MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsuba Structured version   Visualization version   GIF version

Theorem connsuba 22923
Description: Connectedness for a subspace. See connsub 22924. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
connsuba ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ ((𝐽 β†Ύt 𝐴) ∈ Conn ↔ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ 𝐽 (((π‘₯ ∩ 𝐴) β‰  βˆ… ∧ (𝑦 ∩ 𝐴) β‰  βˆ… ∧ ((π‘₯ ∩ 𝑦) ∩ 𝐴) = βˆ…) β†’ ((π‘₯ βˆͺ 𝑦) ∩ 𝐴) β‰  𝐴)))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐽,𝑦   π‘₯,𝑋,𝑦

Proof of Theorem connsuba
Dummy variables 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttopon 22664 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ (𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄))
2 dfconn2 22922 . . 3 ((𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄) β†’ ((𝐽 β†Ύt 𝐴) ∈ Conn ↔ βˆ€π‘’ ∈ (𝐽 β†Ύt 𝐴)βˆ€π‘£ ∈ (𝐽 β†Ύt 𝐴)((𝑒 β‰  βˆ… ∧ 𝑣 β‰  βˆ… ∧ (𝑒 ∩ 𝑣) = βˆ…) β†’ (𝑒 βˆͺ 𝑣) β‰  𝐴)))
31, 2syl 17 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ ((𝐽 β†Ύt 𝐴) ∈ Conn ↔ βˆ€π‘’ ∈ (𝐽 β†Ύt 𝐴)βˆ€π‘£ ∈ (𝐽 β†Ύt 𝐴)((𝑒 β‰  βˆ… ∧ 𝑣 β‰  βˆ… ∧ (𝑒 ∩ 𝑣) = βˆ…) β†’ (𝑒 βˆͺ 𝑣) β‰  𝐴)))
4 vex 3478 . . . . 5 π‘₯ ∈ V
54inex1 5317 . . . 4 (π‘₯ ∩ 𝐴) ∈ V
65a1i 11 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ π‘₯ ∈ 𝐽) β†’ (π‘₯ ∩ 𝐴) ∈ V)
7 toponmax 22427 . . . . . 6 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 ∈ 𝐽)
87adantr 481 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ 𝑋 ∈ 𝐽)
9 simpr 485 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ 𝐴 βŠ† 𝑋)
108, 9ssexd 5324 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ 𝐴 ∈ V)
11 elrest 17372 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ V) β†’ (𝑒 ∈ (𝐽 β†Ύt 𝐴) ↔ βˆƒπ‘₯ ∈ 𝐽 𝑒 = (π‘₯ ∩ 𝐴)))
1210, 11syldan 591 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ (𝑒 ∈ (𝐽 β†Ύt 𝐴) ↔ βˆƒπ‘₯ ∈ 𝐽 𝑒 = (π‘₯ ∩ 𝐴)))
13 vex 3478 . . . . . 6 𝑦 ∈ V
1413inex1 5317 . . . . 5 (𝑦 ∩ 𝐴) ∈ V
1514a1i 11 . . . 4 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐽) β†’ (𝑦 ∩ 𝐴) ∈ V)
16 elrest 17372 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ V) β†’ (𝑣 ∈ (𝐽 β†Ύt 𝐴) ↔ βˆƒπ‘¦ ∈ 𝐽 𝑣 = (𝑦 ∩ 𝐴)))
1710, 16syldan 591 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ (𝑣 ∈ (𝐽 β†Ύt 𝐴) ↔ βˆƒπ‘¦ ∈ 𝐽 𝑣 = (𝑦 ∩ 𝐴)))
1817adantr 481 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) β†’ (𝑣 ∈ (𝐽 β†Ύt 𝐴) ↔ βˆƒπ‘¦ ∈ 𝐽 𝑣 = (𝑦 ∩ 𝐴)))
19 simplr 767 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ 𝑒 = (π‘₯ ∩ 𝐴))
2019neeq1d 3000 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ (𝑒 β‰  βˆ… ↔ (π‘₯ ∩ 𝐴) β‰  βˆ…))
21 simpr 485 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ 𝑣 = (𝑦 ∩ 𝐴))
2221neeq1d 3000 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ (𝑣 β‰  βˆ… ↔ (𝑦 ∩ 𝐴) β‰  βˆ…))
2319, 21ineq12d 4213 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ (𝑒 ∩ 𝑣) = ((π‘₯ ∩ 𝐴) ∩ (𝑦 ∩ 𝐴)))
24 inindir 4227 . . . . . . . 8 ((π‘₯ ∩ 𝑦) ∩ 𝐴) = ((π‘₯ ∩ 𝐴) ∩ (𝑦 ∩ 𝐴))
2523, 24eqtr4di 2790 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ (𝑒 ∩ 𝑣) = ((π‘₯ ∩ 𝑦) ∩ 𝐴))
2625eqeq1d 2734 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ ((𝑒 ∩ 𝑣) = βˆ… ↔ ((π‘₯ ∩ 𝑦) ∩ 𝐴) = βˆ…))
2720, 22, 263anbi123d 1436 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ ((𝑒 β‰  βˆ… ∧ 𝑣 β‰  βˆ… ∧ (𝑒 ∩ 𝑣) = βˆ…) ↔ ((π‘₯ ∩ 𝐴) β‰  βˆ… ∧ (𝑦 ∩ 𝐴) β‰  βˆ… ∧ ((π‘₯ ∩ 𝑦) ∩ 𝐴) = βˆ…)))
2819, 21uneq12d 4164 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ (𝑒 βˆͺ 𝑣) = ((π‘₯ ∩ 𝐴) βˆͺ (𝑦 ∩ 𝐴)))
29 indir 4275 . . . . . . 7 ((π‘₯ βˆͺ 𝑦) ∩ 𝐴) = ((π‘₯ ∩ 𝐴) βˆͺ (𝑦 ∩ 𝐴))
3028, 29eqtr4di 2790 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ (𝑒 βˆͺ 𝑣) = ((π‘₯ βˆͺ 𝑦) ∩ 𝐴))
3130neeq1d 3000 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ ((𝑒 βˆͺ 𝑣) β‰  𝐴 ↔ ((π‘₯ βˆͺ 𝑦) ∩ 𝐴) β‰  𝐴))
3227, 31imbi12d 344 . . . 4 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) ∧ 𝑣 = (𝑦 ∩ 𝐴)) β†’ (((𝑒 β‰  βˆ… ∧ 𝑣 β‰  βˆ… ∧ (𝑒 ∩ 𝑣) = βˆ…) β†’ (𝑒 βˆͺ 𝑣) β‰  𝐴) ↔ (((π‘₯ ∩ 𝐴) β‰  βˆ… ∧ (𝑦 ∩ 𝐴) β‰  βˆ… ∧ ((π‘₯ ∩ 𝑦) ∩ 𝐴) = βˆ…) β†’ ((π‘₯ βˆͺ 𝑦) ∩ 𝐴) β‰  𝐴)))
3315, 18, 32ralxfr2d 5408 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) ∧ 𝑒 = (π‘₯ ∩ 𝐴)) β†’ (βˆ€π‘£ ∈ (𝐽 β†Ύt 𝐴)((𝑒 β‰  βˆ… ∧ 𝑣 β‰  βˆ… ∧ (𝑒 ∩ 𝑣) = βˆ…) β†’ (𝑒 βˆͺ 𝑣) β‰  𝐴) ↔ βˆ€π‘¦ ∈ 𝐽 (((π‘₯ ∩ 𝐴) β‰  βˆ… ∧ (𝑦 ∩ 𝐴) β‰  βˆ… ∧ ((π‘₯ ∩ 𝑦) ∩ 𝐴) = βˆ…) β†’ ((π‘₯ βˆͺ 𝑦) ∩ 𝐴) β‰  𝐴)))
346, 12, 33ralxfr2d 5408 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ (βˆ€π‘’ ∈ (𝐽 β†Ύt 𝐴)βˆ€π‘£ ∈ (𝐽 β†Ύt 𝐴)((𝑒 β‰  βˆ… ∧ 𝑣 β‰  βˆ… ∧ (𝑒 ∩ 𝑣) = βˆ…) β†’ (𝑒 βˆͺ 𝑣) β‰  𝐴) ↔ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ 𝐽 (((π‘₯ ∩ 𝐴) β‰  βˆ… ∧ (𝑦 ∩ 𝐴) β‰  βˆ… ∧ ((π‘₯ ∩ 𝑦) ∩ 𝐴) = βˆ…) β†’ ((π‘₯ βˆͺ 𝑦) ∩ 𝐴) β‰  𝐴)))
353, 34bitrd 278 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ ((𝐽 β†Ύt 𝐴) ∈ Conn ↔ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ 𝐽 (((π‘₯ ∩ 𝐴) β‰  βˆ… ∧ (𝑦 ∩ 𝐴) β‰  βˆ… ∧ ((π‘₯ ∩ 𝑦) ∩ 𝐴) = βˆ…) β†’ ((π‘₯ βˆͺ 𝑦) ∩ 𝐴) β‰  𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βˆͺ cun 3946   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  β€˜cfv 6543  (class class class)co 7408   β†Ύt crest 17365  TopOnctopon 22411  Conncconn 22914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-en 8939  df-fin 8942  df-fi 9405  df-rest 17367  df-topgen 17388  df-top 22395  df-topon 22412  df-bases 22448  df-cld 22522  df-conn 22915
This theorem is referenced by:  connsub  22924  nconnsubb  22926
  Copyright terms: Public domain W3C validator