MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submod Structured version   Visualization version   GIF version

Theorem submod 19466
Description: The order of an element is the same in a submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
submod.h 𝐻 = (𝐺s 𝑌)
submod.o 𝑂 = (od‘𝐺)
submod.p 𝑃 = (od‘𝐻)
Assertion
Ref Expression
submod ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = (𝑃𝐴))

Proof of Theorem submod
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝑌 ∈ (SubMnd‘𝐺))
2 nnnn0 12409 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
32adantl 481 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0)
4 simplr 768 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝐴𝑌)
5 eqid 2729 . . . . . . 7 (.g𝐺) = (.g𝐺)
6 submod.h . . . . . . 7 𝐻 = (𝐺s 𝑌)
7 eqid 2729 . . . . . . 7 (.g𝐻) = (.g𝐻)
85, 6, 7submmulg 19015 . . . . . 6 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ ℕ0𝐴𝑌) → (𝑥(.g𝐺)𝐴) = (𝑥(.g𝐻)𝐴))
91, 3, 4, 8syl3anc 1373 . . . . 5 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → (𝑥(.g𝐺)𝐴) = (𝑥(.g𝐻)𝐴))
10 eqid 2729 . . . . . . 7 (0g𝐺) = (0g𝐺)
116, 10subm0 18707 . . . . . 6 (𝑌 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
1211ad2antrr 726 . . . . 5 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → (0g𝐺) = (0g𝐻))
139, 12eqeq12d 2745 . . . 4 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → ((𝑥(.g𝐺)𝐴) = (0g𝐺) ↔ (𝑥(.g𝐻)𝐴) = (0g𝐻)))
1413rabbidva 3403 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)})
15 eqeq1 2733 . . . 4 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅ ↔ {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅))
16 infeq1 9386 . . . 4 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < ))
1715, 16ifbieq2d 4505 . . 3 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
1814, 17syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
19 eqid 2729 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2019submss 18701 . . . 4 (𝑌 ∈ (SubMnd‘𝐺) → 𝑌 ⊆ (Base‘𝐺))
2120sselda 3937 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴 ∈ (Base‘𝐺))
22 submod.o . . . 4 𝑂 = (od‘𝐺)
23 eqid 2729 . . . 4 {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}
2419, 5, 10, 22, 23odval 19431 . . 3 (𝐴 ∈ (Base‘𝐺) → (𝑂𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )))
2521, 24syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )))
26 simpr 484 . . . 4 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴𝑌)
2720adantr 480 . . . . 5 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝑌 ⊆ (Base‘𝐺))
286, 19ressbas2 17167 . . . . 5 (𝑌 ⊆ (Base‘𝐺) → 𝑌 = (Base‘𝐻))
2927, 28syl 17 . . . 4 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝑌 = (Base‘𝐻))
3026, 29eleqtrd 2830 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴 ∈ (Base‘𝐻))
31 eqid 2729 . . . 4 (Base‘𝐻) = (Base‘𝐻)
32 eqid 2729 . . . 4 (0g𝐻) = (0g𝐻)
33 submod.p . . . 4 𝑃 = (od‘𝐻)
34 eqid 2729 . . . 4 {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}
3531, 7, 32, 33, 34odval 19431 . . 3 (𝐴 ∈ (Base‘𝐻) → (𝑃𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
3630, 35syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑃𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
3718, 25, 363eqtr4d 2774 1 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = (𝑃𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  wss 3905  c0 4286  ifcif 4478  cfv 6486  (class class class)co 7353  infcinf 9350  cr 11027  0cc0 11028   < clt 11168  cn 12146  0cn0 12402  Basecbs 17138  s cress 17159  0gc0g 17361  SubMndcsubmnd 18674  .gcmg 18964  odcod 19421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-seq 13927  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-od 19425
This theorem is referenced by:  subgod  19467  unitscyglem5  42172
  Copyright terms: Public domain W3C validator