Step | Hyp | Ref
| Expression |
1 | | simpll 765 |
. . . . . 6
β’ (((π β (SubMndβπΊ) β§ π΄ β π) β§ π₯ β β) β π β (SubMndβπΊ)) |
2 | | nnnn0 12475 |
. . . . . . 7
β’ (π₯ β β β π₯ β
β0) |
3 | 2 | adantl 482 |
. . . . . 6
β’ (((π β (SubMndβπΊ) β§ π΄ β π) β§ π₯ β β) β π₯ β β0) |
4 | | simplr 767 |
. . . . . 6
β’ (((π β (SubMndβπΊ) β§ π΄ β π) β§ π₯ β β) β π΄ β π) |
5 | | eqid 2732 |
. . . . . . 7
β’
(.gβπΊ) = (.gβπΊ) |
6 | | submod.h |
. . . . . . 7
β’ π» = (πΊ βΎs π) |
7 | | eqid 2732 |
. . . . . . 7
β’
(.gβπ») = (.gβπ») |
8 | 5, 6, 7 | submmulg 18992 |
. . . . . 6
β’ ((π β (SubMndβπΊ) β§ π₯ β β0 β§ π΄ β π) β (π₯(.gβπΊ)π΄) = (π₯(.gβπ»)π΄)) |
9 | 1, 3, 4, 8 | syl3anc 1371 |
. . . . 5
β’ (((π β (SubMndβπΊ) β§ π΄ β π) β§ π₯ β β) β (π₯(.gβπΊ)π΄) = (π₯(.gβπ»)π΄)) |
10 | | eqid 2732 |
. . . . . . 7
β’
(0gβπΊ) = (0gβπΊ) |
11 | 6, 10 | subm0 18692 |
. . . . . 6
β’ (π β (SubMndβπΊ) β
(0gβπΊ) =
(0gβπ»)) |
12 | 11 | ad2antrr 724 |
. . . . 5
β’ (((π β (SubMndβπΊ) β§ π΄ β π) β§ π₯ β β) β
(0gβπΊ) =
(0gβπ»)) |
13 | 9, 12 | eqeq12d 2748 |
. . . 4
β’ (((π β (SubMndβπΊ) β§ π΄ β π) β§ π₯ β β) β ((π₯(.gβπΊ)π΄) = (0gβπΊ) β (π₯(.gβπ»)π΄) = (0gβπ»))) |
14 | 13 | rabbidva 3439 |
. . 3
β’ ((π β (SubMndβπΊ) β§ π΄ β π) β {π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)} = {π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)}) |
15 | | eqeq1 2736 |
. . . 4
β’ ({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)} = {π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)} β ({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)} = β
β {π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)} = β
)) |
16 | | infeq1 9467 |
. . . 4
β’ ({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)} = {π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)} β inf({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)}, β, < ) = inf({π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)}, β, < )) |
17 | 15, 16 | ifbieq2d 4553 |
. . 3
β’ ({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)} = {π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)} β if({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)} = β
, 0, inf({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)}, β, < )) = if({π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)} = β
, 0, inf({π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)}, β, < ))) |
18 | 14, 17 | syl 17 |
. 2
β’ ((π β (SubMndβπΊ) β§ π΄ β π) β if({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)} = β
, 0, inf({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)}, β, < )) = if({π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)} = β
, 0, inf({π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)}, β, < ))) |
19 | | eqid 2732 |
. . . . 5
β’
(BaseβπΊ) =
(BaseβπΊ) |
20 | 19 | submss 18686 |
. . . 4
β’ (π β (SubMndβπΊ) β π β (BaseβπΊ)) |
21 | 20 | sselda 3981 |
. . 3
β’ ((π β (SubMndβπΊ) β§ π΄ β π) β π΄ β (BaseβπΊ)) |
22 | | submod.o |
. . . 4
β’ π = (odβπΊ) |
23 | | eqid 2732 |
. . . 4
β’ {π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)} = {π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)} |
24 | 19, 5, 10, 22, 23 | odval 19396 |
. . 3
β’ (π΄ β (BaseβπΊ) β (πβπ΄) = if({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)} = β
, 0, inf({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)}, β, < ))) |
25 | 21, 24 | syl 17 |
. 2
β’ ((π β (SubMndβπΊ) β§ π΄ β π) β (πβπ΄) = if({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)} = β
, 0, inf({π₯ β β β£ (π₯(.gβπΊ)π΄) = (0gβπΊ)}, β, < ))) |
26 | | simpr 485 |
. . . 4
β’ ((π β (SubMndβπΊ) β§ π΄ β π) β π΄ β π) |
27 | 20 | adantr 481 |
. . . . 5
β’ ((π β (SubMndβπΊ) β§ π΄ β π) β π β (BaseβπΊ)) |
28 | 6, 19 | ressbas2 17178 |
. . . . 5
β’ (π β (BaseβπΊ) β π = (Baseβπ»)) |
29 | 27, 28 | syl 17 |
. . . 4
β’ ((π β (SubMndβπΊ) β§ π΄ β π) β π = (Baseβπ»)) |
30 | 26, 29 | eleqtrd 2835 |
. . 3
β’ ((π β (SubMndβπΊ) β§ π΄ β π) β π΄ β (Baseβπ»)) |
31 | | eqid 2732 |
. . . 4
β’
(Baseβπ») =
(Baseβπ») |
32 | | eqid 2732 |
. . . 4
β’
(0gβπ») = (0gβπ») |
33 | | submod.p |
. . . 4
β’ π = (odβπ») |
34 | | eqid 2732 |
. . . 4
β’ {π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)} = {π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)} |
35 | 31, 7, 32, 33, 34 | odval 19396 |
. . 3
β’ (π΄ β (Baseβπ») β (πβπ΄) = if({π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)} = β
, 0, inf({π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)}, β, < ))) |
36 | 30, 35 | syl 17 |
. 2
β’ ((π β (SubMndβπΊ) β§ π΄ β π) β (πβπ΄) = if({π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)} = β
, 0, inf({π₯ β β β£ (π₯(.gβπ»)π΄) = (0gβπ»)}, β, < ))) |
37 | 18, 25, 36 | 3eqtr4d 2782 |
1
β’ ((π β (SubMndβπΊ) β§ π΄ β π) β (πβπ΄) = (πβπ΄)) |