HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1lem1 Structured version   Visualization version   GIF version

Theorem mdslmd1lem1 31845
Description: Lemma for mdslmd1i 31849. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
mdslmd1lem.5 𝑅C
Assertion
Ref Expression
mdslmd1lem1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))

Proof of Theorem mdslmd1lem1
StepHypRef Expression
1 mdslmd1lem.5 . . . . . 6 𝑅C
2 mdslmd.4 . . . . . . 7 𝐷C
3 mdslmd.2 . . . . . . 7 𝐵C
42, 3chincli 30980 . . . . . 6 (𝐷𝐵) ∈ C
5 mdslmd.1 . . . . . 6 𝐴C
61, 4, 5chlej1i 30993 . . . . 5 (𝑅 ⊆ (𝐷𝐵) → (𝑅 𝐴) ⊆ ((𝐷𝐵) ∨ 𝐴))
7 simpr 483 . . . . . . . 8 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐵 𝑀* 𝐴)
8 simpr 483 . . . . . . . 8 ((𝐴𝐶𝐴𝐷) → 𝐴𝐷)
9 simpr 483 . . . . . . . 8 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝐷 ⊆ (𝐴 𝐵))
105, 3, 23pm3.2i 1337 . . . . . . . . 9 (𝐴C𝐵C𝐷C )
11 dmdsl3 31835 . . . . . . . . 9 (((𝐴C𝐵C𝐷C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
1210, 11mpan 686 . . . . . . . 8 ((𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵)) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
137, 8, 9, 12syl3an 1158 . . . . . . 7 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
14133expb 1118 . . . . . 6 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
1514sseq2d 4013 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝑅 𝐴) ⊆ ((𝐷𝐵) ∨ 𝐴) ↔ (𝑅 𝐴) ⊆ 𝐷))
166, 15imbitrid 243 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝑅 ⊆ (𝐷𝐵) → (𝑅 𝐴) ⊆ 𝐷))
1716adantld 489 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (𝑅 𝐴) ⊆ 𝐷))
1817imim1d 82 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)))))
19 simpll 763 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 𝑀 𝐵𝐵 𝑀* 𝐴))
20 simpll 763 . . . . . . . . . . . . 13 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐶)
2120ad2antlr 723 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴𝐶)
225, 1chub2i 30990 . . . . . . . . . . . 12 𝐴 ⊆ (𝑅 𝐴)
2321, 22jctil 518 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴𝐶))
24 ssin 4229 . . . . . . . . . . 11 ((𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴𝐶) ↔ 𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶))
2523, 24sylib 217 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶))
26 inss1 4227 . . . . . . . . . . . . . . . . . . . 20 (𝐷𝐵) ⊆ 𝐷
27 sstr 3989 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ⊆ (𝐷𝐵) ∧ (𝐷𝐵) ⊆ 𝐷) → 𝑅𝐷)
2826, 27mpan2 687 . . . . . . . . . . . . . . . . . . 19 (𝑅 ⊆ (𝐷𝐵) → 𝑅𝐷)
29 sstr 3989 . . . . . . . . . . . . . . . . . . 19 ((𝑅𝐷𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3028, 29sylan 578 . . . . . . . . . . . . . . . . . 18 ((𝑅 ⊆ (𝐷𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3130ancoms 457 . . . . . . . . . . . . . . . . 17 ((𝐷 ⊆ (𝐴 𝐵) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3231adantll 710 . . . . . . . . . . . . . . . 16 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3332adantll 710 . . . . . . . . . . . . . . 15 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3433ad2ant2l 742 . . . . . . . . . . . . . 14 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝑅 ⊆ (𝐴 𝐵))
355, 3chub1i 30989 . . . . . . . . . . . . . 14 𝐴 ⊆ (𝐴 𝐵)
3634, 35jctir 519 . . . . . . . . . . . . 13 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 ⊆ (𝐴 𝐵) ∧ 𝐴 ⊆ (𝐴 𝐵)))
375, 3chjcli 30977 . . . . . . . . . . . . . 14 (𝐴 𝐵) ∈ C
381, 5, 37chlubi 30991 . . . . . . . . . . . . 13 ((𝑅 ⊆ (𝐴 𝐵) ∧ 𝐴 ⊆ (𝐴 𝐵)) ↔ (𝑅 𝐴) ⊆ (𝐴 𝐵))
3936, 38sylib 217 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 𝐴) ⊆ (𝐴 𝐵))
40 simprrl 777 . . . . . . . . . . . . 13 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → 𝐶 ⊆ (𝐴 𝐵))
4140adantr 479 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐶 ⊆ (𝐴 𝐵))
4239, 41jca 510 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)))
431, 5chjcli 30977 . . . . . . . . . . . 12 (𝑅 𝐴) ∈ C
44 mdslmd.3 . . . . . . . . . . . 12 𝐶C
4543, 44, 37chlubi 30991 . . . . . . . . . . 11 (((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)) ↔ ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))
4642, 45sylib 217 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))
475, 3, 43, 44mdslj1i 31839 . . . . . . . . . 10 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶) ∧ ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)))
4819, 25, 46, 47syl12anc 833 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)))
49 simplll 771 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 𝑀 𝐵)
50 simplrl 773 . . . . . . . . . . . . . . 15 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐶𝐴𝐷))
51 ssin 4229 . . . . . . . . . . . . . . 15 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
5250, 51sylib 217 . . . . . . . . . . . . . 14 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ (𝐶𝐷))
5352ssrind 4234 . . . . . . . . . . . . 13 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ ((𝐶𝐷) ∩ 𝐵))
54 inindir 4226 . . . . . . . . . . . . 13 ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵))
5553, 54sseqtrdi 4031 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ ((𝐶𝐵) ∩ (𝐷𝐵)))
56 simprl 767 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅)
5755, 56sstrd 3991 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ 𝑅)
58 inss2 4228 . . . . . . . . . . . . 13 (𝐷𝐵) ⊆ 𝐵
59 sstr 3989 . . . . . . . . . . . . 13 ((𝑅 ⊆ (𝐷𝐵) ∧ (𝐷𝐵) ⊆ 𝐵) → 𝑅𝐵)
6058, 59mpan2 687 . . . . . . . . . . . 12 (𝑅 ⊆ (𝐷𝐵) → 𝑅𝐵)
6160ad2antll 725 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝑅𝐵)
625, 3, 13pm3.2i 1337 . . . . . . . . . . . 12 (𝐴C𝐵C𝑅C )
63 mdsl3 31836 . . . . . . . . . . . 12 (((𝐴C𝐵C𝑅C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝑅𝑅𝐵)) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6462, 63mpan 686 . . . . . . . . . . 11 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝑅𝑅𝐵) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6549, 57, 61, 64syl3anc 1369 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6665oveq1d 7426 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)) = (𝑅 (𝐶𝐵)))
6748, 66eqtr2d 2771 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 (𝐶𝐵)) = (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵))
6867ineq1d 4210 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) ∩ (𝐷𝐵)))
69 inindir 4226 . . . . . . 7 ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) ∩ (𝐷𝐵))
7068, 69eqtr4di 2788 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵))
7152, 22jctil 518 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴 ⊆ (𝐶𝐷)))
72 ssin 4229 . . . . . . . . 9 ((𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴 ⊆ (𝐶𝐷)) ↔ 𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)))
7371, 72sylib 217 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)))
74 ssinss1 4236 . . . . . . . . . . . 12 (𝐶 ⊆ (𝐴 𝐵) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7574ad2antrl 724 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7675ad2antlr 723 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7739, 76jca 510 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
7844, 2chincli 30980 . . . . . . . . . 10 (𝐶𝐷) ∈ C
7943, 78, 37chlubi 30991 . . . . . . . . 9 (((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)) ↔ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))
8077, 79sylib 217 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))
815, 3, 43, 78mdslj1i 31839 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
8219, 73, 80, 81syl12anc 833 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
8354a1i 11 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵)))
8465, 83oveq12d 7429 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)) = (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))
8582, 84eqtr2d 2771 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) = (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵))
8670, 85sseq12d 4014 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
87 simpllr 772 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐵 𝑀* 𝐴)
88 simplr 765 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐷)
8988ad2antlr 723 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴𝐷)
9043, 44chub1i 30989 . . . . . . . . . . 11 (𝑅 𝐴) ⊆ ((𝑅 𝐴) ∨ 𝐶)
9122, 90sstri 3990 . . . . . . . . . 10 𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶)
9289, 91jctil 518 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶) ∧ 𝐴𝐷))
93 ssin 4229 . . . . . . . . 9 ((𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶) ∧ 𝐴𝐷) ↔ 𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷))
9492, 93sylib 217 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷))
9543, 78chub1i 30989 . . . . . . . . 9 (𝑅 𝐴) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))
9622, 95sstri 3990 . . . . . . . 8 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))
9794, 96jctir 519 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∧ 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))))
98 ssin 4229 . . . . . . 7 ((𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∧ 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) ↔ 𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))))
9997, 98sylib 217 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))))
100 inss2 4228 . . . . . . . . . . 11 (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ 𝐷
101 sstr 3989 . . . . . . . . . . 11 (((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ 𝐷𝐷 ⊆ (𝐴 𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
102100, 101mpan 686 . . . . . . . . . 10 (𝐷 ⊆ (𝐴 𝐵) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
103102ad2antll 725 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
104103ad2antlr 723 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
105104, 80jca 510 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵)))
10643, 44chjcli 30977 . . . . . . . . 9 ((𝑅 𝐴) ∨ 𝐶) ∈ C
107106, 2chincli 30980 . . . . . . . 8 (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∈ C
10843, 78chjcli 30977 . . . . . . . 8 ((𝑅 𝐴) ∨ (𝐶𝐷)) ∈ C
109107, 108, 37chlubi 30991 . . . . . . 7 (((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵))
110105, 109sylib 217 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵))
1115, 3, 107, 108mdslle1i 31837 . . . . . 6 ((𝐵 𝑀* 𝐴𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))) ∧ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵)) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
11287, 99, 110, 111syl3anc 1369 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
11386, 112bitr4d 281 . . . 4 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))))
114113exbiri 807 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
115114a2d 29 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
11618, 115syld 47 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  cin 3946  wss 3947   class class class wbr 5147  (class class class)co 7411   C cch 30449   chj 30453   𝑀 cmd 30486   𝑀* cdmd 30487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cc 10432  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192  ax-hilex 30519  ax-hfvadd 30520  ax-hvcom 30521  ax-hvass 30522  ax-hv0cl 30523  ax-hvaddid 30524  ax-hfvmul 30525  ax-hvmulid 30526  ax-hvmulass 30527  ax-hvdistr1 30528  ax-hvdistr2 30529  ax-hvmul0 30530  ax-hfi 30599  ax-his1 30602  ax-his2 30603  ax-his3 30604  ax-his4 30605  ax-hcompl 30722
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-omul 8473  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-acn 9939  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-rlim 15437  df-sum 15637  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-cn 22951  df-cnp 22952  df-lm 22953  df-haus 23039  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cfil 25003  df-cau 25004  df-cmet 25005  df-grpo 30013  df-gid 30014  df-ginv 30015  df-gdiv 30016  df-ablo 30065  df-vc 30079  df-nv 30112  df-va 30115  df-ba 30116  df-sm 30117  df-0v 30118  df-vs 30119  df-nmcv 30120  df-ims 30121  df-dip 30221  df-ssp 30242  df-ph 30333  df-cbn 30383  df-hnorm 30488  df-hba 30489  df-hvsub 30491  df-hlim 30492  df-hcau 30493  df-sh 30727  df-ch 30741  df-oc 30772  df-ch0 30773  df-shs 30828  df-chj 30830  df-md 31800  df-dmd 31801
This theorem is referenced by:  mdslmd1lem3  31847
  Copyright terms: Public domain W3C validator