![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odval | Structured version Visualization version GIF version |
Description: Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
Ref | Expression |
---|---|
odval.1 | ⊢ 𝑋 = (Base‘𝐺) |
odval.2 | ⊢ · = (.g‘𝐺) |
odval.3 | ⊢ 0 = (0g‘𝐺) |
odval.4 | ⊢ 𝑂 = (od‘𝐺) |
odval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } |
Ref | Expression |
---|---|
odval | ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑦 · 𝑥) = (𝑦 · 𝐴)) | |
2 | 1 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑦 · 𝑥) = 0 ↔ (𝑦 · 𝐴) = 0 )) |
3 | 2 | rabbidv 3451 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) |
4 | odval.i | . . . . 5 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
5 | 3, 4 | eqtr4di 2798 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = 𝐼) |
6 | 5 | csbeq1d 3925 | . . 3 ⊢ (𝑥 = 𝐴 → ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = ⦋𝐼 / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
7 | nnex 12299 | . . . . 5 ⊢ ℕ ∈ V | |
8 | 4, 7 | rabex2 5359 | . . . 4 ⊢ 𝐼 ∈ V |
9 | eqeq1 2744 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 = ∅ ↔ 𝐼 = ∅)) | |
10 | infeq1 9545 | . . . . 5 ⊢ (𝑖 = 𝐼 → inf(𝑖, ℝ, < ) = inf(𝐼, ℝ, < )) | |
11 | 9, 10 | ifbieq2d 4574 | . . . 4 ⊢ (𝑖 = 𝐼 → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
12 | 8, 11 | csbie 3957 | . . 3 ⊢ ⦋𝐼 / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) |
13 | 6, 12 | eqtrdi 2796 | . 2 ⊢ (𝑥 = 𝐴 → ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
14 | odval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
15 | odval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
16 | odval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
17 | odval.4 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
18 | 14, 15, 16, 17 | odfval 19574 | . 2 ⊢ 𝑂 = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
19 | c0ex 11284 | . . 3 ⊢ 0 ∈ V | |
20 | ltso 11370 | . . . 4 ⊢ < Or ℝ | |
21 | 20 | infex 9562 | . . 3 ⊢ inf(𝐼, ℝ, < ) ∈ V |
22 | 19, 21 | ifex 4598 | . 2 ⊢ if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) ∈ V |
23 | 13, 18, 22 | fvmpt 7029 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 ⦋csb 3921 ∅c0 4352 ifcif 4548 ‘cfv 6573 (class class class)co 7448 infcinf 9510 ℝcr 11183 0cc0 11184 < clt 11324 ℕcn 12293 Basecbs 17258 0gc0g 17499 .gcmg 19107 odcod 19566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-od 19570 |
This theorem is referenced by: odlem1 19577 odlem2 19581 submod 19611 ofldchr 33309 |
Copyright terms: Public domain | W3C validator |