HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1lem1 Structured version   Visualization version   GIF version

Theorem mdslmd1lem1 31578
Description: Lemma for mdslmd1i 31582. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
mdslmd1lem.5 𝑅C
Assertion
Ref Expression
mdslmd1lem1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))

Proof of Theorem mdslmd1lem1
StepHypRef Expression
1 mdslmd1lem.5 . . . . . 6 𝑅C
2 mdslmd.4 . . . . . . 7 𝐷C
3 mdslmd.2 . . . . . . 7 𝐵C
42, 3chincli 30713 . . . . . 6 (𝐷𝐵) ∈ C
5 mdslmd.1 . . . . . 6 𝐴C
61, 4, 5chlej1i 30726 . . . . 5 (𝑅 ⊆ (𝐷𝐵) → (𝑅 𝐴) ⊆ ((𝐷𝐵) ∨ 𝐴))
7 simpr 486 . . . . . . . 8 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐵 𝑀* 𝐴)
8 simpr 486 . . . . . . . 8 ((𝐴𝐶𝐴𝐷) → 𝐴𝐷)
9 simpr 486 . . . . . . . 8 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝐷 ⊆ (𝐴 𝐵))
105, 3, 23pm3.2i 1340 . . . . . . . . 9 (𝐴C𝐵C𝐷C )
11 dmdsl3 31568 . . . . . . . . 9 (((𝐴C𝐵C𝐷C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
1210, 11mpan 689 . . . . . . . 8 ((𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵)) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
137, 8, 9, 12syl3an 1161 . . . . . . 7 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
14133expb 1121 . . . . . 6 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
1514sseq2d 4015 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝑅 𝐴) ⊆ ((𝐷𝐵) ∨ 𝐴) ↔ (𝑅 𝐴) ⊆ 𝐷))
166, 15imbitrid 243 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝑅 ⊆ (𝐷𝐵) → (𝑅 𝐴) ⊆ 𝐷))
1716adantld 492 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (𝑅 𝐴) ⊆ 𝐷))
1817imim1d 82 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)))))
19 simpll 766 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 𝑀 𝐵𝐵 𝑀* 𝐴))
20 simpll 766 . . . . . . . . . . . . 13 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐶)
2120ad2antlr 726 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴𝐶)
225, 1chub2i 30723 . . . . . . . . . . . 12 𝐴 ⊆ (𝑅 𝐴)
2321, 22jctil 521 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴𝐶))
24 ssin 4231 . . . . . . . . . . 11 ((𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴𝐶) ↔ 𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶))
2523, 24sylib 217 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶))
26 inss1 4229 . . . . . . . . . . . . . . . . . . . 20 (𝐷𝐵) ⊆ 𝐷
27 sstr 3991 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ⊆ (𝐷𝐵) ∧ (𝐷𝐵) ⊆ 𝐷) → 𝑅𝐷)
2826, 27mpan2 690 . . . . . . . . . . . . . . . . . . 19 (𝑅 ⊆ (𝐷𝐵) → 𝑅𝐷)
29 sstr 3991 . . . . . . . . . . . . . . . . . . 19 ((𝑅𝐷𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3028, 29sylan 581 . . . . . . . . . . . . . . . . . 18 ((𝑅 ⊆ (𝐷𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3130ancoms 460 . . . . . . . . . . . . . . . . 17 ((𝐷 ⊆ (𝐴 𝐵) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3231adantll 713 . . . . . . . . . . . . . . . 16 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3332adantll 713 . . . . . . . . . . . . . . 15 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3433ad2ant2l 745 . . . . . . . . . . . . . 14 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝑅 ⊆ (𝐴 𝐵))
355, 3chub1i 30722 . . . . . . . . . . . . . 14 𝐴 ⊆ (𝐴 𝐵)
3634, 35jctir 522 . . . . . . . . . . . . 13 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 ⊆ (𝐴 𝐵) ∧ 𝐴 ⊆ (𝐴 𝐵)))
375, 3chjcli 30710 . . . . . . . . . . . . . 14 (𝐴 𝐵) ∈ C
381, 5, 37chlubi 30724 . . . . . . . . . . . . 13 ((𝑅 ⊆ (𝐴 𝐵) ∧ 𝐴 ⊆ (𝐴 𝐵)) ↔ (𝑅 𝐴) ⊆ (𝐴 𝐵))
3936, 38sylib 217 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 𝐴) ⊆ (𝐴 𝐵))
40 simprrl 780 . . . . . . . . . . . . 13 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → 𝐶 ⊆ (𝐴 𝐵))
4140adantr 482 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐶 ⊆ (𝐴 𝐵))
4239, 41jca 513 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)))
431, 5chjcli 30710 . . . . . . . . . . . 12 (𝑅 𝐴) ∈ C
44 mdslmd.3 . . . . . . . . . . . 12 𝐶C
4543, 44, 37chlubi 30724 . . . . . . . . . . 11 (((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)) ↔ ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))
4642, 45sylib 217 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))
475, 3, 43, 44mdslj1i 31572 . . . . . . . . . 10 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶) ∧ ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)))
4819, 25, 46, 47syl12anc 836 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)))
49 simplll 774 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 𝑀 𝐵)
50 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐶𝐴𝐷))
51 ssin 4231 . . . . . . . . . . . . . . 15 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
5250, 51sylib 217 . . . . . . . . . . . . . 14 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ (𝐶𝐷))
5352ssrind 4236 . . . . . . . . . . . . 13 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ ((𝐶𝐷) ∩ 𝐵))
54 inindir 4228 . . . . . . . . . . . . 13 ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵))
5553, 54sseqtrdi 4033 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ ((𝐶𝐵) ∩ (𝐷𝐵)))
56 simprl 770 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅)
5755, 56sstrd 3993 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ 𝑅)
58 inss2 4230 . . . . . . . . . . . . 13 (𝐷𝐵) ⊆ 𝐵
59 sstr 3991 . . . . . . . . . . . . 13 ((𝑅 ⊆ (𝐷𝐵) ∧ (𝐷𝐵) ⊆ 𝐵) → 𝑅𝐵)
6058, 59mpan2 690 . . . . . . . . . . . 12 (𝑅 ⊆ (𝐷𝐵) → 𝑅𝐵)
6160ad2antll 728 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝑅𝐵)
625, 3, 13pm3.2i 1340 . . . . . . . . . . . 12 (𝐴C𝐵C𝑅C )
63 mdsl3 31569 . . . . . . . . . . . 12 (((𝐴C𝐵C𝑅C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝑅𝑅𝐵)) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6462, 63mpan 689 . . . . . . . . . . 11 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝑅𝑅𝐵) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6549, 57, 61, 64syl3anc 1372 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6665oveq1d 7424 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)) = (𝑅 (𝐶𝐵)))
6748, 66eqtr2d 2774 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 (𝐶𝐵)) = (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵))
6867ineq1d 4212 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) ∩ (𝐷𝐵)))
69 inindir 4228 . . . . . . 7 ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) ∩ (𝐷𝐵))
7068, 69eqtr4di 2791 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵))
7152, 22jctil 521 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴 ⊆ (𝐶𝐷)))
72 ssin 4231 . . . . . . . . 9 ((𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴 ⊆ (𝐶𝐷)) ↔ 𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)))
7371, 72sylib 217 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)))
74 ssinss1 4238 . . . . . . . . . . . 12 (𝐶 ⊆ (𝐴 𝐵) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7574ad2antrl 727 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7675ad2antlr 726 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7739, 76jca 513 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
7844, 2chincli 30713 . . . . . . . . . 10 (𝐶𝐷) ∈ C
7943, 78, 37chlubi 30724 . . . . . . . . 9 (((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)) ↔ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))
8077, 79sylib 217 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))
815, 3, 43, 78mdslj1i 31572 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
8219, 73, 80, 81syl12anc 836 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
8354a1i 11 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵)))
8465, 83oveq12d 7427 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)) = (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))
8582, 84eqtr2d 2774 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) = (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵))
8670, 85sseq12d 4016 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
87 simpllr 775 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐵 𝑀* 𝐴)
88 simplr 768 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐷)
8988ad2antlr 726 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴𝐷)
9043, 44chub1i 30722 . . . . . . . . . . 11 (𝑅 𝐴) ⊆ ((𝑅 𝐴) ∨ 𝐶)
9122, 90sstri 3992 . . . . . . . . . 10 𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶)
9289, 91jctil 521 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶) ∧ 𝐴𝐷))
93 ssin 4231 . . . . . . . . 9 ((𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶) ∧ 𝐴𝐷) ↔ 𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷))
9492, 93sylib 217 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷))
9543, 78chub1i 30722 . . . . . . . . 9 (𝑅 𝐴) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))
9622, 95sstri 3992 . . . . . . . 8 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))
9794, 96jctir 522 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∧ 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))))
98 ssin 4231 . . . . . . 7 ((𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∧ 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) ↔ 𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))))
9997, 98sylib 217 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))))
100 inss2 4230 . . . . . . . . . . 11 (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ 𝐷
101 sstr 3991 . . . . . . . . . . 11 (((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ 𝐷𝐷 ⊆ (𝐴 𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
102100, 101mpan 689 . . . . . . . . . 10 (𝐷 ⊆ (𝐴 𝐵) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
103102ad2antll 728 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
104103ad2antlr 726 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
105104, 80jca 513 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵)))
10643, 44chjcli 30710 . . . . . . . . 9 ((𝑅 𝐴) ∨ 𝐶) ∈ C
107106, 2chincli 30713 . . . . . . . 8 (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∈ C
10843, 78chjcli 30710 . . . . . . . 8 ((𝑅 𝐴) ∨ (𝐶𝐷)) ∈ C
109107, 108, 37chlubi 30724 . . . . . . 7 (((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵))
110105, 109sylib 217 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵))
1115, 3, 107, 108mdslle1i 31570 . . . . . 6 ((𝐵 𝑀* 𝐴𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))) ∧ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵)) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
11287, 99, 110, 111syl3anc 1372 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
11386, 112bitr4d 282 . . . 4 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))))
114113exbiri 810 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
115114a2d 29 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
11618, 115syld 47 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cin 3948  wss 3949   class class class wbr 5149  (class class class)co 7409   C cch 30182   chj 30186   𝑀 cmd 30219   𝑀* cdmd 30220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cc 10430  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190  ax-hilex 30252  ax-hfvadd 30253  ax-hvcom 30254  ax-hvass 30255  ax-hv0cl 30256  ax-hvaddid 30257  ax-hfvmul 30258  ax-hvmulid 30259  ax-hvmulass 30260  ax-hvdistr1 30261  ax-hvdistr2 30262  ax-hvmul0 30263  ax-hfi 30332  ax-his1 30335  ax-his2 30336  ax-his3 30337  ax-his4 30338  ax-hcompl 30455
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-omul 8471  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-acn 9937  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-sum 15633  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-fbas 20941  df-fg 20942  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-cn 22731  df-cnp 22732  df-lm 22733  df-haus 22819  df-tx 23066  df-hmeo 23259  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-xms 23826  df-ms 23827  df-tms 23828  df-cfil 24772  df-cau 24773  df-cmet 24774  df-grpo 29746  df-gid 29747  df-ginv 29748  df-gdiv 29749  df-ablo 29798  df-vc 29812  df-nv 29845  df-va 29848  df-ba 29849  df-sm 29850  df-0v 29851  df-vs 29852  df-nmcv 29853  df-ims 29854  df-dip 29954  df-ssp 29975  df-ph 30066  df-cbn 30116  df-hnorm 30221  df-hba 30222  df-hvsub 30224  df-hlim 30225  df-hcau 30226  df-sh 30460  df-ch 30474  df-oc 30505  df-ch0 30506  df-shs 30561  df-chj 30563  df-md 31533  df-dmd 31534
This theorem is referenced by:  mdslmd1lem3  31580
  Copyright terms: Public domain W3C validator