Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem3 Structured version   Visualization version   GIF version

Theorem prproropf1olem3 46768
Description: Lemma 3 for prproropf1o 46770. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 Γ— 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (β™―β€˜π‘) = 2}
prproropf1o.f 𝐹 = (𝑝 ∈ 𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1olem3 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ (πΉβ€˜{(1st β€˜π‘Š), (2nd β€˜π‘Š)}) = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
Distinct variable groups:   𝑉,𝑝   π‘Š,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1olem3
StepHypRef Expression
1 prproropf1o.f . 2 𝐹 = (𝑝 ∈ 𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
2 infeq1 9491 . . . 4 (𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)} β†’ inf(𝑝, 𝑉, 𝑅) = inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅))
3 supeq1 9460 . . . 4 (𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)} β†’ sup(𝑝, 𝑉, 𝑅) = sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅))
42, 3opeq12d 4877 . . 3 (𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)} β†’ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩)
5 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 Γ— 𝑉))
65prproropf1olem0 46765 . . . 4 (π‘Š ∈ 𝑂 ↔ (π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∧ ((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š)))
7 simpl 482 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ 𝑅 Or 𝑉)
8 simprll 778 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ (1st β€˜π‘Š) ∈ 𝑉)
9 simprlr 779 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ (2nd β€˜π‘Š) ∈ 𝑉)
10 infpr 9518 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) β†’ inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
117, 8, 9, 10syl3anc 1369 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
12 iftrue 4530 . . . . . . . 8 ((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š) β†’ if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)) = (1st β€˜π‘Š))
1312ad2antll 728 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)) = (1st β€˜π‘Š))
1411, 13eqtrd 2767 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = (1st β€˜π‘Š))
15 suppr 9486 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) β†’ sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((2nd β€˜π‘Š)𝑅(1st β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
167, 8, 9, 15syl3anc 1369 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((2nd β€˜π‘Š)𝑅(1st β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
17 soasym 5615 . . . . . . . . 9 ((𝑅 Or 𝑉 ∧ ((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉)) β†’ ((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š) β†’ Β¬ (2nd β€˜π‘Š)𝑅(1st β€˜π‘Š)))
1817impr 454 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ Β¬ (2nd β€˜π‘Š)𝑅(1st β€˜π‘Š))
1918iffalsed 4535 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ if((2nd β€˜π‘Š)𝑅(1st β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)) = (2nd β€˜π‘Š))
2016, 19eqtrd 2767 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = (2nd β€˜π‘Š))
2114, 20opeq12d 4877 . . . . 5 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
22213adantr1 1167 . . . 4 ((𝑅 Or 𝑉 ∧ (π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∧ ((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
236, 22sylan2b 593 . . 3 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
244, 23sylan9eqr 2789 . 2 (((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) ∧ 𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)}) β†’ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
25 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (β™―β€˜π‘) = 2}
265, 25prproropf1olem1 46766 . 2 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ {(1st β€˜π‘Š), (2nd β€˜π‘Š)} ∈ 𝑃)
27 opex 5460 . . 3 ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∈ V
2827a1i 11 . 2 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∈ V)
291, 24, 26, 28fvmptd2 7007 1 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ (πΉβ€˜{(1st β€˜π‘Š), (2nd β€˜π‘Š)}) = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  {crab 3427  Vcvv 3469   ∩ cin 3943  ifcif 4524  π’« cpw 4598  {cpr 4626  βŸ¨cop 4630   class class class wbr 5142   ↦ cmpt 5225   Or wor 5583   Γ— cxp 5670  β€˜cfv 6542  1st c1st 7985  2nd c2nd 7986  supcsup 9455  infcinf 9456  2c2 12289  β™―chash 14313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-hash 14314
This theorem is referenced by:  prproropf1o  46770
  Copyright terms: Public domain W3C validator