c . . . 4 (𝜑𝐶 ∈ ℝ+)
4 eqidd 2730 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) = (𝑇𝑚))
5 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
6 eqidd 2730 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) = (((abs ∘ − ) ∘ 𝐺)‘𝑎))
7 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
8 eqid 2729 . . . . . . . . . . 11 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
98ovolfsf 25370 . . . . . . . . . 10 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
107, 9syl 17 . . . . . . . . 9 (𝜑 → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
1110ffvelcdmda 7018 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ (0[,)+∞))
12 elrege0 13357 . . . . . . . 8 ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎)))
1311, 12sylib 218 . . . . . . 7 ((𝜑𝑎 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎)))
1413simpld 494 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ)
1513simprd 495 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎))
16 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
17 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
18 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
19 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
20 uniioombl.e . . . . . . . 8 (𝜑 → (vol*‘𝐸) ∈ ℝ)
21 uniioombl.s . . . . . . . 8 (𝜑𝐸 ran ((,) ∘ 𝐺))
22 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2316, 17, 18, 19, 20, 3, 7, 21, 5, 22uniioombllem1 25480 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
248, 5ovolsf 25371 . . . . . . . . . . . . 13 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
257, 24syl 17 . . . . . . . . . . . 12 (𝜑𝑇:ℕ⟶(0[,)+∞))
2625frnd 6660 . . . . . . . . . . 11 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
27 icossxr 13335 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ*
2826, 27sstrdi 3948 . . . . . . . . . 10 (𝜑 → ran 𝑇 ⊆ ℝ*)
29 supxrub 13226 . . . . . . . . . 10 ((ran 𝑇 ⊆ ℝ*𝑥 ∈ ran 𝑇) → 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
3028, 29sylan 580 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝑇) → 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
3130ralrimiva 3121 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
3225ffnd 6653 . . . . . . . . 9 (𝜑𝑇 Fn ℕ)
33 breq1 5095 . . . . . . . . . 10 (𝑥 = (𝑇𝑚) → (𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3433ralrn 7022 . . . . . . . . 9 (𝑇 Fn ℕ → (∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3532, 34syl 17 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3631, 35mpbid 232 . . . . . . 7 (𝜑 → ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < ))
37 brralrspcev 5152 . . . . . . 7 ((sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ 𝑥)
3823, 36, 37syl2anc 584 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ 𝑥)
391, 5, 2, 6, 14, 15, 38isumsup2 15753 . . . . 5 (𝜑𝑇 ⇝ sup(ran 𝑇, ℝ, < ))
40 rge0ssre 13359 . . . . . . 7 (0[,)+∞) ⊆ ℝ
4126, 40sstrdi 3948 . . . . . 6 (𝜑 → ran 𝑇 ⊆ ℝ)
42 1nn 12139 . . . . . . . . 9 1 ∈ ℕ
4325fdmd 6662 . . . . . . . . 9 (𝜑 → dom 𝑇 = ℕ)
4442, 43eleqtrrid 2835 . . . . . . . 8 (𝜑 → 1 ∈ dom 𝑇)
4544ne0d 4293 . . . . . . 7 (𝜑 → dom 𝑇 ≠ ∅)
46 dm0rn0 5867 . . . . . . . 8 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
4746necon3bii 2977 . . . . . . 7 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
4845, 47sylib 218 . . . . . 6 (𝜑 → ran 𝑇 ≠ ∅)
49 brralrspcev 5152 . . . . . . 7 ((sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ ∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < )) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦)
5023, 31, 49syl2anc 584 . . . . . 6 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦)
51 supxrre 13229 . . . . . 6 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦) → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
5241, 48, 50, 51syl3anc 1373 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
5339, 52breqtrrd 5120 . . . 4 (𝜑𝑇 ⇝ sup(ran 𝑇, ℝ*, < ))
541, 2, 3, 4, 53climi2 15418 . . 3 (𝜑 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
551r19.2uz 15259 . . 3 (∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶 → ∃𝑚 ∈ ℕ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
5654, 55syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
57 1zzd 12506 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 1 ∈ ℤ)
583ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝐶 ∈ ℝ+)
59 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝑚 ∈ ℕ)
6059nnrpd 12935 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝑚 ∈ ℝ+)
6158, 60rpdivcld 12954 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐶 / 𝑚) ∈ ℝ+)
62 fvex 6835 . . . . . . . . . . . . . . . 16 ((,)‘(𝐹𝑧)) ∈ V
6362inex1 5256 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V
6463rgenw 3048 . . . . . . . . . . . . . 14 𝑧 ∈ ℕ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V
65 eqid 2729 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
6665fnmpt 6622 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ℕ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V → (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ)
6764, 66mp1i 13 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ)
68 elfznn 13456 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℕ)
69 fvco2 6920 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ ∧ 𝑖 ∈ ℕ) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)))
7067, 68, 69syl2an 596 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)))
7168adantl 481 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℕ)
72 2fveq3 6827 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑖 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑖)))
7372ineq1d 4170 . . . . . . . . . . . . . . 15 (𝑧 = 𝑖 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
74 fvex 6835 . . . . . . . . . . . . . . . 16 ((,)‘(𝐹𝑖)) ∈ V
7574inex1 5256 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ V
7673, 65, 75fvmpt 6930 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
7771, 76syl 17 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
7877fveq2d 6826 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
7970, 78eqtrd 2764 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
80 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
8180, 1eleqtrdi 2838 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
82 inss2 4189 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗))
837adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
84 elfznn 13456 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (1...𝑚) → 𝑗 ∈ ℕ)
85 ffvelcdm 7015 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
8683, 84, 85syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
8786elin2d 4156 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) ∈ (ℝ × ℝ))
88 1st2nd2 7963 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
8987, 88syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
9089fveq2d 6826 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
91 df-ov 7352 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
9290, 91eqtr4di 2782 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
93 ioossre 13310 . . . . . . . . . . . . . . 15 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
9492, 93eqsstrdi 3980 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
9594ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
9692fveq2d 6826 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
97 ovolfcl 25365 . . . . . . . . . . . . . . . . . 18 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
9883, 84, 97syl2an 596 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
99 ovolioo 25467 . . . . . . . . . . . . . . . . 17 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
10098, 99syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
10196, 100eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
10298simp2d 1143 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
10398simp1d 1142 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
104102, 103resubcld 11548 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
105101, 104eqeltrd 2828 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
106105ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
107 ovolsscl 25385 . . . . . . . . . . . . 13 (((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
10882, 95, 106, 107mp3an2i 1468 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
109108recnd 11143 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℂ)
11079, 81, 109fsumser 15637 . . . . . . . . . 10 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))))‘𝑛))
111110eqcomd 2735 . . . . . . . . 9 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → (seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))))‘𝑛) = Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
112 2fveq3 6827 . . . . . . . . . . . . . 14 (𝑧 = 𝑘 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑘)))
113112ineq1d 4170 . . . . . . . . . . . . 13 (𝑧 = 𝑘 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑘)) ∩ ((,)‘(𝐺𝑗))))
114113cbvmptv 5196 . . . . . . . . . . . 12 (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (𝑘 ∈ ℕ ↦ (((,)‘(𝐹𝑘)) ∩ ((,)‘(𝐺𝑗))))
115 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 = ∅ ↔ 𝑥 = ∅))
116 infeq1 9367 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → inf(𝑧, ℝ*, < ) = inf(𝑥, ℝ*, < ))
117 supeq1 9335 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → sup(𝑧, ℝ*, < ) = sup(𝑥, ℝ*, < ))
118116, 117opeq12d 4832 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩ = ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩)
119115, 118ifbieq2d 4503 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → if(𝑧 = ∅, ⟨0, 0⟩, ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩) = if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
120119cbvmptv 5196 . . . . . . . . . . . 12 (𝑧 ∈ ran (,) ↦ if(𝑧 = ∅, ⟨0, 0⟩, ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩)) = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
12116, 17, 18, 19, 20, 3, 7, 21, 5, 22, 114, 120uniioombllem2 25482 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
12284, 121sylan2 593 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑚)) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
123122adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
1241, 57, 61, 111, 123climi2 15418 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
125 1z 12505 . . . . . . . . 9 1 ∈ ℤ
1261rexuz3 15256 . . . . . . . . 9 (1 ∈ ℤ → (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
127125, 126ax-mp 5 . . . . . . . 8 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
128124, 127sylib 218 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
129128ralrimiva 3121 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
130 fzfi 13879 . . . . . . 7 (1...𝑚) ∈ Fin
131 rexfiuz 15255 . . . . . . 7 ((1...𝑚) ∈ Fin → (∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
132130, 131ax-mp 5 . . . . . 6 (∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
133129, 132sylibr 234 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
1341rexuz3 15256 . . . . . 6 (1 ∈ ℤ → (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
135125, 134ax-mp 5 . . . . 5 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
136133, 135sylibr 234 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
1371r19.2uz 15259 . . . 4 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) → ∃𝑛 ∈ ℕ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
138136, 137syl 17 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑛 ∈ ℕ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
13916adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
14017adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
14120adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → (vol*‘𝐸) ∈ ℝ)
1423adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐶 ∈ ℝ+)
1437adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
14421adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐸 ran ((,) ∘ 𝐺))
14522adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
146 simprll 778 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝑚 ∈ ℕ)
147 simprlr 779 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
148 eqid 2729 . . . . 5 (((,) ∘ 𝐺) “ (1...𝑚)) = (((,) ∘ 𝐺) “ (1...𝑚))
149 simprrl 780 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝑛 ∈ ℕ)
150 simprrr 781 . . . . . 6 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
151 2fveq3 6827 . . . . . . . . . . . . . 14 (𝑖 = 𝑧 → ((,)‘(𝐹𝑖)) = ((,)‘(𝐹𝑧)))
152151ineq1d 4170 . . . . . . . . . . . . 13 (𝑖 = 𝑧 → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
153152fveq2d 6826 . . . . . . . . . . . 12 (𝑖 = 𝑧 → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))
154153cbvsumv 15603 . . . . . . . . . . 11 Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
155 2fveq3 6827 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((,)‘(𝐺𝑗)) = ((,)‘(𝐺𝑘)))
156155ineq2d 4171 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘))))
157156fveq2d 6826 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
158157sumeq2sdv 15610 . . . . . . . . . . 11 (𝑗 = 𝑘 → Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
159154, 158eqtrid 2776 . . . . . . . . . 10 (𝑗 = 𝑘 → Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
160155ineq1d 4170 . . . . . . . . . . 11 (𝑗 = 𝑘 → (((,)‘(𝐺𝑗)) ∩ 𝐴) = (((,)‘(𝐺𝑘)) ∩ 𝐴))
161160fveq2d 6826 . . . . . . . . . 10 (𝑗 = 𝑘 → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))
162159, 161oveq12d 7367 . . . . . . . . 9 (𝑗 = 𝑘 → (Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴))) = (Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴))))
163162fveq2d 6826 . . . . . . . 8 (𝑗 = 𝑘 → (abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) = (abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))))
164163breq1d 5102 . . . . . . 7 (𝑗 = 𝑘 → ((abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ (abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
165164cbvralvw 3207 . . . . . 6 (∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑘 ∈ (1...𝑚)(abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚))
166150, 165sylib 218 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ∀𝑘 ∈ (1...𝑚)(abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚))
167 eqid 2729 . . . . 5 (((,) ∘ 𝐹) “ (1...𝑛)) = (((,) ∘ 𝐹) “ (1...𝑛))
168139, 140, 18, 19, 141, 142, 143, 144, 5, 145, 146, 147, 148, 149, 166, 167uniioombllem5 25486 . . . 4 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
169168anassrs 467 . . 3 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
170138, 169rexlimddv 3136 . 2 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
17156, 170rexlimddv 3136 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  cin 3902  wss 3903  c0 4284  ifcif 4476  cop 4583   cuni 4858  Disj wdisj 5059   class class class wbr 5092  cmpt 5173   × cxp 5617  dom cdm 5619  ran crn 5620  cima 5622  ccom 5623   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  Fincfn 8872  supcsup 9330  infcinf 9331  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  4c4 12185  cz 12471  cuz 12735  +crp 12893  (,)cioo 13248  [,)cico 13250  ...cfz 13410  seqcseq 13908  abscabs 15141  cli 15391  Σcsu 15593  vol*covol 25361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-ovol 25363  df-vol 25364
This theorem is referenced by:  uniioombl  25488
  Copyright terms: Public domain W3C validator