| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | resttopon 23170 | . . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | 
| 2 |  | dfconn2 23428 | . . 3
⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → ((𝐽 ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (𝐽 ↾t 𝐴)∀𝑣 ∈ (𝐽 ↾t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑢 ∪ 𝑣) ≠ 𝐴))) | 
| 3 | 1, 2 | syl 17 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐽 ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (𝐽 ↾t 𝐴)∀𝑣 ∈ (𝐽 ↾t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑢 ∪ 𝑣) ≠ 𝐴))) | 
| 4 |  | vex 3483 | . . . . 5
⊢ 𝑥 ∈ V | 
| 5 | 4 | inex1 5316 | . . . 4
⊢ (𝑥 ∩ 𝐴) ∈ V | 
| 6 | 5 | a1i 11 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ V) | 
| 7 |  | toponmax 22933 | . . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | 
| 8 | 7 | adantr 480 | . . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) | 
| 9 |  | simpr 484 | . . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | 
| 10 | 8, 9 | ssexd 5323 | . . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) | 
| 11 |  | elrest 17473 | . . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑢 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑢 = (𝑥 ∩ 𝐴))) | 
| 12 | 10, 11 | syldan 591 | . . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑢 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑢 = (𝑥 ∩ 𝐴))) | 
| 13 |  | vex 3483 | . . . . . 6
⊢ 𝑦 ∈ V | 
| 14 | 13 | inex1 5316 | . . . . 5
⊢ (𝑦 ∩ 𝐴) ∈ V | 
| 15 | 14 | a1i 11 | . . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑦 ∈ 𝐽) → (𝑦 ∩ 𝐴) ∈ V) | 
| 16 |  | elrest 17473 | . . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑣 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑣 = (𝑦 ∩ 𝐴))) | 
| 17 | 10, 16 | syldan 591 | . . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑣 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑣 = (𝑦 ∩ 𝐴))) | 
| 18 | 17 | adantr 480 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) → (𝑣 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑣 = (𝑦 ∩ 𝐴))) | 
| 19 |  | simplr 768 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → 𝑢 = (𝑥 ∩ 𝐴)) | 
| 20 | 19 | neeq1d 2999 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑢 ≠ ∅ ↔ (𝑥 ∩ 𝐴) ≠ ∅)) | 
| 21 |  | simpr 484 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → 𝑣 = (𝑦 ∩ 𝐴)) | 
| 22 | 21 | neeq1d 2999 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑣 ≠ ∅ ↔ (𝑦 ∩ 𝐴) ≠ ∅)) | 
| 23 | 19, 21 | ineq12d 4220 | . . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑢 ∩ 𝑣) = ((𝑥 ∩ 𝐴) ∩ (𝑦 ∩ 𝐴))) | 
| 24 |  | inindir 4235 | . . . . . . . 8
⊢ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ((𝑥 ∩ 𝐴) ∩ (𝑦 ∩ 𝐴)) | 
| 25 | 23, 24 | eqtr4di 2794 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑢 ∩ 𝑣) = ((𝑥 ∩ 𝑦) ∩ 𝐴)) | 
| 26 | 25 | eqeq1d 2738 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → ((𝑢 ∩ 𝑣) = ∅ ↔ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅)) | 
| 27 | 20, 22, 26 | 3anbi123d 1437 | . . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → ((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) ↔ ((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅))) | 
| 28 | 19, 21 | uneq12d 4168 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑢 ∪ 𝑣) = ((𝑥 ∩ 𝐴) ∪ (𝑦 ∩ 𝐴))) | 
| 29 |  | indir 4285 | . . . . . . 7
⊢ ((𝑥 ∪ 𝑦) ∩ 𝐴) = ((𝑥 ∩ 𝐴) ∪ (𝑦 ∩ 𝐴)) | 
| 30 | 28, 29 | eqtr4di 2794 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (𝑢 ∪ 𝑣) = ((𝑥 ∪ 𝑦) ∩ 𝐴)) | 
| 31 | 30 | neeq1d 2999 | . . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → ((𝑢 ∪ 𝑣) ≠ 𝐴 ↔ ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴)) | 
| 32 | 27, 31 | imbi12d 344 | . . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) → (((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑢 ∪ 𝑣) ≠ 𝐴) ↔ (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) | 
| 33 | 15, 18, 32 | ralxfr2d 5409 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 = (𝑥 ∩ 𝐴)) → (∀𝑣 ∈ (𝐽 ↾t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑢 ∪ 𝑣) ≠ 𝐴) ↔ ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) | 
| 34 | 6, 12, 33 | ralxfr2d 5409 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (∀𝑢 ∈ (𝐽 ↾t 𝐴)∀𝑣 ∈ (𝐽 ↾t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑢 ∪ 𝑣) ≠ 𝐴) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) | 
| 35 | 3, 34 | bitrd 279 | 1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐽 ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) |