MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odval Structured version   Visualization version   GIF version

Theorem odval 19448
Description: Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
odval.i 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
Assertion
Ref Expression
odval (𝐴𝑋 → (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦, ·   𝑦, 0
Allowed substitution hints:   𝐼(𝑦)   𝑂(𝑦)   𝑋(𝑦)

Proof of Theorem odval
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . . . . . 7 (𝑥 = 𝐴 → (𝑦 · 𝑥) = (𝑦 · 𝐴))
21eqeq1d 2735 . . . . . 6 (𝑥 = 𝐴 → ((𝑦 · 𝑥) = 0 ↔ (𝑦 · 𝐴) = 0 ))
32rabbidv 3403 . . . . 5 (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })
4 odval.i . . . . 5 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
53, 4eqtr4di 2786 . . . 4 (𝑥 = 𝐴 → {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = 𝐼)
65csbeq1d 3850 . . 3 (𝑥 = 𝐴{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = 𝐼 / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
7 nnex 12138 . . . . 5 ℕ ∈ V
84, 7rabex2 5281 . . . 4 𝐼 ∈ V
9 eqeq1 2737 . . . . 5 (𝑖 = 𝐼 → (𝑖 = ∅ ↔ 𝐼 = ∅))
10 infeq1 9368 . . . . 5 (𝑖 = 𝐼 → inf(𝑖, ℝ, < ) = inf(𝐼, ℝ, < ))
119, 10ifbieq2d 4501 . . . 4 (𝑖 = 𝐼 → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
128, 11csbie 3881 . . 3 𝐼 / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))
136, 12eqtrdi 2784 . 2 (𝑥 = 𝐴{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
14 odval.1 . . 3 𝑋 = (Base‘𝐺)
15 odval.2 . . 3 · = (.g𝐺)
16 odval.3 . . 3 0 = (0g𝐺)
17 odval.4 . . 3 𝑂 = (od‘𝐺)
1814, 15, 16, 17odfval 19446 . 2 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
19 c0ex 11113 . . 3 0 ∈ V
20 ltso 11200 . . . 4 < Or ℝ
2120infex 9386 . . 3 inf(𝐼, ℝ, < ) ∈ V
2219, 21ifex 4525 . 2 if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) ∈ V
2313, 18, 22fvmpt 6935 1 (𝐴𝑋 → (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  csb 3846  c0 4282  ifcif 4474  cfv 6486  (class class class)co 7352  infcinf 9332  cr 11012  0cc0 11013   < clt 11153  cn 12132  Basecbs 17122  0gc0g 17345  .gcmg 18982  odcod 19438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-od 19442
This theorem is referenced by:  odlem1  19449  odlem2  19453  submod  19483  ofldchr  21515
  Copyright terms: Public domain W3C validator