HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1lem1 Structured version   Visualization version   GIF version

Theorem mdslmd1lem1 32357
Description: Lemma for mdslmd1i 32361. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
mdslmd1lem.5 𝑅C
Assertion
Ref Expression
mdslmd1lem1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))

Proof of Theorem mdslmd1lem1
StepHypRef Expression
1 mdslmd1lem.5 . . . . . 6 𝑅C
2 mdslmd.4 . . . . . . 7 𝐷C
3 mdslmd.2 . . . . . . 7 𝐵C
42, 3chincli 31492 . . . . . 6 (𝐷𝐵) ∈ C
5 mdslmd.1 . . . . . 6 𝐴C
61, 4, 5chlej1i 31505 . . . . 5 (𝑅 ⊆ (𝐷𝐵) → (𝑅 𝐴) ⊆ ((𝐷𝐵) ∨ 𝐴))
7 simpr 484 . . . . . . . 8 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐵 𝑀* 𝐴)
8 simpr 484 . . . . . . . 8 ((𝐴𝐶𝐴𝐷) → 𝐴𝐷)
9 simpr 484 . . . . . . . 8 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝐷 ⊆ (𝐴 𝐵))
105, 3, 23pm3.2i 1339 . . . . . . . . 9 (𝐴C𝐵C𝐷C )
11 dmdsl3 32347 . . . . . . . . 9 (((𝐴C𝐵C𝐷C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
1210, 11mpan 689 . . . . . . . 8 ((𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵)) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
137, 8, 9, 12syl3an 1160 . . . . . . 7 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
14133expb 1120 . . . . . 6 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
1514sseq2d 4041 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝑅 𝐴) ⊆ ((𝐷𝐵) ∨ 𝐴) ↔ (𝑅 𝐴) ⊆ 𝐷))
166, 15imbitrid 244 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝑅 ⊆ (𝐷𝐵) → (𝑅 𝐴) ⊆ 𝐷))
1716adantld 490 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (𝑅 𝐴) ⊆ 𝐷))
1817imim1d 82 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)))))
19 simpll 766 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 𝑀 𝐵𝐵 𝑀* 𝐴))
20 simpll 766 . . . . . . . . . . . . 13 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐶)
2120ad2antlr 726 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴𝐶)
225, 1chub2i 31502 . . . . . . . . . . . 12 𝐴 ⊆ (𝑅 𝐴)
2321, 22jctil 519 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴𝐶))
24 ssin 4260 . . . . . . . . . . 11 ((𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴𝐶) ↔ 𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶))
2523, 24sylib 218 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶))
26 inss1 4258 . . . . . . . . . . . . . . . . . . . 20 (𝐷𝐵) ⊆ 𝐷
27 sstr 4017 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ⊆ (𝐷𝐵) ∧ (𝐷𝐵) ⊆ 𝐷) → 𝑅𝐷)
2826, 27mpan2 690 . . . . . . . . . . . . . . . . . . 19 (𝑅 ⊆ (𝐷𝐵) → 𝑅𝐷)
29 sstr 4017 . . . . . . . . . . . . . . . . . . 19 ((𝑅𝐷𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3028, 29sylan 579 . . . . . . . . . . . . . . . . . 18 ((𝑅 ⊆ (𝐷𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3130ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝐷 ⊆ (𝐴 𝐵) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3231adantll 713 . . . . . . . . . . . . . . . 16 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3332adantll 713 . . . . . . . . . . . . . . 15 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ 𝑅 ⊆ (𝐷𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3433ad2ant2l 745 . . . . . . . . . . . . . 14 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝑅 ⊆ (𝐴 𝐵))
355, 3chub1i 31501 . . . . . . . . . . . . . 14 𝐴 ⊆ (𝐴 𝐵)
3634, 35jctir 520 . . . . . . . . . . . . 13 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 ⊆ (𝐴 𝐵) ∧ 𝐴 ⊆ (𝐴 𝐵)))
375, 3chjcli 31489 . . . . . . . . . . . . . 14 (𝐴 𝐵) ∈ C
381, 5, 37chlubi 31503 . . . . . . . . . . . . 13 ((𝑅 ⊆ (𝐴 𝐵) ∧ 𝐴 ⊆ (𝐴 𝐵)) ↔ (𝑅 𝐴) ⊆ (𝐴 𝐵))
3936, 38sylib 218 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 𝐴) ⊆ (𝐴 𝐵))
40 simprrl 780 . . . . . . . . . . . . 13 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → 𝐶 ⊆ (𝐴 𝐵))
4140adantr 480 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐶 ⊆ (𝐴 𝐵))
4239, 41jca 511 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)))
431, 5chjcli 31489 . . . . . . . . . . . 12 (𝑅 𝐴) ∈ C
44 mdslmd.3 . . . . . . . . . . . 12 𝐶C
4543, 44, 37chlubi 31503 . . . . . . . . . . 11 (((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)) ↔ ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))
4642, 45sylib 218 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))
475, 3, 43, 44mdslj1i 32351 . . . . . . . . . 10 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ ((𝑅 𝐴) ∩ 𝐶) ∧ ((𝑅 𝐴) ∨ 𝐶) ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)))
4819, 25, 46, 47syl12anc 836 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)))
49 simplll 774 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 𝑀 𝐵)
50 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐶𝐴𝐷))
51 ssin 4260 . . . . . . . . . . . . . . 15 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
5250, 51sylib 218 . . . . . . . . . . . . . 14 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ (𝐶𝐷))
5352ssrind 4265 . . . . . . . . . . . . 13 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ ((𝐶𝐷) ∩ 𝐵))
54 inindir 4257 . . . . . . . . . . . . 13 ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵))
5553, 54sseqtrdi 4059 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ ((𝐶𝐵) ∩ (𝐷𝐵)))
56 simprl 770 . . . . . . . . . . . 12 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅)
5755, 56sstrd 4019 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴𝐵) ⊆ 𝑅)
58 inss2 4259 . . . . . . . . . . . . 13 (𝐷𝐵) ⊆ 𝐵
59 sstr 4017 . . . . . . . . . . . . 13 ((𝑅 ⊆ (𝐷𝐵) ∧ (𝐷𝐵) ⊆ 𝐵) → 𝑅𝐵)
6058, 59mpan2 690 . . . . . . . . . . . 12 (𝑅 ⊆ (𝐷𝐵) → 𝑅𝐵)
6160ad2antll 728 . . . . . . . . . . 11 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝑅𝐵)
625, 3, 13pm3.2i 1339 . . . . . . . . . . . 12 (𝐴C𝐵C𝑅C )
63 mdsl3 32348 . . . . . . . . . . . 12 (((𝐴C𝐵C𝑅C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝑅𝑅𝐵)) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6462, 63mpan 689 . . . . . . . . . . 11 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝑅𝑅𝐵) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6549, 57, 61, 64syl3anc 1371 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∩ 𝐵) = 𝑅)
6665oveq1d 7463 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∩ 𝐵) ∨ (𝐶𝐵)) = (𝑅 (𝐶𝐵)))
6748, 66eqtr2d 2781 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 (𝐶𝐵)) = (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵))
6867ineq1d 4240 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) ∩ (𝐷𝐵)))
69 inindir 4257 . . . . . . 7 ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐵) ∩ (𝐷𝐵))
7068, 69eqtr4di 2798 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) = ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵))
7152, 22jctil 519 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴 ⊆ (𝐶𝐷)))
72 ssin 4260 . . . . . . . . 9 ((𝐴 ⊆ (𝑅 𝐴) ∧ 𝐴 ⊆ (𝐶𝐷)) ↔ 𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)))
7371, 72sylib 218 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)))
74 ssinss1 4267 . . . . . . . . . . . 12 (𝐶 ⊆ (𝐴 𝐵) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7574ad2antrl 727 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7675ad2antlr 726 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7739, 76jca 511 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
7844, 2chincli 31492 . . . . . . . . . 10 (𝐶𝐷) ∈ C
7943, 78, 37chlubi 31503 . . . . . . . . 9 (((𝑅 𝐴) ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)) ↔ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))
8077, 79sylib 218 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))
815, 3, 43, 78mdslj1i 32351 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ ((𝑅 𝐴) ∩ (𝐶𝐷)) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
8219, 73, 80, 81syl12anc 836 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵) = (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
8354a1i 11 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵)))
8465, 83oveq12d 7466 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∩ 𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)) = (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))
8582, 84eqtr2d 2781 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) = (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵))
8670, 85sseq12d 4042 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
87 simpllr 775 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐵 𝑀* 𝐴)
88 simplr 768 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐷)
8988ad2antlr 726 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴𝐷)
9043, 44chub1i 31501 . . . . . . . . . . 11 (𝑅 𝐴) ⊆ ((𝑅 𝐴) ∨ 𝐶)
9122, 90sstri 4018 . . . . . . . . . 10 𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶)
9289, 91jctil 519 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶) ∧ 𝐴𝐷))
93 ssin 4260 . . . . . . . . 9 ((𝐴 ⊆ ((𝑅 𝐴) ∨ 𝐶) ∧ 𝐴𝐷) ↔ 𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷))
9492, 93sylib 218 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷))
9543, 78chub1i 31501 . . . . . . . . 9 (𝑅 𝐴) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))
9622, 95sstri 4018 . . . . . . . 8 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))
9794, 96jctir 520 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∧ 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))))
98 ssin 4260 . . . . . . 7 ((𝐴 ⊆ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∧ 𝐴 ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) ↔ 𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))))
9997, 98sylib 218 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → 𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))))
100 inss2 4259 . . . . . . . . . . 11 (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ 𝐷
101 sstr 4017 . . . . . . . . . . 11 (((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ 𝐷𝐷 ⊆ (𝐴 𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
102100, 101mpan 689 . . . . . . . . . 10 (𝐷 ⊆ (𝐴 𝐵) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
103102ad2antll 728 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
104103ad2antlr 726 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
105104, 80jca 511 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵)))
10643, 44chjcli 31489 . . . . . . . . 9 ((𝑅 𝐴) ∨ 𝐶) ∈ C
107106, 2chincli 31492 . . . . . . . 8 (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∈ C
10843, 78chjcli 31489 . . . . . . . 8 ((𝑅 𝐴) ∨ (𝐶𝐷)) ∈ C
109107, 108, 37chlubi 31503 . . . . . . 7 (((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ ((𝑅 𝐴) ∨ (𝐶𝐷)) ⊆ (𝐴 𝐵)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵))
110105, 109sylib 218 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵))
1115, 3, 107, 108mdslle1i 32349 . . . . . 6 ((𝐵 𝑀* 𝐴𝐴 ⊆ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ ((𝑅 𝐴) ∨ (𝐶𝐷))) ∧ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∨ ((𝑅 𝐴) ∨ (𝐶𝐷))) ⊆ (𝐴 𝐵)) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
11287, 99, 110, 111syl3anc 1371 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) ↔ ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ (((𝑅 𝐴) ∨ (𝐶𝐷)) ∩ 𝐵)))
11386, 112bitr4d 282 . . . 4 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ (((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵))) → (((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))))
114113exbiri 810 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
115114a2d 29 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
11618, 115syld 47 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅 𝐴) ⊆ 𝐷 → (((𝑅 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑅 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑅𝑅 ⊆ (𝐷𝐵)) → ((𝑅 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑅 ((𝐶𝐵) ∩ (𝐷𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cin 3975  wss 3976   class class class wbr 5166  (class class class)co 7448   C cch 30961   chj 30965   𝑀 cmd 30998   𝑀* cdmd 30999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-ssp 30754  df-ph 30845  df-cbn 30895  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285  df-shs 31340  df-chj 31342  df-md 32312  df-dmd 32313
This theorem is referenced by:  mdslmd1lem3  32359
  Copyright terms: Public domain W3C validator