MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odval Structured version   Visualization version   GIF version

Theorem odval 19444
Description: Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
odval.i 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
Assertion
Ref Expression
odval (𝐴𝑋 → (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦, ·   𝑦, 0
Allowed substitution hints:   𝐼(𝑦)   𝑂(𝑦)   𝑋(𝑦)

Proof of Theorem odval
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . . . 7 (𝑥 = 𝐴 → (𝑦 · 𝑥) = (𝑦 · 𝐴))
21eqeq1d 2733 . . . . . 6 (𝑥 = 𝐴 → ((𝑦 · 𝑥) = 0 ↔ (𝑦 · 𝐴) = 0 ))
32rabbidv 3402 . . . . 5 (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })
4 odval.i . . . . 5 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
53, 4eqtr4di 2784 . . . 4 (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = 𝐼)
65csbeq1d 3854 . . 3 (𝑥 = 𝐴{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = 𝐼 / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
7 nnex 12128 . . . . 5 ℕ ∈ V
84, 7rabex2 5279 . . . 4 𝐼 ∈ V
9 eqeq1 2735 . . . . 5 (𝑖 = 𝐼 → (𝑖 = ∅ ↔ 𝐼 = ∅))
10 infeq1 9361 . . . . 5 (𝑖 = 𝐼 → inf(𝑖, ℝ, < ) = inf(𝐼, ℝ, < ))
119, 10ifbieq2d 4502 . . . 4 (𝑖 = 𝐼 → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
128, 11csbie 3885 . . 3 𝐼 / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))
136, 12eqtrdi 2782 . 2 (𝑥 = 𝐴{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
14 odval.1 . . 3 𝑋 = (Base‘𝐺)
15 odval.2 . . 3 · = (.g𝐺)
16 odval.3 . . 3 0 = (0g𝐺)
17 odval.4 . . 3 𝑂 = (od‘𝐺)
1814, 15, 16, 17odfval 19442 . 2 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
19 c0ex 11103 . . 3 0 ∈ V
20 ltso 11190 . . . 4 < Or ℝ
2120infex 9379 . . 3 inf(𝐼, ℝ, < ) ∈ V
2219, 21ifex 4526 . 2 if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) ∈ V
2313, 18, 22fvmpt 6929 1 (𝐴𝑋 → (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  csb 3850  c0 4283  ifcif 4475  cfv 6481  (class class class)co 7346  infcinf 9325  cr 11002  0cc0 11003   < clt 11143  cn 12122  Basecbs 17117  0gc0g 17340  .gcmg 18977  odcod 19434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-od 19438
This theorem is referenced by:  odlem1  19445  odlem2  19449  submod  19479  ofldchr  21511
  Copyright terms: Public domain W3C validator