MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsuba Structured version   Visualization version   GIF version

Theorem connsuba 22028
Description: Connectedness for a subspace. See connsub 22029. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
connsuba ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦

Proof of Theorem connsuba
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttopon 21769 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
2 dfconn2 22027 . . 3 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴)))
31, 2syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴)))
4 vex 3447 . . . . 5 𝑥 ∈ V
54inex1 5188 . . . 4 (𝑥𝐴) ∈ V
65a1i 11 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ V)
7 toponmax 21534 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
87adantr 484 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋𝐽)
9 simpr 488 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
108, 9ssexd 5195 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
11 elrest 16696 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑢 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑢 = (𝑥𝐴)))
1210, 11syldan 594 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑢 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑢 = (𝑥𝐴)))
13 vex 3447 . . . . . 6 𝑦 ∈ V
1413inex1 5188 . . . . 5 (𝑦𝐴) ∈ V
1514a1i 11 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑦𝐽) → (𝑦𝐴) ∈ V)
16 elrest 16696 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
1710, 16syldan 594 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
1817adantr 484 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
19 simplr 768 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → 𝑢 = (𝑥𝐴))
2019neeq1d 3049 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢 ≠ ∅ ↔ (𝑥𝐴) ≠ ∅))
21 simpr 488 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → 𝑣 = (𝑦𝐴))
2221neeq1d 3049 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑣 ≠ ∅ ↔ (𝑦𝐴) ≠ ∅))
2319, 21ineq12d 4143 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝐴) ∩ (𝑦𝐴)))
24 inindir 4157 . . . . . . . 8 ((𝑥𝑦) ∩ 𝐴) = ((𝑥𝐴) ∩ (𝑦𝐴))
2523, 24eqtr4di 2854 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝑦) ∩ 𝐴))
2625eqeq1d 2803 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢𝑣) = ∅ ↔ ((𝑥𝑦) ∩ 𝐴) = ∅))
2720, 22, 263anbi123d 1433 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) ↔ ((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅)))
2819, 21uneq12d 4094 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝐴) ∪ (𝑦𝐴)))
29 indir 4205 . . . . . . 7 ((𝑥𝑦) ∩ 𝐴) = ((𝑥𝐴) ∪ (𝑦𝐴))
3028, 29eqtr4di 2854 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝑦) ∩ 𝐴))
3130neeq1d 3049 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢𝑣) ≠ 𝐴 ↔ ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴))
3227, 31imbi12d 348 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
3315, 18, 32ralxfr2d 5279 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) → (∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ ∀𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
346, 12, 33ralxfr2d 5279 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
353, 34bitrd 282 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  Vcvv 3444  cun 3882  cin 3883  wss 3884  c0 4246  cfv 6328  (class class class)co 7139  t crest 16689  TopOnctopon 21518  Conncconn 22019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-oadd 8093  df-er 8276  df-en 8497  df-fin 8500  df-fi 8863  df-rest 16691  df-topgen 16712  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-conn 22020
This theorem is referenced by:  connsub  22029  nconnsubb  22031
  Copyright terms: Public domain W3C validator