Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem3 Structured version   Visualization version   GIF version

Theorem prproropf1olem3 45201
Description: Lemma 3 for prproropf1o 45203. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropf1o.f 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1olem3 ((𝑅 Or 𝑉𝑊𝑂) → (𝐹‘{(1st𝑊), (2nd𝑊)}) = ⟨(1st𝑊), (2nd𝑊)⟩)
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1olem3
StepHypRef Expression
1 prproropf1o.f . 2 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
2 infeq1 9283 . . . 4 (𝑝 = {(1st𝑊), (2nd𝑊)} → inf(𝑝, 𝑉, 𝑅) = inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅))
3 supeq1 9252 . . . 4 (𝑝 = {(1st𝑊), (2nd𝑊)} → sup(𝑝, 𝑉, 𝑅) = sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅))
42, 3opeq12d 4817 . . 3 (𝑝 = {(1st𝑊), (2nd𝑊)} → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩)
5 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
65prproropf1olem0 45198 . . . 4 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
7 simpl 484 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → 𝑅 Or 𝑉)
8 simprll 777 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊) ∈ 𝑉)
9 simprlr 778 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (2nd𝑊) ∈ 𝑉)
10 infpr 9310 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)))
117, 8, 9, 10syl3anc 1371 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)))
12 iftrue 4471 . . . . . . . 8 ((1st𝑊)𝑅(2nd𝑊) → if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)) = (1st𝑊))
1312ad2antll 727 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)) = (1st𝑊))
1411, 13eqtrd 2776 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = (1st𝑊))
15 suppr 9278 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)))
167, 8, 9, 15syl3anc 1371 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)))
17 soasym 5545 . . . . . . . . 9 ((𝑅 Or 𝑉 ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) → ((1st𝑊)𝑅(2nd𝑊) → ¬ (2nd𝑊)𝑅(1st𝑊)))
1817impr 456 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ¬ (2nd𝑊)𝑅(1st𝑊))
1918iffalsed 4476 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)) = (2nd𝑊))
2016, 19eqtrd 2776 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = (2nd𝑊))
2114, 20opeq12d 4817 . . . . 5 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
22213adantr1 1169 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
236, 22sylan2b 595 . . 3 ((𝑅 Or 𝑉𝑊𝑂) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
244, 23sylan9eqr 2798 . 2 (((𝑅 Or 𝑉𝑊𝑂) ∧ 𝑝 = {(1st𝑊), (2nd𝑊)}) → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
25 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
265, 25prproropf1olem1 45199 . 2 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
27 opex 5392 . . 3 ⟨(1st𝑊), (2nd𝑊)⟩ ∈ V
2827a1i 11 . 2 ((𝑅 Or 𝑉𝑊𝑂) → ⟨(1st𝑊), (2nd𝑊)⟩ ∈ V)
291, 24, 26, 28fvmptd2 6915 1 ((𝑅 Or 𝑉𝑊𝑂) → (𝐹‘{(1st𝑊), (2nd𝑊)}) = ⟨(1st𝑊), (2nd𝑊)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  {crab 3303  Vcvv 3437  cin 3891  ifcif 4465  𝒫 cpw 4539  {cpr 4567  cop 4571   class class class wbr 5081  cmpt 5164   Or wor 5513   × cxp 5598  cfv 6458  1st c1st 7861  2nd c2nd 7862  supcsup 9247  infcinf 9248  2c2 12078  chash 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-oadd 8332  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9249  df-inf 9250  df-dju 9707  df-card 9745  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-nn 12024  df-2 12086  df-n0 12284  df-z 12370  df-uz 12633  df-fz 13290  df-hash 14095
This theorem is referenced by:  prproropf1o  45203
  Copyright terms: Public domain W3C validator