HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1lem1 Structured version   Visualization version   GIF version

Theorem mdslmd1lem1 32353
Description: Lemma for mdslmd1i 32357. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
mdslmd1lem.5 𝑅C
Assertion
Ref Expression
mdslmd1lem1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))

Proof of Theorem mdslmd1lem1
StepHypRef Expression
1 mdslmd1lem.5 . . . . . 6 𝑅C
2 mdslmd.4 . . . . . . 7 𝐷C
3 mdslmd.2 . . . . . . 7 𝐵C
42, 3chincli 31488 . . . . . 6 (𝐷𝐵) ∈ C
5 mdslmd.1 . . . . . 6 𝐴C
61, 4, 5chlej1i 31501 . . . . 5 (𝑅 ⊆ (𝐷𝐵) → (𝑅 𝐴) ⊆ ((𝐷𝐵) ∨ 𝐴))
7 simpr 484 . . . . . . . 8 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐵 𝑀* 𝐴)
8 simpr 484 . . . . . . . 8 ((𝐴𝐶𝐴𝐷) → 𝐴𝐷)
9 simpr 484 . . . . . . . 8 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝐷 ⊆ (𝐴 𝐵))
105, 3, 23pm3.2i 1338 . . . . . . . . 9 (𝐴C𝐵C𝐷C )
11 dmdsl3 32343 . . . . . . . . 9 (((𝐴C𝐵C𝐷C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
1210, 11mpan 690 . . . . . . . 8 ((𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵)) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
137, 8, 9, 12syl3an 1159 . . . . . . 7 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
14133expb 1119 . . . . . 6 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
1514sseq2d 4027 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝑅 𝐴) ⊆ ((𝐷𝐵) ∨ 𝐴) ↔ (𝑅 𝐴) ⊆ 𝐷))
166, 15imbitrid 244 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝑅 ⊆ (𝐷𝐵) → (𝑅 𝐴) ⊆ 𝐷))
1716adantld 490 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (𝑅 𝐴) ⊆ 𝐷))
1817imim1d 82 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)))))
19 simpll 767 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 𝑀 𝐵𝐵 𝑀* 𝐴))
20 simpll 767 . . . . . . . . . . . . 13 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐶)
2120ad2antlr 727 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴𝐶)
225, 1chub2i 31498 . . . . . . . . . . . 12 𝐴 ⊆ (𝑅 𝐴)
2321, 22jctil 519 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴𝐶))
24 ssin 4246 . . . . . . . . . . 11 ((𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴𝐶) ↔ 𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶))
2523, 24sylib 218 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶))
26 inss1 4244 . . . . . . . . . . . . . . . . . . . 20 (𝐷𝐵) ⊆ 𝐷
27 sstr 4003 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ⊆ (𝐷𝐵) ∧ (𝐷𝐵) ⊆ 𝐷) → 𝑅𝐷)
2826, 27mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑅 ⊆ (𝐷𝐵) → 𝑅𝐷)
29 sstr 4003 . . . . . . . . . . . . . . . . . . 19 ((𝑅𝐷𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3028, 29sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝑅 ⊆ (𝐷𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3130ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝐷 ⊆ (𝐴 𝐵) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3231adantll 714 . . . . . . . . . . . . . . . 16 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3332adantll 714 . . . . . . . . . . . . . . 15 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3433ad2ant2l 746 . . . . . . . . . . . . . 14 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝑅 ⊆ (𝐴 𝐵))
355, 3chub1i 31497 . . . . . . . . . . . . . 14 𝐴 ⊆ (𝐴 𝐵)
3634, 35jctir 520 . . . . . . . . . . . . 13 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 ⊆ (𝐴 𝐵) ∧ 𝐴 ⊆ (𝐴 𝐵)))
375, 3chjcli 31485 . . . . . . . . . . . . . 14 (𝐴 𝐵) ∈ C
381, 5, 37chlubi 31499 . . . . . . . . . . . . 13 ((𝑅 ⊆ (𝐴 𝐵) ∧ 𝐴 ⊆ (𝐴 𝐵)) ↔ (𝑅 𝐴) ⊆ (𝐴 𝐵))
3936, 38sylib 218 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 𝐴) ⊆ (𝐴 𝐵))
40 simprrl 781 . . . . . . . . . . . . 13 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → 𝐶 ⊆ (𝐴 𝐵))
4140adantr 480 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐶 ⊆ (𝐴 𝐵))
4239, 41jca 511 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)))
431, 5chjcli 31485 . . . . . . . . . . . 12 (𝑅 𝐴) ∈ C
44 mdslmd.3 . . . . . . . . . . . 12 𝐶C
4543, 44, 37chlubi 31499 . . . . . . . . . . 11 (((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)) ↔ ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))
4642, 45sylib 218 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))
475, 3, 43, 44mdslj1i 32347 . . . . . . . . . 10 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶) ∧ ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)))
4819, 25, 46, 47syl12anc 837 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)))
49 simplll 775 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 𝑀 𝐵)
50 simplrl 777 . . . . . . . . . . . . . . 15 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐶𝐴𝐷))
51 ssin 4246 . . . . . . . . . . . . . . 15 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
5250, 51sylib 218 . . . . . . . . . . . . . 14 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ (𝐶𝐷))
5352ssrind 4251 . . . . . . . . . . . . 13 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ ((𝐶𝐷) ∩ 𝐵))
54 inindir 4243 . . . . . . . . . . . . 13 ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵))
5553, 54sseqtrdi 4045 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ ((𝐶𝐵) ∩ (𝐷𝐵)))
56 simprl 771 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅)
5755, 56sstrd 4005 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ 𝑅)
58 inss2 4245 . . . . . . . . . . . . 13 (𝐷𝐵) ⊆ 𝐵
59 sstr 4003 . . . . . . . . . . . . 13 ((𝑅 ⊆ (𝐷𝐵) ∧ (𝐷𝐵) ⊆ 𝐵) → 𝑅𝐵)
6058, 59mpan2 691 . . . . . . . . . . . 12 (𝑅 ⊆ (𝐷𝐵) → 𝑅𝐵)
6160ad2antll 729 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝑅𝐵)
625, 3, 13pm3.2i 1338 . . . . . . . . . . . 12 (𝐴C𝐵C𝑅C )
63 mdsl3 32344 . . . . . . . . . . . 12 (((𝐴C𝐵C𝑅C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝑅𝑅𝐵)) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6462, 63mpan 690 . . . . . . . . . . 11 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝑅𝑅𝐵) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6549, 57, 61, 64syl3anc 1370 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6665oveq1d 7445 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)) = (𝑅 (𝐶𝐵)))
6748, 66eqtr2d 2775 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 (𝐶𝐵)) = (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵))
6867ineq1d 4226 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) ∩ (𝐷𝐵)))
69 inindir 4243 . . . . . . 7 ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) ∩ (𝐷𝐵))
7068, 69eqtr4di 2792 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵))
7152, 22jctil 519 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴 ⊆ (𝐶𝐷)))
72 ssin 4246 . . . . . . . . 9 ((𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴 ⊆ (𝐶𝐷)) ↔ 𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)))
7371, 72sylib 218 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)))
74 ssinss1 4253 . . . . . . . . . . . 12 (𝐶 ⊆ (𝐴 𝐵) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7574ad2antrl 728 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7675ad2antlr 727 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7739, 76jca 511 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
7844, 2chincli 31488 . . . . . . . . . 10 (𝐶𝐷) ∈ C
7943, 78, 37chlubi 31499 . . . . . . . . 9 (((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)) ↔ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))
8077, 79sylib 218 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))
815, 3, 43, 78mdslj1i 32347 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
8219, 73, 80, 81syl12anc 837 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
8354a1i 11 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵)))
8465, 83oveq12d 7448 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)) = (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))
8582, 84eqtr2d 2775 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) = (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵))
8670, 85sseq12d 4028 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
87 simpllr 776 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐵 𝑀* 𝐴)
88 simplr 769 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐷)
8988ad2antlr 727 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴𝐷)
9043, 44chub1i 31497 . . . . . . . . . . 11 (𝑅 𝐴) ⊆ ((𝑅 𝐴) ∨ 𝐶)
9122, 90sstri 4004 . . . . . . . . . 10 𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶)
9289, 91jctil 519 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶) ∧ 𝐴𝐷))
93 ssin 4246 . . . . . . . . 9 ((𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶) ∧ 𝐴𝐷) ↔ 𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷))
9492, 93sylib 218 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷))
9543, 78chub1i 31497 . . . . . . . . 9 (𝑅 𝐴) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))
9622, 95sstri 4004 . . . . . . . 8 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))
9794, 96jctir 520 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∧ 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))))
98 ssin 4246 . . . . . . 7 ((𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∧ 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) ↔ 𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))))
9997, 98sylib 218 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))))
100 inss2 4245 . . . . . . . . . . 11 (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ 𝐷
101 sstr 4003 . . . . . . . . . . 11 (((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ 𝐷𝐷 ⊆ (𝐴 𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
102100, 101mpan 690 . . . . . . . . . 10 (𝐷 ⊆ (𝐴 𝐵) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
103102ad2antll 729 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
104103ad2antlr 727 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
105104, 80jca 511 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵)))
10643, 44chjcli 31485 . . . . . . . . 9 ((𝑅 𝐴) ∨ 𝐶) ∈ C
107106, 2chincli 31488 . . . . . . . 8 (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∈ C
10843, 78chjcli 31485 . . . . . . . 8 ((𝑅 𝐴) ∨ (𝐶𝐷)) ∈ C
109107, 108, 37chlubi 31499 . . . . . . 7 (((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵))
110105, 109sylib 218 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵))
1115, 3, 107, 108mdslle1i 32345 . . . . . 6 ((𝐵 𝑀* 𝐴𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))) ∧ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵)) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
11287, 99, 110, 111syl3anc 1370 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
11386, 112bitr4d 282 . . . 4 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))))
114113exbiri 811 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
115114a2d 29 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
11618, 115syld 47 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  cin 3961  wss 3962   class class class wbr 5147  (class class class)co 7430   C cch 30957   chj 30961   𝑀 cmd 30994   𝑀* cdmd 30995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232  ax-hilex 31027  ax-hfvadd 31028  ax-hvcom 31029  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvmulass 31035  ax-hvdistr1 31036  ax-hvdistr2 31037  ax-hvmul0 31038  ax-hfi 31107  ax-his1 31110  ax-his2 31111  ax-his3 31112  ax-his4 31113  ax-hcompl 31230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-cn 23250  df-cnp 23251  df-lm 23252  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cfil 25302  df-cau 25303  df-cmet 25304  df-grpo 30521  df-gid 30522  df-ginv 30523  df-gdiv 30524  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-vs 30627  df-nmcv 30628  df-ims 30629  df-dip 30729  df-ssp 30750  df-ph 30841  df-cbn 30891  df-hnorm 30996  df-hba 30997  df-hvsub 30999  df-hlim 31000  df-hcau 31001  df-sh 31235  df-ch 31249  df-oc 31280  df-ch0 31281  df-shs 31336  df-chj 31338  df-md 32308  df-dmd 32309
This theorem is referenced by:  mdslmd1lem3  32355
  Copyright terms: Public domain W3C validator