Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem3 Structured version   Visualization version   GIF version

Theorem prproropf1olem3 44909
Description: Lemma 3 for prproropf1o 44911. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropf1o.f 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1olem3 ((𝑅 Or 𝑉𝑊𝑂) → (𝐹‘{(1st𝑊), (2nd𝑊)}) = ⟨(1st𝑊), (2nd𝑊)⟩)
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1olem3
StepHypRef Expression
1 prproropf1o.f . 2 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
2 infeq1 9196 . . . 4 (𝑝 = {(1st𝑊), (2nd𝑊)} → inf(𝑝, 𝑉, 𝑅) = inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅))
3 supeq1 9165 . . . 4 (𝑝 = {(1st𝑊), (2nd𝑊)} → sup(𝑝, 𝑉, 𝑅) = sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅))
42, 3opeq12d 4817 . . 3 (𝑝 = {(1st𝑊), (2nd𝑊)} → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩)
5 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
65prproropf1olem0 44906 . . . 4 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
7 simpl 482 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → 𝑅 Or 𝑉)
8 simprll 775 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊) ∈ 𝑉)
9 simprlr 776 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (2nd𝑊) ∈ 𝑉)
10 infpr 9223 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)))
117, 8, 9, 10syl3anc 1369 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)))
12 iftrue 4470 . . . . . . . 8 ((1st𝑊)𝑅(2nd𝑊) → if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)) = (1st𝑊))
1312ad2antll 725 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)) = (1st𝑊))
1411, 13eqtrd 2779 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = (1st𝑊))
15 suppr 9191 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)))
167, 8, 9, 15syl3anc 1369 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)))
17 soasym 5533 . . . . . . . . 9 ((𝑅 Or 𝑉 ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) → ((1st𝑊)𝑅(2nd𝑊) → ¬ (2nd𝑊)𝑅(1st𝑊)))
1817impr 454 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ¬ (2nd𝑊)𝑅(1st𝑊))
1918iffalsed 4475 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)) = (2nd𝑊))
2016, 19eqtrd 2779 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = (2nd𝑊))
2114, 20opeq12d 4817 . . . . 5 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
22213adantr1 1167 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
236, 22sylan2b 593 . . 3 ((𝑅 Or 𝑉𝑊𝑂) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
244, 23sylan9eqr 2801 . 2 (((𝑅 Or 𝑉𝑊𝑂) ∧ 𝑝 = {(1st𝑊), (2nd𝑊)}) → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
25 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
265, 25prproropf1olem1 44907 . 2 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
27 opex 5381 . . 3 ⟨(1st𝑊), (2nd𝑊)⟩ ∈ V
2827a1i 11 . 2 ((𝑅 Or 𝑉𝑊𝑂) → ⟨(1st𝑊), (2nd𝑊)⟩ ∈ V)
291, 24, 26, 28fvmptd2 6877 1 ((𝑅 Or 𝑉𝑊𝑂) → (𝐹‘{(1st𝑊), (2nd𝑊)}) = ⟨(1st𝑊), (2nd𝑊)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  {crab 3069  Vcvv 3430  cin 3890  ifcif 4464  𝒫 cpw 4538  {cpr 4568  cop 4572   class class class wbr 5078  cmpt 5161   Or wor 5501   × cxp 5586  cfv 6430  1st c1st 7815  2nd c2nd 7816  supcsup 9160  infcinf 9161  2c2 12011  chash 14025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-hash 14026
This theorem is referenced by:  prproropf1o  44911
  Copyright terms: Public domain W3C validator