Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem3 Structured version   Visualization version   GIF version

Theorem prproropf1olem3 47510
Description: Lemma 3 for prproropf1o 47512. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropf1o.f 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1olem3 ((𝑅 Or 𝑉𝑊𝑂) → (𝐹‘{(1st𝑊), (2nd𝑊)}) = ⟨(1st𝑊), (2nd𝑊)⟩)
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1olem3
StepHypRef Expression
1 prproropf1o.f . 2 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
2 infeq1 9435 . . . 4 (𝑝 = {(1st𝑊), (2nd𝑊)} → inf(𝑝, 𝑉, 𝑅) = inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅))
3 supeq1 9403 . . . 4 (𝑝 = {(1st𝑊), (2nd𝑊)} → sup(𝑝, 𝑉, 𝑅) = sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅))
42, 3opeq12d 4848 . . 3 (𝑝 = {(1st𝑊), (2nd𝑊)} → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩)
5 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
65prproropf1olem0 47507 . . . 4 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
7 simpl 482 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → 𝑅 Or 𝑉)
8 simprll 778 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊) ∈ 𝑉)
9 simprlr 779 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (2nd𝑊) ∈ 𝑉)
10 infpr 9463 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)))
117, 8, 9, 10syl3anc 1373 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)))
12 iftrue 4497 . . . . . . . 8 ((1st𝑊)𝑅(2nd𝑊) → if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)) = (1st𝑊))
1312ad2antll 729 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)) = (1st𝑊))
1411, 13eqtrd 2765 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = (1st𝑊))
15 suppr 9430 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)))
167, 8, 9, 15syl3anc 1373 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)))
17 soasym 5582 . . . . . . . . 9 ((𝑅 Or 𝑉 ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) → ((1st𝑊)𝑅(2nd𝑊) → ¬ (2nd𝑊)𝑅(1st𝑊)))
1817impr 454 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ¬ (2nd𝑊)𝑅(1st𝑊))
1918iffalsed 4502 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)) = (2nd𝑊))
2016, 19eqtrd 2765 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = (2nd𝑊))
2114, 20opeq12d 4848 . . . . 5 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
22213adantr1 1170 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
236, 22sylan2b 594 . . 3 ((𝑅 Or 𝑉𝑊𝑂) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
244, 23sylan9eqr 2787 . 2 (((𝑅 Or 𝑉𝑊𝑂) ∧ 𝑝 = {(1st𝑊), (2nd𝑊)}) → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
25 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
265, 25prproropf1olem1 47508 . 2 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
27 opex 5427 . . 3 ⟨(1st𝑊), (2nd𝑊)⟩ ∈ V
2827a1i 11 . 2 ((𝑅 Or 𝑉𝑊𝑂) → ⟨(1st𝑊), (2nd𝑊)⟩ ∈ V)
291, 24, 26, 28fvmptd2 6979 1 ((𝑅 Or 𝑉𝑊𝑂) → (𝐹‘{(1st𝑊), (2nd𝑊)}) = ⟨(1st𝑊), (2nd𝑊)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cin 3916  ifcif 4491  𝒫 cpw 4566  {cpr 4594  cop 4598   class class class wbr 5110  cmpt 5191   Or wor 5548   × cxp 5639  cfv 6514  1st c1st 7969  2nd c2nd 7970  supcsup 9398  infcinf 9399  2c2 12248  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  prproropf1o  47512
  Copyright terms: Public domain W3C validator