MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsuba Structured version   Visualization version   GIF version

Theorem connsuba 23363
Description: Connectedness for a subspace. See connsub 23364. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
connsuba ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦

Proof of Theorem connsuba
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttopon 23104 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
2 dfconn2 23362 . . 3 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴)))
31, 2syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴)))
4 vex 3468 . . . . 5 𝑥 ∈ V
54inex1 5292 . . . 4 (𝑥𝐴) ∈ V
65a1i 11 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ V)
7 toponmax 22869 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
87adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋𝐽)
9 simpr 484 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
108, 9ssexd 5299 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
11 elrest 17446 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑢 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑢 = (𝑥𝐴)))
1210, 11syldan 591 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑢 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑢 = (𝑥𝐴)))
13 vex 3468 . . . . . 6 𝑦 ∈ V
1413inex1 5292 . . . . 5 (𝑦𝐴) ∈ V
1514a1i 11 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑦𝐽) → (𝑦𝐴) ∈ V)
16 elrest 17446 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
1710, 16syldan 591 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
1817adantr 480 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
19 simplr 768 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → 𝑢 = (𝑥𝐴))
2019neeq1d 2992 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢 ≠ ∅ ↔ (𝑥𝐴) ≠ ∅))
21 simpr 484 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → 𝑣 = (𝑦𝐴))
2221neeq1d 2992 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑣 ≠ ∅ ↔ (𝑦𝐴) ≠ ∅))
2319, 21ineq12d 4201 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝐴) ∩ (𝑦𝐴)))
24 inindir 4216 . . . . . . . 8 ((𝑥𝑦) ∩ 𝐴) = ((𝑥𝐴) ∩ (𝑦𝐴))
2523, 24eqtr4di 2789 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝑦) ∩ 𝐴))
2625eqeq1d 2738 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢𝑣) = ∅ ↔ ((𝑥𝑦) ∩ 𝐴) = ∅))
2720, 22, 263anbi123d 1438 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) ↔ ((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅)))
2819, 21uneq12d 4149 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝐴) ∪ (𝑦𝐴)))
29 indir 4266 . . . . . . 7 ((𝑥𝑦) ∩ 𝐴) = ((𝑥𝐴) ∪ (𝑦𝐴))
3028, 29eqtr4di 2789 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝑦) ∩ 𝐴))
3130neeq1d 2992 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢𝑣) ≠ 𝐴 ↔ ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴))
3227, 31imbi12d 344 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
3315, 18, 32ralxfr2d 5385 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) → (∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ ∀𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
346, 12, 33ralxfr2d 5385 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
353, 34bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cun 3929  cin 3930  wss 3931  c0 4313  cfv 6536  (class class class)co 7410  t crest 17439  TopOnctopon 22853  Conncconn 23354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-en 8965  df-fin 8968  df-fi 9428  df-rest 17441  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962  df-conn 23355
This theorem is referenced by:  connsub  23364  nconnsubb  23366
  Copyright terms: Public domain W3C validator