| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > mddmdin0i | Structured version Visualization version GIF version | ||
| Description: If dual modular implies modular whenever meet is zero, then dual modular implies modular for arbitrary lattice elements. This theorem is needed for the remark after Lemma 7 of [Holland] p. 1524 to hold. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mddmdin0.1 | ⊢ 𝐴 ∈ Cℋ |
| mddmdin0.2 | ⊢ 𝐵 ∈ Cℋ |
| mddmdin0.3 | ⊢ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ ((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) → 𝑥 𝑀ℋ 𝑦) |
| Ref | Expression |
|---|---|
| mddmdin0i | ⊢ (𝐴 𝑀ℋ* 𝐵 → 𝐴 𝑀ℋ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inindir 4211 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∩ (⊥‘(𝐴 ∩ 𝐵))) = ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | |
| 2 | mddmdin0.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
| 3 | mddmdin0.2 | . . . . . 6 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 2, 3 | chincli 31441 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| 5 | 4 | chocini 31435 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∩ (⊥‘(𝐴 ∩ 𝐵))) = 0ℋ |
| 6 | 1, 5 | eqtr3i 2760 | . . 3 ⊢ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) = 0ℋ |
| 7 | mddmdin0.3 | . . . 4 ⊢ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ ((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) → 𝑥 𝑀ℋ 𝑦) | |
| 8 | 4 | choccli 31288 | . . . . . 6 ⊢ (⊥‘(𝐴 ∩ 𝐵)) ∈ Cℋ |
| 9 | 2, 8 | chincli 31441 | . . . . 5 ⊢ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∈ Cℋ |
| 10 | 3, 8 | chincli 31441 | . . . . 5 ⊢ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∈ Cℋ |
| 11 | breq1 5122 | . . . . . . . 8 ⊢ (𝑥 = (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) → (𝑥 𝑀ℋ* 𝑦 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* 𝑦)) | |
| 12 | ineq1 4188 | . . . . . . . . 9 ⊢ (𝑥 = (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) → (𝑥 ∩ 𝑦) = ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ 𝑦)) | |
| 13 | 12 | eqeq1d 2737 | . . . . . . . 8 ⊢ (𝑥 = (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) → ((𝑥 ∩ 𝑦) = 0ℋ ↔ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ 𝑦) = 0ℋ)) |
| 14 | 11, 13 | anbi12d 632 | . . . . . . 7 ⊢ (𝑥 = (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) → ((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) ↔ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* 𝑦 ∧ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ 𝑦) = 0ℋ))) |
| 15 | breq1 5122 | . . . . . . 7 ⊢ (𝑥 = (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) → (𝑥 𝑀ℋ 𝑦 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ 𝑦)) | |
| 16 | 14, 15 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) → (((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) → 𝑥 𝑀ℋ 𝑦) ↔ (((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* 𝑦 ∧ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ 𝑦) = 0ℋ) → (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ 𝑦))) |
| 17 | breq2 5123 | . . . . . . . 8 ⊢ (𝑦 = (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) → ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* 𝑦 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))))) | |
| 18 | ineq2 4189 | . . . . . . . . 9 ⊢ (𝑦 = (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) → ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ 𝑦) = ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))))) | |
| 19 | 18 | eqeq1d 2737 | . . . . . . . 8 ⊢ (𝑦 = (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) → (((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ 𝑦) = 0ℋ ↔ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) = 0ℋ)) |
| 20 | 17, 19 | anbi12d 632 | . . . . . . 7 ⊢ (𝑦 = (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) → (((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* 𝑦 ∧ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ 𝑦) = 0ℋ) ↔ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∧ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) = 0ℋ))) |
| 21 | breq2 5123 | . . . . . . 7 ⊢ (𝑦 = (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) → ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ 𝑦 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))))) | |
| 22 | 20, 21 | imbi12d 344 | . . . . . 6 ⊢ (𝑦 = (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) → ((((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* 𝑦 ∧ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ 𝑦) = 0ℋ) → (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ 𝑦) ↔ (((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∧ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) = 0ℋ) → (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))))) |
| 23 | 16, 22 | rspc2v 3612 | . . . . 5 ⊢ (((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∈ Cℋ ∧ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∈ Cℋ ) → (∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ ((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) → 𝑥 𝑀ℋ 𝑦) → (((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∧ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) = 0ℋ) → (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))))) |
| 24 | 9, 10, 23 | mp2an 692 | . . . 4 ⊢ (∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ ((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) → 𝑥 𝑀ℋ 𝑦) → (((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∧ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) = 0ℋ) → (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))))) |
| 25 | 7, 24 | ax-mp 5 | . . 3 ⊢ (((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∧ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) ∩ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) = 0ℋ) → (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) |
| 26 | 6, 25 | mpan2 691 | . 2 ⊢ ((𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵))) → (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) |
| 27 | 2, 3 | dmdcompli 32411 | . 2 ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) |
| 28 | 2, 3 | mdcompli 32410 | . 2 ⊢ (𝐴 𝑀ℋ 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) |
| 29 | 26, 27, 28 | 3imtr4i 292 | 1 ⊢ (𝐴 𝑀ℋ* 𝐵 → 𝐴 𝑀ℋ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 class class class wbr 5119 ‘cfv 6531 Cℋ cch 30910 ⊥cort 30911 0ℋc0h 30916 𝑀ℋ cmd 30947 𝑀ℋ* cdmd 30948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 ax-hilex 30980 ax-hfvadd 30981 ax-hvcom 30982 ax-hvass 30983 ax-hv0cl 30984 ax-hvaddid 30985 ax-hfvmul 30986 ax-hvmulid 30987 ax-hvmulass 30988 ax-hvdistr1 30989 ax-hvdistr2 30990 ax-hvmul0 30991 ax-hfi 31060 ax-his1 31063 ax-his2 31064 ax-his3 31065 ax-his4 31066 ax-hcompl 31183 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-cn 23165 df-cnp 23166 df-lm 23167 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cfil 25207 df-cau 25208 df-cmet 25209 df-grpo 30474 df-gid 30475 df-ginv 30476 df-gdiv 30477 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-vs 30580 df-nmcv 30581 df-ims 30582 df-dip 30682 df-ssp 30703 df-ph 30794 df-cbn 30844 df-hnorm 30949 df-hba 30950 df-hvsub 30952 df-hlim 30953 df-hcau 30954 df-sh 31188 df-ch 31202 df-oc 31233 df-ch0 31234 df-shs 31289 df-chj 31291 df-pjh 31376 df-cm 31564 df-md 32261 df-dmd 32262 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |