| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odval | Structured version Visualization version GIF version | ||
| Description: Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
| Ref | Expression |
|---|---|
| odval.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odval.2 | ⊢ · = (.g‘𝐺) |
| odval.3 | ⊢ 0 = (0g‘𝐺) |
| odval.4 | ⊢ 𝑂 = (od‘𝐺) |
| odval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } |
| Ref | Expression |
|---|---|
| odval | ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑦 · 𝑥) = (𝑦 · 𝐴)) | |
| 2 | 1 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑦 · 𝑥) = 0 ↔ (𝑦 · 𝐴) = 0 )) |
| 3 | 2 | rabbidv 3413 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) |
| 4 | odval.i | . . . . 5 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
| 5 | 3, 4 | eqtr4di 2782 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = 𝐼) |
| 6 | 5 | csbeq1d 3866 | . . 3 ⊢ (𝑥 = 𝐴 → ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = ⦋𝐼 / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
| 7 | nnex 12192 | . . . . 5 ⊢ ℕ ∈ V | |
| 8 | 4, 7 | rabex2 5296 | . . . 4 ⊢ 𝐼 ∈ V |
| 9 | eqeq1 2733 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 = ∅ ↔ 𝐼 = ∅)) | |
| 10 | infeq1 9428 | . . . . 5 ⊢ (𝑖 = 𝐼 → inf(𝑖, ℝ, < ) = inf(𝐼, ℝ, < )) | |
| 11 | 9, 10 | ifbieq2d 4515 | . . . 4 ⊢ (𝑖 = 𝐼 → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| 12 | 8, 11 | csbie 3897 | . . 3 ⊢ ⦋𝐼 / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) |
| 13 | 6, 12 | eqtrdi 2780 | . 2 ⊢ (𝑥 = 𝐴 → ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| 14 | odval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 15 | odval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
| 16 | odval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 17 | odval.4 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
| 18 | 14, 15, 16, 17 | odfval 19462 | . 2 ⊢ 𝑂 = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
| 19 | c0ex 11168 | . . 3 ⊢ 0 ∈ V | |
| 20 | ltso 11254 | . . . 4 ⊢ < Or ℝ | |
| 21 | 20 | infex 9446 | . . 3 ⊢ inf(𝐼, ℝ, < ) ∈ V |
| 22 | 19, 21 | ifex 4539 | . 2 ⊢ if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) ∈ V |
| 23 | 13, 18, 22 | fvmpt 6968 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 ⦋csb 3862 ∅c0 4296 ifcif 4488 ‘cfv 6511 (class class class)co 7387 infcinf 9392 ℝcr 11067 0cc0 11068 < clt 11208 ℕcn 12186 Basecbs 17179 0gc0g 17402 .gcmg 18999 odcod 19454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-od 19458 |
| This theorem is referenced by: odlem1 19465 odlem2 19469 submod 19499 ofldchr 33292 |
| Copyright terms: Public domain | W3C validator |