MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submod Structured version   Visualization version   GIF version

Theorem submod 19483
Description: The order of an element is the same in a submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
submod.h 𝐻 = (𝐺s 𝑌)
submod.o 𝑂 = (od‘𝐺)
submod.p 𝑃 = (od‘𝐻)
Assertion
Ref Expression
submod ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = (𝑃𝐴))

Proof of Theorem submod
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝑌 ∈ (SubMnd‘𝐺))
2 nnnn0 12395 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
32adantl 481 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0)
4 simplr 768 . . . . . 6 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → 𝐴𝑌)
5 eqid 2733 . . . . . . 7 (.g𝐺) = (.g𝐺)
6 submod.h . . . . . . 7 𝐻 = (𝐺s 𝑌)
7 eqid 2733 . . . . . . 7 (.g𝐻) = (.g𝐻)
85, 6, 7submmulg 19033 . . . . . 6 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ ℕ0𝐴𝑌) → (𝑥(.g𝐺)𝐴) = (𝑥(.g𝐻)𝐴))
91, 3, 4, 8syl3anc 1373 . . . . 5 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → (𝑥(.g𝐺)𝐴) = (𝑥(.g𝐻)𝐴))
10 eqid 2733 . . . . . . 7 (0g𝐺) = (0g𝐺)
116, 10subm0 18725 . . . . . 6 (𝑌 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
1211ad2antrr 726 . . . . 5 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → (0g𝐺) = (0g𝐻))
139, 12eqeq12d 2749 . . . 4 (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) ∧ 𝑥 ∈ ℕ) → ((𝑥(.g𝐺)𝐴) = (0g𝐺) ↔ (𝑥(.g𝐻)𝐴) = (0g𝐻)))
1413rabbidva 3402 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)})
15 eqeq1 2737 . . . 4 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅ ↔ {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅))
16 infeq1 9368 . . . 4 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < ))
1715, 16ifbieq2d 4501 . . 3 ({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} → if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
1814, 17syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
19 eqid 2733 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2019submss 18719 . . . 4 (𝑌 ∈ (SubMnd‘𝐺) → 𝑌 ⊆ (Base‘𝐺))
2120sselda 3930 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴 ∈ (Base‘𝐺))
22 submod.o . . . 4 𝑂 = (od‘𝐺)
23 eqid 2733 . . . 4 {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}
2419, 5, 10, 22, 23odval 19448 . . 3 (𝐴 ∈ (Base‘𝐺) → (𝑂𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )))
2521, 24syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐺)𝐴) = (0g𝐺)}, ℝ, < )))
26 simpr 484 . . . 4 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴𝑌)
2720adantr 480 . . . . 5 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝑌 ⊆ (Base‘𝐺))
286, 19ressbas2 17151 . . . . 5 (𝑌 ⊆ (Base‘𝐺) → 𝑌 = (Base‘𝐻))
2927, 28syl 17 . . . 4 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝑌 = (Base‘𝐻))
3026, 29eleqtrd 2835 . . 3 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → 𝐴 ∈ (Base‘𝐻))
31 eqid 2733 . . . 4 (Base‘𝐻) = (Base‘𝐻)
32 eqid 2733 . . . 4 (0g𝐻) = (0g𝐻)
33 submod.p . . . 4 𝑃 = (od‘𝐻)
34 eqid 2733 . . . 4 {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = {𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}
3531, 7, 32, 33, 34odval 19448 . . 3 (𝐴 ∈ (Base‘𝐻) → (𝑃𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
3630, 35syl 17 . 2 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑃𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g𝐻)𝐴) = (0g𝐻)}, ℝ, < )))
3718, 25, 363eqtr4d 2778 1 ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑌) → (𝑂𝐴) = (𝑃𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  wss 3898  c0 4282  ifcif 4474  cfv 6486  (class class class)co 7352  infcinf 9332  cr 11012  0cc0 11013   < clt 11153  cn 12132  0cn0 12388  Basecbs 17122  s cress 17143  0gc0g 17345  SubMndcsubmnd 18692  .gcmg 18982  odcod 19438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-seq 13911  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-od 19442
This theorem is referenced by:  subgod  19484  unitscyglem5  42312
  Copyright terms: Public domain W3C validator