MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem6 Structured version   Visualization version   GIF version

Theorem uniioombllem6 24183
Description: Lemma for uniioombl 24184. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem6 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem6
Dummy variables 𝑎 𝑖 𝑗 𝑘 𝑛 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12275 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12007 . . . 4 (𝜑 → 1 ∈ ℤ)
3 uniioombl.c . . . 4 (𝜑𝐶 ∈ ℝ+)
4 eqidd 2822 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) = (𝑇𝑚))
5 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
6 eqidd 2822 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) = (((abs ∘ − ) ∘ 𝐺)‘𝑎))
7 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
8 eqid 2821 . . . . . . . . . . 11 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
98ovolfsf 24066 . . . . . . . . . 10 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
107, 9syl 17 . . . . . . . . 9 (𝜑 → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
1110ffvelrnda 6845 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ (0[,)+∞))
12 elrege0 12836 . . . . . . . 8 ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎)))
1311, 12sylib 220 . . . . . . 7 ((𝜑𝑎 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎)))
1413simpld 497 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ)
1513simprd 498 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎))
16 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
17 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
18 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
19 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
20 uniioombl.e . . . . . . . 8 (𝜑 → (vol*‘𝐸) ∈ ℝ)
21 uniioombl.s . . . . . . . 8 (𝜑𝐸 ran ((,) ∘ 𝐺))
22 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2316, 17, 18, 19, 20, 3, 7, 21, 5, 22uniioombllem1 24176 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
248, 5ovolsf 24067 . . . . . . . . . . . . 13 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
257, 24syl 17 . . . . . . . . . . . 12 (𝜑𝑇:ℕ⟶(0[,)+∞))
2625frnd 6515 . . . . . . . . . . 11 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
27 icossxr 12815 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ*
2826, 27sstrdi 3978 . . . . . . . . . 10 (𝜑 → ran 𝑇 ⊆ ℝ*)
29 supxrub 12711 . . . . . . . . . 10 ((ran 𝑇 ⊆ ℝ*𝑥 ∈ ran 𝑇) → 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
3028, 29sylan 582 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝑇) → 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
3130ralrimiva 3182 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
3225ffnd 6509 . . . . . . . . 9 (𝜑𝑇 Fn ℕ)
33 breq1 5061 . . . . . . . . . 10 (𝑥 = (𝑇𝑚) → (𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3433ralrn 6848 . . . . . . . . 9 (𝑇 Fn ℕ → (∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3532, 34syl 17 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3631, 35mpbid 234 . . . . . . 7 (𝜑 → ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < ))
37 brralrspcev 5118 . . . . . . 7 ((sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ 𝑥)
3823, 36, 37syl2anc 586 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ 𝑥)
391, 5, 2, 6, 14, 15, 38isumsup2 15195 . . . . 5 (𝜑𝑇 ⇝ sup(ran 𝑇, ℝ, < ))
40 rge0ssre 12838 . . . . . . 7 (0[,)+∞) ⊆ ℝ
4126, 40sstrdi 3978 . . . . . 6 (𝜑 → ran 𝑇 ⊆ ℝ)
42 1nn 11643 . . . . . . . . 9 1 ∈ ℕ
4325fdmd 6517 . . . . . . . . 9 (𝜑 → dom 𝑇 = ℕ)
4442, 43eleqtrrid 2920 . . . . . . . 8 (𝜑 → 1 ∈ dom 𝑇)
4544ne0d 4300 . . . . . . 7 (𝜑 → dom 𝑇 ≠ ∅)
46 dm0rn0 5789 . . . . . . . 8 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
4746necon3bii 3068 . . . . . . 7 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
4845, 47sylib 220 . . . . . 6 (𝜑 → ran 𝑇 ≠ ∅)
49 brralrspcev 5118 . . . . . . 7 ((sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ ∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < )) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦)
5023, 31, 49syl2anc 586 . . . . . 6 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦)
51 supxrre 12714 . . . . . 6 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦) → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
5241, 48, 50, 51syl3anc 1367 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
5339, 52breqtrrd 5086 . . . 4 (𝜑𝑇 ⇝ sup(ran 𝑇, ℝ*, < ))
541, 2, 3, 4, 53climi2 14862 . . 3 (𝜑 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
551r19.2uz 14705 . . 3 (∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶 → ∃𝑚 ∈ ℕ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
5654, 55syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
57 1zzd 12007 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 1 ∈ ℤ)
583ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝐶 ∈ ℝ+)
59 simplrl 775 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝑚 ∈ ℕ)
6059nnrpd 12423 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝑚 ∈ ℝ+)
6158, 60rpdivcld 12442 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐶 / 𝑚) ∈ ℝ+)
62 fvex 6677 . . . . . . . . . . . . . . . 16 ((,)‘(𝐹𝑧)) ∈ V
6362inex1 5213 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V
6463rgenw 3150 . . . . . . . . . . . . . 14 𝑧 ∈ ℕ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V
65 eqid 2821 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
6665fnmpt 6482 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ℕ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V → (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ)
6764, 66mp1i 13 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ)
68 elfznn 12930 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℕ)
69 fvco2 6752 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ ∧ 𝑖 ∈ ℕ) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)))
7067, 68, 69syl2an 597 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)))
7168adantl 484 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℕ)
72 2fveq3 6669 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑖 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑖)))
7372ineq1d 4187 . . . . . . . . . . . . . . 15 (𝑧 = 𝑖 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
74 fvex 6677 . . . . . . . . . . . . . . . 16 ((,)‘(𝐹𝑖)) ∈ V
7574inex1 5213 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ V
7673, 65, 75fvmpt 6762 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
7771, 76syl 17 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
7877fveq2d 6668 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
7970, 78eqtrd 2856 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
80 simpr 487 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
8180, 1eleqtrdi 2923 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
82 inss2 4205 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗))
837adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
84 elfznn 12930 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (1...𝑚) → 𝑗 ∈ ℕ)
85 ffvelrn 6843 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
8683, 84, 85syl2an 597 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
8786elin2d 4175 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) ∈ (ℝ × ℝ))
88 1st2nd2 7722 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
8987, 88syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
9089fveq2d 6668 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
91 df-ov 7153 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
9290, 91syl6eqr 2874 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
93 ioossre 12792 . . . . . . . . . . . . . . 15 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
9492, 93eqsstrdi 4020 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
9594ad2antrr 724 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
9692fveq2d 6668 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
97 ovolfcl 24061 . . . . . . . . . . . . . . . . . 18 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
9883, 84, 97syl2an 597 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
99 ovolioo 24163 . . . . . . . . . . . . . . . . 17 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
10098, 99syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
10196, 100eqtrd 2856 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
10298simp2d 1139 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
10398simp1d 1138 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
104102, 103resubcld 11062 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
105101, 104eqeltrd 2913 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
106105ad2antrr 724 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
107 ovolsscl 24081 . . . . . . . . . . . . 13 (((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
10882, 95, 106, 107mp3an2i 1462 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
109108recnd 10663 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℂ)
11079, 81, 109fsumser 15081 . . . . . . . . . 10 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))))‘𝑛))
111110eqcomd 2827 . . . . . . . . 9 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → (seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))))‘𝑛) = Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
112 2fveq3 6669 . . . . . . . . . . . . . 14 (𝑧 = 𝑘 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑘)))
113112ineq1d 4187 . . . . . . . . . . . . 13 (𝑧 = 𝑘 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑘)) ∩ ((,)‘(𝐺𝑗))))
114113cbvmptv 5161 . . . . . . . . . . . 12 (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (𝑘 ∈ ℕ ↦ (((,)‘(𝐹𝑘)) ∩ ((,)‘(𝐺𝑗))))
115 eqeq1 2825 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 = ∅ ↔ 𝑥 = ∅))
116 infeq1 8934 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → inf(𝑧, ℝ*, < ) = inf(𝑥, ℝ*, < ))
117 supeq1 8903 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → sup(𝑧, ℝ*, < ) = sup(𝑥, ℝ*, < ))
118116, 117opeq12d 4804 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩ = ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩)
119115, 118ifbieq2d 4491 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → if(𝑧 = ∅, ⟨0, 0⟩, ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩) = if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
120119cbvmptv 5161 . . . . . . . . . . . 12 (𝑧 ∈ ran (,) ↦ if(𝑧 = ∅, ⟨0, 0⟩, ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩)) = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
12116, 17, 18, 19, 20, 3, 7, 21, 5, 22, 114, 120uniioombllem2 24178 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
12284, 121sylan2 594 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑚)) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
123122adantlr 713 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
1241, 57, 61, 111, 123climi2 14862 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
125 1z 12006 . . . . . . . . 9 1 ∈ ℤ
1261rexuz3 14702 . . . . . . . . 9 (1 ∈ ℤ → (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
127125, 126ax-mp 5 . . . . . . . 8 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
128124, 127sylib 220 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
129128ralrimiva 3182 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
130 fzfi 13334 . . . . . . 7 (1...𝑚) ∈ Fin
131 rexfiuz 14701 . . . . . . 7 ((1...𝑚) ∈ Fin → (∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
132130, 131ax-mp 5 . . . . . 6 (∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
133129, 132sylibr 236 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
1341rexuz3 14702 . . . . . 6 (1 ∈ ℤ → (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
135125, 134ax-mp 5 . . . . 5 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
136133, 135sylibr 236 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
1371r19.2uz 14705 . . . 4 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) → ∃𝑛 ∈ ℕ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
138136, 137syl 17 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑛 ∈ ℕ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
13916adantr 483 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
14017adantr 483 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
14120adantr 483 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → (vol*‘𝐸) ∈ ℝ)
1423adantr 483 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐶 ∈ ℝ+)
1437adantr 483 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
14421adantr 483 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐸 ran ((,) ∘ 𝐺))
14522adantr 483 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
146 simprll 777 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝑚 ∈ ℕ)
147 simprlr 778 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
148 eqid 2821 . . . . 5 (((,) ∘ 𝐺) “ (1...𝑚)) = (((,) ∘ 𝐺) “ (1...𝑚))
149 simprrl 779 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝑛 ∈ ℕ)
150 simprrr 780 . . . . . 6 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
151 2fveq3 6669 . . . . . . . . . . . . . 14 (𝑖 = 𝑧 → ((,)‘(𝐹𝑖)) = ((,)‘(𝐹𝑧)))
152151ineq1d 4187 . . . . . . . . . . . . 13 (𝑖 = 𝑧 → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
153152fveq2d 6668 . . . . . . . . . . . 12 (𝑖 = 𝑧 → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))
154153cbvsumv 15047 . . . . . . . . . . 11 Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
155 2fveq3 6669 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((,)‘(𝐺𝑗)) = ((,)‘(𝐺𝑘)))
156155ineq2d 4188 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘))))
157156fveq2d 6668 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
158157sumeq2sdv 15055 . . . . . . . . . . 11 (𝑗 = 𝑘 → Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
159154, 158syl5eq 2868 . . . . . . . . . 10 (𝑗 = 𝑘 → Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
160155ineq1d 4187 . . . . . . . . . . 11 (𝑗 = 𝑘 → (((,)‘(𝐺𝑗)) ∩ 𝐴) = (((,)‘(𝐺𝑘)) ∩ 𝐴))
161160fveq2d 6668 . . . . . . . . . 10 (𝑗 = 𝑘 → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))
162159, 161oveq12d 7168 . . . . . . . . 9 (𝑗 = 𝑘 → (Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴))) = (Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴))))
163162fveq2d 6668 . . . . . . . 8 (𝑗 = 𝑘 → (abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) = (abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))))
164163breq1d 5068 . . . . . . 7 (𝑗 = 𝑘 → ((abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ (abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
165164cbvralvw 3449 . . . . . 6 (∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑘 ∈ (1...𝑚)(abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚))
166150, 165sylib 220 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ∀𝑘 ∈ (1...𝑚)(abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚))
167 eqid 2821 . . . . 5 (((,) ∘ 𝐹) “ (1...𝑛)) = (((,) ∘ 𝐹) “ (1...𝑛))
168139, 140, 18, 19, 141, 142, 143, 144, 5, 145, 146, 147, 148, 149, 166, 167uniioombllem5 24182 . . . 4 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
169168anassrs 470 . . 3 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
170138, 169rexlimddv 3291 . 2 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
17156, 170rexlimddv 3291 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3932  cin 3934  wss 3935  c0 4290  ifcif 4466  cop 4566   cuni 4831  Disj wdisj 5023   class class class wbr 5058  cmpt 5138   × cxp 5547  dom cdm 5549  ran crn 5550  cima 5552  ccom 5553   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  Fincfn 8503  supcsup 8898  infcinf 8899  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  4c4 11688  cz 11975  cuz 12237  +crp 12383  (,)cioo 12732  [,)cico 12734  ...cfz 12886  seqcseq 13363  abscabs 14587  cli 14835  Σcsu 15036  vol*covol 24057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060
This theorem is referenced by:  uniioombl  24184
  Copyright terms: Public domain W3C validator