Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem3 Structured version   Visualization version   GIF version

Theorem prproropf1olem3 46908
Description: Lemma 3 for prproropf1o 46910. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 Γ— 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (β™―β€˜π‘) = 2}
prproropf1o.f 𝐹 = (𝑝 ∈ 𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1olem3 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ (πΉβ€˜{(1st β€˜π‘Š), (2nd β€˜π‘Š)}) = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
Distinct variable groups:   𝑉,𝑝   π‘Š,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1olem3
StepHypRef Expression
1 prproropf1o.f . 2 𝐹 = (𝑝 ∈ 𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
2 infeq1 9499 . . . 4 (𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)} β†’ inf(𝑝, 𝑉, 𝑅) = inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅))
3 supeq1 9468 . . . 4 (𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)} β†’ sup(𝑝, 𝑉, 𝑅) = sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅))
42, 3opeq12d 4882 . . 3 (𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)} β†’ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩)
5 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 Γ— 𝑉))
65prproropf1olem0 46905 . . . 4 (π‘Š ∈ 𝑂 ↔ (π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∧ ((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š)))
7 simpl 481 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ 𝑅 Or 𝑉)
8 simprll 777 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ (1st β€˜π‘Š) ∈ 𝑉)
9 simprlr 778 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ (2nd β€˜π‘Š) ∈ 𝑉)
10 infpr 9526 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) β†’ inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
117, 8, 9, 10syl3anc 1368 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
12 iftrue 4535 . . . . . . . 8 ((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š) β†’ if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)) = (1st β€˜π‘Š))
1312ad2antll 727 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)) = (1st β€˜π‘Š))
1411, 13eqtrd 2765 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = (1st β€˜π‘Š))
15 suppr 9494 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) β†’ sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((2nd β€˜π‘Š)𝑅(1st β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
167, 8, 9, 15syl3anc 1368 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((2nd β€˜π‘Š)𝑅(1st β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
17 soasym 5620 . . . . . . . . 9 ((𝑅 Or 𝑉 ∧ ((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉)) β†’ ((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š) β†’ Β¬ (2nd β€˜π‘Š)𝑅(1st β€˜π‘Š)))
1817impr 453 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ Β¬ (2nd β€˜π‘Š)𝑅(1st β€˜π‘Š))
1918iffalsed 4540 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ if((2nd β€˜π‘Š)𝑅(1st β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)) = (2nd β€˜π‘Š))
2016, 19eqtrd 2765 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = (2nd β€˜π‘Š))
2114, 20opeq12d 4882 . . . . 5 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
22213adantr1 1166 . . . 4 ((𝑅 Or 𝑉 ∧ (π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∧ ((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
236, 22sylan2b 592 . . 3 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
244, 23sylan9eqr 2787 . 2 (((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) ∧ 𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)}) β†’ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
25 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (β™―β€˜π‘) = 2}
265, 25prproropf1olem1 46906 . 2 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ {(1st β€˜π‘Š), (2nd β€˜π‘Š)} ∈ 𝑃)
27 opex 5465 . . 3 ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∈ V
2827a1i 11 . 2 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∈ V)
291, 24, 26, 28fvmptd2 7010 1 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ (πΉβ€˜{(1st β€˜π‘Š), (2nd β€˜π‘Š)}) = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  {crab 3419  Vcvv 3463   ∩ cin 3944  ifcif 4529  π’« cpw 4603  {cpr 4631  βŸ¨cop 4635   class class class wbr 5148   ↦ cmpt 5231   Or wor 5588   Γ— cxp 5675  β€˜cfv 6547  1st c1st 7990  2nd c2nd 7991  supcsup 9463  infcinf 9464  2c2 12297  β™―chash 14321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-inf 9466  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-hash 14322
This theorem is referenced by:  prproropf1o  46910
  Copyright terms: Public domain W3C validator