| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odval | Structured version Visualization version GIF version | ||
| Description: Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
| Ref | Expression |
|---|---|
| odval.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odval.2 | ⊢ · = (.g‘𝐺) |
| odval.3 | ⊢ 0 = (0g‘𝐺) |
| odval.4 | ⊢ 𝑂 = (od‘𝐺) |
| odval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } |
| Ref | Expression |
|---|---|
| odval | ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7439 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑦 · 𝑥) = (𝑦 · 𝐴)) | |
| 2 | 1 | eqeq1d 2739 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑦 · 𝑥) = 0 ↔ (𝑦 · 𝐴) = 0 )) |
| 3 | 2 | rabbidv 3444 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) |
| 4 | odval.i | . . . . 5 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
| 5 | 3, 4 | eqtr4di 2795 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = 𝐼) |
| 6 | 5 | csbeq1d 3903 | . . 3 ⊢ (𝑥 = 𝐴 → ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = ⦋𝐼 / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
| 7 | nnex 12272 | . . . . 5 ⊢ ℕ ∈ V | |
| 8 | 4, 7 | rabex2 5341 | . . . 4 ⊢ 𝐼 ∈ V |
| 9 | eqeq1 2741 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 = ∅ ↔ 𝐼 = ∅)) | |
| 10 | infeq1 9516 | . . . . 5 ⊢ (𝑖 = 𝐼 → inf(𝑖, ℝ, < ) = inf(𝐼, ℝ, < )) | |
| 11 | 9, 10 | ifbieq2d 4552 | . . . 4 ⊢ (𝑖 = 𝐼 → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| 12 | 8, 11 | csbie 3934 | . . 3 ⊢ ⦋𝐼 / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) |
| 13 | 6, 12 | eqtrdi 2793 | . 2 ⊢ (𝑥 = 𝐴 → ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| 14 | odval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 15 | odval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
| 16 | odval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 17 | odval.4 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
| 18 | 14, 15, 16, 17 | odfval 19550 | . 2 ⊢ 𝑂 = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
| 19 | c0ex 11255 | . . 3 ⊢ 0 ∈ V | |
| 20 | ltso 11341 | . . . 4 ⊢ < Or ℝ | |
| 21 | 20 | infex 9533 | . . 3 ⊢ inf(𝐼, ℝ, < ) ∈ V |
| 22 | 19, 21 | ifex 4576 | . 2 ⊢ if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) ∈ V |
| 23 | 13, 18, 22 | fvmpt 7016 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3436 ⦋csb 3899 ∅c0 4333 ifcif 4525 ‘cfv 6561 (class class class)co 7431 infcinf 9481 ℝcr 11154 0cc0 11155 < clt 11295 ℕcn 12266 Basecbs 17247 0gc0g 17484 .gcmg 19085 odcod 19542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-od 19546 |
| This theorem is referenced by: odlem1 19553 odlem2 19557 submod 19587 ofldchr 33344 |
| Copyright terms: Public domain | W3C validator |