MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submod Structured version   Visualization version   GIF version

Theorem submod 19499
Description: The order of an element is the same in a submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
submod.h 𝐻 = (𝐺s 𝑌)
submod.o 𝑂 = (od‘𝐺)
submod.p 𝑃 = (od‘𝐻)
Assertion
Ref Expression
submod ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = (𝑃𝐴))

Proof of Theorem submod
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝑌 ∈ (SubMnd‘𝐺))
2 nnnn0 12449 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
32adantl 481 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0)
4 simplr 768 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝐴𝑌)
5 eqid 2729 . . . . . . 7 (.g𝐺) = (.g𝐺)
6 submod.h . . . . . . 7 𝐻 = (𝐺s 𝑌)
7 eqid 2729 . . . . . . 7 (.g𝐻) = (.g𝐻)
85, 6, 7submmulg 19050 . . . . . 6 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ ℕ0𝐴𝑌) → (𝑥(.g𝐺)𝐴) = (𝑥(.g𝐻)𝐴))
91, 3, 4, 8syl3anc 1373 . . . . 5 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → (𝑥(.g𝐺)𝐴) = (𝑥(.g𝐻)𝐴))
10 eqid 2729 . . . . . . 7 (0g𝐺) = (0g𝐺)
116, 10subm0 18742 . . . . . 6 (𝑌 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
1211ad2antrr 726 . . . . 5 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → (0g𝐺) = (0g𝐻))
139, 12eqeq12d 2745 . . . 4 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → ((𝑥(.g𝐺)𝐴) = (0g𝐺) ↔ (𝑥(.g𝐻)𝐴) = (0g𝐻)))
1413rabbidva 3412 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)})
15 eqeq1 2733 . . . 4 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅ ↔ {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅))
16 infeq1 9428 . . . 4 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < ))
1715, 16ifbieq2d 4515 . . 3 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
1814, 17syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
19 eqid 2729 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2019submss 18736 . . . 4 (𝑌 ∈ (SubMnd‘𝐺) → 𝑌 ⊆ (Base‘𝐺))
2120sselda 3946 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴 ∈ (Base‘𝐺))
22 submod.o . . . 4 𝑂 = (od‘𝐺)
23 eqid 2729 . . . 4 {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}
2419, 5, 10, 22, 23odval 19464 . . 3 (𝐴 ∈ (Base‘𝐺) → (𝑂𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )))
2521, 24syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )))
26 simpr 484 . . . 4 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴𝑌)
2720adantr 480 . . . . 5 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝑌 ⊆ (Base‘𝐺))
286, 19ressbas2 17208 . . . . 5 (𝑌 ⊆ (Base‘𝐺) → 𝑌 = (Base‘𝐻))
2927, 28syl 17 . . . 4 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝑌 = (Base‘𝐻))
3026, 29eleqtrd 2830 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴 ∈ (Base‘𝐻))
31 eqid 2729 . . . 4 (Base‘𝐻) = (Base‘𝐻)
32 eqid 2729 . . . 4 (0g𝐻) = (0g𝐻)
33 submod.p . . . 4 𝑃 = (od‘𝐻)
34 eqid 2729 . . . 4 {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}
3531, 7, 32, 33, 34odval 19464 . . 3 (𝐴 ∈ (Base‘𝐻) → (𝑃𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
3630, 35syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑃𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
3718, 25, 363eqtr4d 2774 1 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = (𝑃𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  wss 3914  c0 4296  ifcif 4488  cfv 6511  (class class class)co 7387  infcinf 9392  cr 11067  0cc0 11068   < clt 11208  cn 12186  0cn0 12442  Basecbs 17179  s cress 17200  0gc0g 17402  SubMndcsubmnd 18709  .gcmg 18999  odcod 19454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-od 19458
This theorem is referenced by:  subgod  19500  unitscyglem5  42187
  Copyright terms: Public domain W3C validator