Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odval | Structured version Visualization version GIF version |
Description: Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
Ref | Expression |
---|---|
odval.1 | ⊢ 𝑋 = (Base‘𝐺) |
odval.2 | ⊢ · = (.g‘𝐺) |
odval.3 | ⊢ 0 = (0g‘𝐺) |
odval.4 | ⊢ 𝑂 = (od‘𝐺) |
odval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } |
Ref | Expression |
---|---|
odval | ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7263 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑦 · 𝑥) = (𝑦 · 𝐴)) | |
2 | 1 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑦 · 𝑥) = 0 ↔ (𝑦 · 𝐴) = 0 )) |
3 | 2 | rabbidv 3404 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) |
4 | odval.i | . . . . 5 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
5 | 3, 4 | eqtr4di 2797 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = 𝐼) |
6 | 5 | csbeq1d 3832 | . . 3 ⊢ (𝑥 = 𝐴 → ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = ⦋𝐼 / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
7 | nnex 11909 | . . . . 5 ⊢ ℕ ∈ V | |
8 | 4, 7 | rabex2 5253 | . . . 4 ⊢ 𝐼 ∈ V |
9 | eqeq1 2742 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 = ∅ ↔ 𝐼 = ∅)) | |
10 | infeq1 9165 | . . . . 5 ⊢ (𝑖 = 𝐼 → inf(𝑖, ℝ, < ) = inf(𝐼, ℝ, < )) | |
11 | 9, 10 | ifbieq2d 4482 | . . . 4 ⊢ (𝑖 = 𝐼 → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
12 | 8, 11 | csbie 3864 | . . 3 ⊢ ⦋𝐼 / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) |
13 | 6, 12 | eqtrdi 2795 | . 2 ⊢ (𝑥 = 𝐴 → ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
14 | odval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
15 | odval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
16 | odval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
17 | odval.4 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
18 | 14, 15, 16, 17 | odfval 19055 | . 2 ⊢ 𝑂 = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
19 | c0ex 10900 | . . 3 ⊢ 0 ∈ V | |
20 | ltso 10986 | . . . 4 ⊢ < Or ℝ | |
21 | 20 | infex 9182 | . . 3 ⊢ inf(𝐼, ℝ, < ) ∈ V |
22 | 19, 21 | ifex 4506 | . 2 ⊢ if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) ∈ V |
23 | 13, 18, 22 | fvmpt 6857 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 ⦋csb 3828 ∅c0 4253 ifcif 4456 ‘cfv 6418 (class class class)co 7255 infcinf 9130 ℝcr 10801 0cc0 10802 < clt 10940 ℕcn 11903 Basecbs 16840 0gc0g 17067 .gcmg 18615 odcod 19047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-od 19051 |
This theorem is referenced by: odlem1 19058 odlem2 19062 submod 19089 ofldchr 31415 |
Copyright terms: Public domain | W3C validator |