Step | Hyp | Ref
| Expression |
1 | | resttopon 22220 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
2 | | dfconn2 22478 |
. . 3
⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → ((𝐽 ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (𝐽 ↾t 𝐴)∀𝑣 ∈ (𝐽 ↾t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑢 ∪ 𝑣) ≠ 𝐴))) |
3 | 1, 2 | syl 17 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐽 ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (𝐽 ↾t 𝐴)∀𝑣 ∈ (𝐽 ↾t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑢 ∪ 𝑣) ≠ 𝐴))) |
4 | | vex 3426 |
. . . . 5
⊢ 𝑥 ∈ V |
5 | 4 | inex1 5236 |
. . . 4
⊢ (𝑥 ∩ 𝐴) ∈ V |
6 | 5 | a1i 11 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ V) |
7 | | toponmax 21983 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
8 | 7 | adantr 480 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
9 | | simpr 484 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) |
10 | 8, 9 | ssexd 5243 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
11 | | elrest 17055 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑢 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑢 = (𝑥 ∩ 𝐴))) |
12 | 10, 11 | syldan 590 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑢 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑢 = (𝑥 ∩ 𝐴))) |
13 | | vex 3426 |
. . . . . 6
⊢ 𝑦 ∈ V |
14 | 13 | inex1 5236 |
. . . . 5
⊢ (𝑦 ∩ 𝐴) ∈ V |
15 | 14 | a1i 11 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑦 ∈ 𝐽) → (𝑦 ∩ 𝐴) ∈ V) |
16 | | elrest 17055 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑣 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑣 = (𝑦 ∩ 𝐴))) |
17 | 10, 16 | syldan 590 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑣 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑣 = (𝑦 ∩ 𝐴))) |
18 | 17 | adantr 480 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) → (𝑣 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑣 = (𝑦 ∩ 𝐴))) |
19 | | simplr 765 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → 𝑢 = (𝑥 ∩ 𝐴)) |
20 | 19 | neeq1d 3002 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑢 ≠ ∅ ↔ (𝑥 ∩ 𝐴) ≠ ∅)) |
21 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → 𝑣 = (𝑦 ∩ 𝐴)) |
22 | 21 | neeq1d 3002 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑣 ≠ ∅ ↔ (𝑦 ∩ 𝐴) ≠ ∅)) |
23 | 19, 21 | ineq12d 4144 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑢 ∩ 𝑣) = ((𝑥 ∩ 𝐴) ∩ (𝑦 ∩ 𝐴))) |
24 | | inindir 4158 |
. . . . . . . 8
⊢ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ((𝑥 ∩ 𝐴) ∩ (𝑦 ∩ 𝐴)) |
25 | 23, 24 | eqtr4di 2797 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑢 ∩ 𝑣) = ((𝑥 ∩ 𝑦) ∩ 𝐴)) |
26 | 25 | eqeq1d 2740 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → ((𝑢 ∩ 𝑣) = ∅ ↔ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅)) |
27 | 20, 22, 26 | 3anbi123d 1434 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → ((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) ↔ ((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅))) |
28 | 19, 21 | uneq12d 4094 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑢 ∪ 𝑣) = ((𝑥 ∩ 𝐴) ∪ (𝑦 ∩ 𝐴))) |
29 | | indir 4206 |
. . . . . . 7
⊢ ((𝑥 ∪ 𝑦) ∩ 𝐴) = ((𝑥 ∩ 𝐴) ∪ (𝑦 ∩ 𝐴)) |
30 | 28, 29 | eqtr4di 2797 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑢 ∪ 𝑣) = ((𝑥 ∪ 𝑦) ∩ 𝐴)) |
31 | 30 | neeq1d 3002 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → ((𝑢 ∪ 𝑣) ≠ 𝐴 ↔ ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴)) |
32 | 27, 31 | imbi12d 344 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑢 ∪ 𝑣) ≠ 𝐴) ↔ (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) |
33 | 15, 18, 32 | ralxfr2d 5328 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) → (∀𝑣 ∈ (𝐽 ↾t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑢 ∪ 𝑣) ≠ 𝐴) ↔ ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) |
34 | 6, 12, 33 | ralxfr2d 5328 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (∀𝑢 ∈ (𝐽 ↾t 𝐴)∀𝑣 ∈ (𝐽 ↾t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑢 ∪ 𝑣) ≠ 𝐴) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) |
35 | 3, 34 | bitrd 278 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐽 ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) |