MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submod Structured version   Visualization version   GIF version

Theorem submod 19560
Description: The order of an element is the same in a submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
submod.h 𝐻 = (𝐺s 𝑌)
submod.o 𝑂 = (od‘𝐺)
submod.p 𝑃 = (od‘𝐻)
Assertion
Ref Expression
submod ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = (𝑃𝐴))

Proof of Theorem submod
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝑌 ∈ (SubMnd‘𝐺))
2 nnnn0 12517 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
32adantl 481 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0)
4 simplr 768 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝐴𝑌)
5 eqid 2734 . . . . . . 7 (.g𝐺) = (.g𝐺)
6 submod.h . . . . . . 7 𝐻 = (𝐺s 𝑌)
7 eqid 2734 . . . . . . 7 (.g𝐻) = (.g𝐻)
85, 6, 7submmulg 19110 . . . . . 6 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ ℕ0𝐴𝑌) → (𝑥(.g𝐺)𝐴) = (𝑥(.g𝐻)𝐴))
91, 3, 4, 8syl3anc 1372 . . . . 5 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → (𝑥(.g𝐺)𝐴) = (𝑥(.g𝐻)𝐴))
10 eqid 2734 . . . . . . 7 (0g𝐺) = (0g𝐺)
116, 10subm0 18802 . . . . . 6 (𝑌 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
1211ad2antrr 726 . . . . 5 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → (0g𝐺) = (0g𝐻))
139, 12eqeq12d 2750 . . . 4 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → ((𝑥(.g𝐺)𝐴) = (0g𝐺) ↔ (𝑥(.g𝐻)𝐴) = (0g𝐻)))
1413rabbidva 3427 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)})
15 eqeq1 2738 . . . 4 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅ ↔ {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅))
16 infeq1 9499 . . . 4 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < ))
1715, 16ifbieq2d 4534 . . 3 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
1814, 17syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
19 eqid 2734 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2019submss 18796 . . . 4 (𝑌 ∈ (SubMnd‘𝐺) → 𝑌 ⊆ (Base‘𝐺))
2120sselda 3965 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴 ∈ (Base‘𝐺))
22 submod.o . . . 4 𝑂 = (od‘𝐺)
23 eqid 2734 . . . 4 {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}
2419, 5, 10, 22, 23odval 19525 . . 3 (𝐴 ∈ (Base‘𝐺) → (𝑂𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )))
2521, 24syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )))
26 simpr 484 . . . 4 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴𝑌)
2720adantr 480 . . . . 5 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝑌 ⊆ (Base‘𝐺))
286, 19ressbas2 17265 . . . . 5 (𝑌 ⊆ (Base‘𝐺) → 𝑌 = (Base‘𝐻))
2927, 28syl 17 . . . 4 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝑌 = (Base‘𝐻))
3026, 29eleqtrd 2835 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴 ∈ (Base‘𝐻))
31 eqid 2734 . . . 4 (Base‘𝐻) = (Base‘𝐻)
32 eqid 2734 . . . 4 (0g𝐻) = (0g𝐻)
33 submod.p . . . 4 𝑃 = (od‘𝐻)
34 eqid 2734 . . . 4 {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}
3531, 7, 32, 33, 34odval 19525 . . 3 (𝐴 ∈ (Base‘𝐻) → (𝑃𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
3630, 35syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑃𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
3718, 25, 363eqtr4d 2779 1 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = (𝑃𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3420  wss 3933  c0 4315  ifcif 4507  cfv 6542  (class class class)co 7414  infcinf 9464  cr 11137  0cc0 11138   < clt 11278  cn 12249  0cn0 12510  Basecbs 17230  s cress 17256  0gc0g 17460  SubMndcsubmnd 18769  .gcmg 19059  odcod 19515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-n0 12511  df-z 12598  df-uz 12862  df-seq 14026  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-0g 17462  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-submnd 18771  df-mulg 19060  df-od 19519
This theorem is referenced by:  subgod  19561  unitscyglem5  42141
  Copyright terms: Public domain W3C validator