Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem3 Structured version   Visualization version   GIF version

Theorem prproropf1olem3 43658
Description: Lemma 3 for prproropf1o 43660. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropf1o.f 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1olem3 ((𝑅 Or 𝑉𝑊𝑂) → (𝐹‘{(1st𝑊), (2nd𝑊)}) = ⟨(1st𝑊), (2nd𝑊)⟩)
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1olem3
StepHypRef Expression
1 prproropf1o.f . 2 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
2 infeq1 8932 . . . 4 (𝑝 = {(1st𝑊), (2nd𝑊)} → inf(𝑝, 𝑉, 𝑅) = inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅))
3 supeq1 8901 . . . 4 (𝑝 = {(1st𝑊), (2nd𝑊)} → sup(𝑝, 𝑉, 𝑅) = sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅))
42, 3opeq12d 4803 . . 3 (𝑝 = {(1st𝑊), (2nd𝑊)} → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩)
5 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
65prproropf1olem0 43655 . . . 4 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
7 simpl 485 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → 𝑅 Or 𝑉)
8 simprll 777 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊) ∈ 𝑉)
9 simprlr 778 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (2nd𝑊) ∈ 𝑉)
10 infpr 8959 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)))
117, 8, 9, 10syl3anc 1366 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)))
12 iftrue 4471 . . . . . . . 8 ((1st𝑊)𝑅(2nd𝑊) → if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)) = (1st𝑊))
1312ad2antll 727 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)) = (1st𝑊))
1411, 13eqtrd 2854 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = (1st𝑊))
15 suppr 8927 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)))
167, 8, 9, 15syl3anc 1366 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)))
17 soasym 5497 . . . . . . . . 9 ((𝑅 Or 𝑉 ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) → ((1st𝑊)𝑅(2nd𝑊) → ¬ (2nd𝑊)𝑅(1st𝑊)))
1817impr 457 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ¬ (2nd𝑊)𝑅(1st𝑊))
1918iffalsed 4476 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)) = (2nd𝑊))
2016, 19eqtrd 2854 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = (2nd𝑊))
2114, 20opeq12d 4803 . . . . 5 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
22213adantr1 1164 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
236, 22sylan2b 595 . . 3 ((𝑅 Or 𝑉𝑊𝑂) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
244, 23sylan9eqr 2876 . 2 (((𝑅 Or 𝑉𝑊𝑂) ∧ 𝑝 = {(1st𝑊), (2nd𝑊)}) → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
25 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
265, 25prproropf1olem1 43656 . 2 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
27 opex 5347 . . 3 ⟨(1st𝑊), (2nd𝑊)⟩ ∈ V
2827a1i 11 . 2 ((𝑅 Or 𝑉𝑊𝑂) → ⟨(1st𝑊), (2nd𝑊)⟩ ∈ V)
291, 24, 26, 28fvmptd2 6769 1 ((𝑅 Or 𝑉𝑊𝑂) → (𝐹‘{(1st𝑊), (2nd𝑊)}) = ⟨(1st𝑊), (2nd𝑊)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  {crab 3140  Vcvv 3493  cin 3933  ifcif 4465  𝒫 cpw 4537  {cpr 4561  cop 4565   class class class wbr 5057  cmpt 5137   Or wor 5466   × cxp 5546  cfv 6348  1st c1st 7679  2nd c2nd 7680  supcsup 8896  infcinf 8897  2c2 11684  chash 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-hash 13683
This theorem is referenced by:  prproropf1o  43660
  Copyright terms: Public domain W3C validator