| Step | Hyp | Ref
| Expression |
| 1 | | simpll 766 |
. . . . . 6
⊢ (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ ℕ) → 𝑌 ∈ (SubMnd‘𝐺)) |
| 2 | | nnnn0 12517 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ0) |
| 3 | 2 | adantl 481 |
. . . . . 6
⊢ (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0) |
| 4 | | simplr 768 |
. . . . . 6
⊢ (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ ℕ) → 𝐴 ∈ 𝑌) |
| 5 | | eqid 2734 |
. . . . . . 7
⊢
(.g‘𝐺) = (.g‘𝐺) |
| 6 | | submod.h |
. . . . . . 7
⊢ 𝐻 = (𝐺 ↾s 𝑌) |
| 7 | | eqid 2734 |
. . . . . . 7
⊢
(.g‘𝐻) = (.g‘𝐻) |
| 8 | 5, 6, 7 | submmulg 19110 |
. . . . . 6
⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ ℕ0 ∧ 𝐴 ∈ 𝑌) → (𝑥(.g‘𝐺)𝐴) = (𝑥(.g‘𝐻)𝐴)) |
| 9 | 1, 3, 4, 8 | syl3anc 1372 |
. . . . 5
⊢ (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ ℕ) → (𝑥(.g‘𝐺)𝐴) = (𝑥(.g‘𝐻)𝐴)) |
| 10 | | eqid 2734 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 11 | 6, 10 | subm0 18802 |
. . . . . 6
⊢ (𝑌 ∈ (SubMnd‘𝐺) →
(0g‘𝐺) =
(0g‘𝐻)) |
| 12 | 11 | ad2antrr 726 |
. . . . 5
⊢ (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ ℕ) →
(0g‘𝐺) =
(0g‘𝐻)) |
| 13 | 9, 12 | eqeq12d 2750 |
. . . 4
⊢ (((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ ℕ) → ((𝑥(.g‘𝐺)𝐴) = (0g‘𝐺) ↔ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻))) |
| 14 | 13 | rabbidva 3427 |
. . 3
⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) → {𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)}) |
| 15 | | eqeq1 2738 |
. . . 4
⊢ ({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)} → ({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)} = ∅ ↔ {𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)} = ∅)) |
| 16 | | infeq1 9499 |
. . . 4
⊢ ({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)} → inf({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)}, ℝ, < )) |
| 17 | 15, 16 | ifbieq2d 4534 |
. . 3
⊢ ({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)} → if({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)}, ℝ, < )) = if({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)}, ℝ, < ))) |
| 18 | 14, 17 | syl 17 |
. 2
⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) → if({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)}, ℝ, < )) = if({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)}, ℝ, < ))) |
| 19 | | eqid 2734 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 20 | 19 | submss 18796 |
. . . 4
⊢ (𝑌 ∈ (SubMnd‘𝐺) → 𝑌 ⊆ (Base‘𝐺)) |
| 21 | 20 | sselda 3965 |
. . 3
⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) → 𝐴 ∈ (Base‘𝐺)) |
| 22 | | submod.o |
. . . 4
⊢ 𝑂 = (od‘𝐺) |
| 23 | | eqid 2734 |
. . . 4
⊢ {𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)} = {𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)} |
| 24 | 19, 5, 10, 22, 23 | odval 19525 |
. . 3
⊢ (𝐴 ∈ (Base‘𝐺) → (𝑂‘𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)}, ℝ, < ))) |
| 25 | 21, 24 | syl 17 |
. 2
⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) → (𝑂‘𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐺)𝐴) = (0g‘𝐺)}, ℝ, < ))) |
| 26 | | simpr 484 |
. . . 4
⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) → 𝐴 ∈ 𝑌) |
| 27 | 20 | adantr 480 |
. . . . 5
⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) → 𝑌 ⊆ (Base‘𝐺)) |
| 28 | 6, 19 | ressbas2 17265 |
. . . . 5
⊢ (𝑌 ⊆ (Base‘𝐺) → 𝑌 = (Base‘𝐻)) |
| 29 | 27, 28 | syl 17 |
. . . 4
⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) → 𝑌 = (Base‘𝐻)) |
| 30 | 26, 29 | eleqtrd 2835 |
. . 3
⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) → 𝐴 ∈ (Base‘𝐻)) |
| 31 | | eqid 2734 |
. . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 32 | | eqid 2734 |
. . . 4
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 33 | | submod.p |
. . . 4
⊢ 𝑃 = (od‘𝐻) |
| 34 | | eqid 2734 |
. . . 4
⊢ {𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)} = {𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)} |
| 35 | 31, 7, 32, 33, 34 | odval 19525 |
. . 3
⊢ (𝐴 ∈ (Base‘𝐻) → (𝑃‘𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)}, ℝ, < ))) |
| 36 | 30, 35 | syl 17 |
. 2
⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) → (𝑃‘𝐴) = if({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)} = ∅, 0, inf({𝑥 ∈ ℕ ∣ (𝑥(.g‘𝐻)𝐴) = (0g‘𝐻)}, ℝ, < ))) |
| 37 | 18, 25, 36 | 3eqtr4d 2779 |
1
⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) → (𝑂‘𝐴) = (𝑃‘𝐴)) |