Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem3 Structured version   Visualization version   GIF version

Theorem prproropf1olem3 46159
Description: Lemma 3 for prproropf1o 46161. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 Γ— 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (β™―β€˜π‘) = 2}
prproropf1o.f 𝐹 = (𝑝 ∈ 𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1olem3 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ (πΉβ€˜{(1st β€˜π‘Š), (2nd β€˜π‘Š)}) = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
Distinct variable groups:   𝑉,𝑝   π‘Š,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1olem3
StepHypRef Expression
1 prproropf1o.f . 2 𝐹 = (𝑝 ∈ 𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
2 infeq1 9467 . . . 4 (𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)} β†’ inf(𝑝, 𝑉, 𝑅) = inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅))
3 supeq1 9436 . . . 4 (𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)} β†’ sup(𝑝, 𝑉, 𝑅) = sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅))
42, 3opeq12d 4880 . . 3 (𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)} β†’ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩)
5 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 Γ— 𝑉))
65prproropf1olem0 46156 . . . 4 (π‘Š ∈ 𝑂 ↔ (π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∧ ((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š)))
7 simpl 483 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ 𝑅 Or 𝑉)
8 simprll 777 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ (1st β€˜π‘Š) ∈ 𝑉)
9 simprlr 778 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ (2nd β€˜π‘Š) ∈ 𝑉)
10 infpr 9494 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) β†’ inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
117, 8, 9, 10syl3anc 1371 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
12 iftrue 4533 . . . . . . . 8 ((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š) β†’ if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)) = (1st β€˜π‘Š))
1312ad2antll 727 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ if((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)) = (1st β€˜π‘Š))
1411, 13eqtrd 2772 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = (1st β€˜π‘Š))
15 suppr 9462 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) β†’ sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((2nd β€˜π‘Š)𝑅(1st β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
167, 8, 9, 15syl3anc 1371 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = if((2nd β€˜π‘Š)𝑅(1st β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)))
17 soasym 5618 . . . . . . . . 9 ((𝑅 Or 𝑉 ∧ ((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉)) β†’ ((1st β€˜π‘Š)𝑅(2nd β€˜π‘Š) β†’ Β¬ (2nd β€˜π‘Š)𝑅(1st β€˜π‘Š)))
1817impr 455 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ Β¬ (2nd β€˜π‘Š)𝑅(1st β€˜π‘Š))
1918iffalsed 4538 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ if((2nd β€˜π‘Š)𝑅(1st β€˜π‘Š), (1st β€˜π‘Š), (2nd β€˜π‘Š)) = (2nd β€˜π‘Š))
2016, 19eqtrd 2772 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅) = (2nd β€˜π‘Š))
2114, 20opeq12d 4880 . . . . 5 ((𝑅 Or 𝑉 ∧ (((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
22213adantr1 1169 . . . 4 ((𝑅 Or 𝑉 ∧ (π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∧ ((1st β€˜π‘Š) ∈ 𝑉 ∧ (2nd β€˜π‘Š) ∈ 𝑉) ∧ (1st β€˜π‘Š)𝑅(2nd β€˜π‘Š))) β†’ ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
236, 22sylan2b 594 . . 3 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ ⟨inf({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅), sup({(1st β€˜π‘Š), (2nd β€˜π‘Š)}, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
244, 23sylan9eqr 2794 . 2 (((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) ∧ 𝑝 = {(1st β€˜π‘Š), (2nd β€˜π‘Š)}) β†’ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
25 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (β™―β€˜π‘) = 2}
265, 25prproropf1olem1 46157 . 2 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ {(1st β€˜π‘Š), (2nd β€˜π‘Š)} ∈ 𝑃)
27 opex 5463 . . 3 ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∈ V
2827a1i 11 . 2 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∈ V)
291, 24, 26, 28fvmptd2 7003 1 ((𝑅 Or 𝑉 ∧ π‘Š ∈ 𝑂) β†’ (πΉβ€˜{(1st β€˜π‘Š), (2nd β€˜π‘Š)}) = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   ∩ cin 3946  ifcif 4527  π’« cpw 4601  {cpr 4629  βŸ¨cop 4633   class class class wbr 5147   ↦ cmpt 5230   Or wor 5586   Γ— cxp 5673  β€˜cfv 6540  1st c1st 7969  2nd c2nd 7970  supcsup 9431  infcinf 9432  2c2 12263  β™―chash 14286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287
This theorem is referenced by:  prproropf1o  46161
  Copyright terms: Public domain W3C validator