MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsuba Structured version   Visualization version   GIF version

Theorem connsuba 22571
Description: Connectedness for a subspace. See connsub 22572. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
connsuba ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦

Proof of Theorem connsuba
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttopon 22312 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
2 dfconn2 22570 . . 3 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴)))
31, 2syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴)))
4 vex 3436 . . . . 5 𝑥 ∈ V
54inex1 5241 . . . 4 (𝑥𝐴) ∈ V
65a1i 11 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ V)
7 toponmax 22075 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
87adantr 481 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋𝐽)
9 simpr 485 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
108, 9ssexd 5248 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
11 elrest 17138 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑢 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑢 = (𝑥𝐴)))
1210, 11syldan 591 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑢 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑢 = (𝑥𝐴)))
13 vex 3436 . . . . . 6 𝑦 ∈ V
1413inex1 5241 . . . . 5 (𝑦𝐴) ∈ V
1514a1i 11 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑦𝐽) → (𝑦𝐴) ∈ V)
16 elrest 17138 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
1710, 16syldan 591 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
1817adantr 481 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
19 simplr 766 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → 𝑢 = (𝑥𝐴))
2019neeq1d 3003 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢 ≠ ∅ ↔ (𝑥𝐴) ≠ ∅))
21 simpr 485 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → 𝑣 = (𝑦𝐴))
2221neeq1d 3003 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑣 ≠ ∅ ↔ (𝑦𝐴) ≠ ∅))
2319, 21ineq12d 4147 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝐴) ∩ (𝑦𝐴)))
24 inindir 4161 . . . . . . . 8 ((𝑥𝑦) ∩ 𝐴) = ((𝑥𝐴) ∩ (𝑦𝐴))
2523, 24eqtr4di 2796 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝑦) ∩ 𝐴))
2625eqeq1d 2740 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢𝑣) = ∅ ↔ ((𝑥𝑦) ∩ 𝐴) = ∅))
2720, 22, 263anbi123d 1435 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) ↔ ((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅)))
2819, 21uneq12d 4098 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝐴) ∪ (𝑦𝐴)))
29 indir 4209 . . . . . . 7 ((𝑥𝑦) ∩ 𝐴) = ((𝑥𝐴) ∪ (𝑦𝐴))
3028, 29eqtr4di 2796 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝑦) ∩ 𝐴))
3130neeq1d 3003 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢𝑣) ≠ 𝐴 ↔ ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴))
3227, 31imbi12d 345 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
3315, 18, 32ralxfr2d 5333 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) → (∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ ∀𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
346, 12, 33ralxfr2d 5333 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
353, 34bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cun 3885  cin 3886  wss 3887  c0 4256  cfv 6433  (class class class)co 7275  t crest 17131  TopOnctopon 22059  Conncconn 22562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170  df-conn 22563
This theorem is referenced by:  connsub  22572  nconnsubb  22574
  Copyright terms: Public domain W3C validator