Step | Hyp | Ref
| Expression |
1 | | n0 4282 |
. 2
⊢ ((𝑆‘𝑈) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑆‘𝑈)) |
2 | | simpl2 1191 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑉 ∈ 𝐽) |
3 | | simpl1 1190 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
4 | | cvmtop1 33209 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
5 | 3, 4 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐶 ∈ Top) |
6 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → 𝐶 ∈ Top) |
7 | | cvmcov.1 |
. . . . . . . . . . . . 13
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
8 | 7 | cvmsss 33216 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑆‘𝑈) → 𝑥 ⊆ 𝐶) |
9 | 8 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑥 ⊆ 𝐶) |
10 | 9 | sselda 3922 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐶) |
11 | | cvmcn 33211 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
12 | 3, 11 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
13 | | cnima 22405 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝑉 ∈ 𝐽) → (◡𝐹 “ 𝑉) ∈ 𝐶) |
14 | 12, 2, 13 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (◡𝐹 “ 𝑉) ∈ 𝐶) |
15 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → (◡𝐹 “ 𝑉) ∈ 𝐶) |
16 | | inopn 22037 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Top ∧ 𝑦 ∈ 𝐶 ∧ (◡𝐹 “ 𝑉) ∈ 𝐶) → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝐶) |
17 | 6, 10, 15, 16 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝐶) |
18 | 17 | fmpttd 6983 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))):𝑥⟶𝐶) |
19 | 18 | frnd 6602 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶) |
20 | 7 | cvmsn0 33217 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑆‘𝑈) → 𝑥 ≠ ∅) |
21 | 20 | adantl 482 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑥 ≠ ∅) |
22 | | dmmptg 6140 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝑥 (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ V → dom (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = 𝑥) |
23 | | inex1g 5243 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑥 → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ V) |
24 | 22, 23 | mprg 3078 |
. . . . . . . . . . 11
⊢ dom
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = 𝑥 |
25 | 24 | eqeq1i 2743 |
. . . . . . . . . 10
⊢ (dom
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅ ↔ 𝑥 = ∅) |
26 | | dm0rn0 5829 |
. . . . . . . . . 10
⊢ (dom
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅ ↔ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅) |
27 | 25, 26 | bitr3i 276 |
. . . . . . . . 9
⊢ (𝑥 = ∅ ↔ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅) |
28 | 27 | necon3bii 2996 |
. . . . . . . 8
⊢ (𝑥 ≠ ∅ ↔ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) |
29 | 21, 28 | sylib 217 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) |
30 | 19, 29 | jca 512 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅)) |
31 | | inss2 4165 |
. . . . . . . . . . . 12
⊢ (𝑦 ∩ (◡𝐹 “ 𝑉)) ⊆ (◡𝐹 “ 𝑉) |
32 | | elpw2g 5268 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ 𝑉) ∈ 𝐶 → ((𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝒫 (◡𝐹 “ 𝑉) ↔ (𝑦 ∩ (◡𝐹 “ 𝑉)) ⊆ (◡𝐹 “ 𝑉))) |
33 | 15, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝒫 (◡𝐹 “ 𝑉) ↔ (𝑦 ∩ (◡𝐹 “ 𝑉)) ⊆ (◡𝐹 “ 𝑉))) |
34 | 31, 33 | mpbiri 257 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝒫 (◡𝐹 “ 𝑉)) |
35 | 34 | fmpttd 6983 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))):𝑥⟶𝒫 (◡𝐹 “ 𝑉)) |
36 | 35 | frnd 6602 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝒫 (◡𝐹 “ 𝑉)) |
37 | | sspwuni 5030 |
. . . . . . . . 9
⊢ (ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝒫 (◡𝐹 “ 𝑉) ↔ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ (◡𝐹 “ 𝑉)) |
38 | 36, 37 | sylib 217 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ (◡𝐹 “ 𝑉)) |
39 | | simpl3 1192 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑉 ⊆ 𝑈) |
40 | | imass2 6005 |
. . . . . . . . . . . 12
⊢ (𝑉 ⊆ 𝑈 → (◡𝐹 “ 𝑉) ⊆ (◡𝐹 “ 𝑈)) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (◡𝐹 “ 𝑉) ⊆ (◡𝐹 “ 𝑈)) |
42 | 7 | cvmsuni 33218 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑆‘𝑈) → ∪ 𝑥 = (◡𝐹 “ 𝑈)) |
43 | 42 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∪ 𝑥 = (◡𝐹 “ 𝑈)) |
44 | 41, 43 | sseqtrrd 3963 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (◡𝐹 “ 𝑉) ⊆ ∪ 𝑥) |
45 | 44 | sselda 3922 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → 𝑧 ∈ ∪ 𝑥) |
46 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉)) |
47 | | ineq1 4141 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑡 → (𝑦 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉))) |
48 | 47 | rspceeqv 3576 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ 𝑥 ∧ (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉))) → ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) |
49 | 46, 48 | mpan2 688 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝑥 → ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) |
50 | 49 | ad2antrl 725 |
. . . . . . . . . . . . 13
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) |
51 | | vex 3435 |
. . . . . . . . . . . . . . 15
⊢ 𝑡 ∈ V |
52 | 51 | inex1 5241 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V |
53 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) |
54 | 53 | elrnmpt 5860 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉)))) |
55 | 52, 54 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) |
56 | 50, 55 | sylibr 233 |
. . . . . . . . . . . 12
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))) |
57 | | simprr 770 |
. . . . . . . . . . . . 13
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → 𝑧 ∈ 𝑡) |
58 | | simplr 766 |
. . . . . . . . . . . . 13
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → 𝑧 ∈ (◡𝐹 “ 𝑉)) |
59 | 57, 58 | elind 4129 |
. . . . . . . . . . . 12
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → 𝑧 ∈ (𝑡 ∩ (◡𝐹 “ 𝑉))) |
60 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
61 | 60 | rspcev 3561 |
. . . . . . . . . . . 12
⊢ (((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∧ 𝑧 ∈ (𝑡 ∩ (◡𝐹 “ 𝑉))) → ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤) |
62 | 56, 59, 61 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤) |
63 | 62 | rexlimdvaa 3213 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → (∃𝑡 ∈ 𝑥 𝑧 ∈ 𝑡 → ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤)) |
64 | | eluni2 4845 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ∪ 𝑥
↔ ∃𝑡 ∈
𝑥 𝑧 ∈ 𝑡) |
65 | | eluni2 4845 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ∪ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤) |
66 | 63, 64, 65 | 3imtr4g 296 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → (𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))))) |
67 | 45, 66 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → 𝑧 ∈ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))) |
68 | 38, 67 | eqelssd 3943 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉)) |
69 | | eldifsn 4722 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))}) ↔ (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∧ 𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
70 | | vex 3435 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
71 | 53 | elrnmpt 5860 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)))) |
72 | 70, 71 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉))) |
73 | 47 | equcoms 2023 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑦 → (𝑦 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉))) |
74 | 73 | necon3ai 2968 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ¬ 𝑡 = 𝑦) |
75 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ (𝑆‘𝑈)) |
76 | | simplr 766 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → 𝑡 ∈ 𝑥) |
77 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
78 | 7 | cvmsdisj 33219 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ (𝑆‘𝑈) ∧ 𝑡 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥) → (𝑡 = 𝑦 ∨ (𝑡 ∩ 𝑦) = ∅)) |
79 | 75, 76, 77, 78 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → (𝑡 = 𝑦 ∨ (𝑡 ∩ 𝑦) = ∅)) |
80 | 79 | ord 861 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → (¬ 𝑡 = 𝑦 → (𝑡 ∩ 𝑦) = ∅)) |
81 | | inss1 4164 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) ⊆ (𝑡 ∩ 𝑦) |
82 | | sseq0 4335 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) ⊆ (𝑡 ∩ 𝑦) ∧ (𝑡 ∩ 𝑦) = ∅) → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅) |
83 | 81, 82 | mpan 687 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑡 ∩ 𝑦) = ∅ → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅) |
84 | 74, 80, 83 | syl56 36 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅)) |
85 | | neeq1 3006 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) ↔ (𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
86 | | ineq2 4142 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ (𝑦 ∩ (◡𝐹 “ 𝑉)))) |
87 | | inindir 4163 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ (𝑦 ∩ (◡𝐹 “ 𝑉))) |
88 | 86, 87 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉))) |
89 | 88 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ↔ ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅)) |
90 | 85, 89 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → ((𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅) ↔ ((𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅))) |
91 | 84, 90 | syl5ibrcom 246 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅))) |
92 | 91 | rexlimdva 3212 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (∃𝑦 ∈ 𝑥 𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅))) |
93 | 72, 92 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅))) |
94 | 93 | impd 411 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∧ 𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉))) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) |
95 | 69, 94 | syl5bi 241 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))}) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) |
96 | 95 | ralrimiv 3102 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅) |
97 | | inss1 4164 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡 |
98 | | resabs1 5916 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡 → ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
99 | 97, 98 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) |
100 | 7 | cvmshmeo 33220 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (𝑆‘𝑈) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡) ∈ ((𝐶 ↾t 𝑡)Homeo(𝐽 ↾t 𝑈))) |
101 | 100 | adantll 711 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡) ∈ ((𝐶 ↾t 𝑡)Homeo(𝐽 ↾t 𝑈))) |
102 | 5 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝐶 ∈ Top) |
103 | 9 | sselda 3922 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 ∈ 𝐶) |
104 | | elssuni 4873 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐶 → 𝑡 ⊆ ∪ 𝐶) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 ⊆ ∪ 𝐶) |
106 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝐶 =
∪ 𝐶 |
107 | 106 | restuni 22302 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ Top ∧ 𝑡 ⊆ ∪ 𝐶)
→ 𝑡 = ∪ (𝐶
↾t 𝑡)) |
108 | 102, 105,
107 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 = ∪ (𝐶 ↾t 𝑡)) |
109 | 97, 108 | sseqtrid 3974 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ ∪
(𝐶 ↾t
𝑡)) |
110 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ ∪ (𝐶
↾t 𝑡) =
∪ (𝐶 ↾t 𝑡) |
111 | 110 | hmeores 22911 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ↾ 𝑡) ∈ ((𝐶 ↾t 𝑡)Homeo(𝐽 ↾t 𝑈)) ∧ (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ ∪
(𝐶 ↾t
𝑡)) → ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))))) |
112 | 101, 109,
111 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))))) |
113 | 99, 112 | eqeltrrid 2844 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))))) |
114 | 97 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡) |
115 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 ∈ 𝑥) |
116 | | restabs 22305 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ Top ∧ (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡 ∧ 𝑡 ∈ 𝑥) → ((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
117 | 102, 114,
115, 116 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
118 | | incom 4136 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) = ((◡𝐹 “ 𝑉) ∩ 𝑡) |
119 | | cnvresima 6128 |
. . . . . . . . . . . . . . . . 17
⊢ (◡(𝐹 ↾ 𝑡) “ 𝑉) = ((◡𝐹 “ 𝑉) ∩ 𝑡) |
120 | 118, 119 | eqtr4i 2769 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) = (◡(𝐹 ↾ 𝑡) “ 𝑉) |
121 | 120 | imaeq2i 5962 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉))) = ((𝐹 ↾ 𝑡) “ (◡(𝐹 ↾ 𝑡) “ 𝑉)) |
122 | 3 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
123 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑥 ∈ (𝑆‘𝑈)) |
124 | 7 | cvmsf1o 33221 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥 ∈ (𝑆‘𝑈) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑈) |
125 | 122, 123,
115, 124 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑈) |
126 | | f1ofo 6717 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑈 → (𝐹 ↾ 𝑡):𝑡–onto→𝑈) |
127 | 125, 126 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡):𝑡–onto→𝑈) |
128 | 39 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑉 ⊆ 𝑈) |
129 | | foimacnv 6727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ↾ 𝑡):𝑡–onto→𝑈 ∧ 𝑉 ⊆ 𝑈) → ((𝐹 ↾ 𝑡) “ (◡(𝐹 ↾ 𝑡) “ 𝑉)) = 𝑉) |
130 | 127, 128,
129 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐹 ↾ 𝑡) “ (◡(𝐹 ↾ 𝑡) “ 𝑉)) = 𝑉) |
131 | 121, 130 | eqtrid 2790 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉))) = 𝑉) |
132 | 131 | oveq2d 7285 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))) = ((𝐽 ↾t 𝑈) ↾t 𝑉)) |
133 | | cvmtop2 33210 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) |
134 | 3, 133 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐽 ∈ Top) |
135 | 7 | cvmsrcl 33213 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
136 | 135 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑈 ∈ 𝐽) |
137 | | restabs 22305 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑉 ⊆ 𝑈 ∧ 𝑈 ∈ 𝐽) → ((𝐽 ↾t 𝑈) ↾t 𝑉) = (𝐽 ↾t 𝑉)) |
138 | 134, 39, 136, 137 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ((𝐽 ↾t 𝑈) ↾t 𝑉) = (𝐽 ↾t 𝑉)) |
139 | 138 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐽 ↾t 𝑈) ↾t 𝑉) = (𝐽 ↾t 𝑉)) |
140 | 132, 139 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))) = (𝐽 ↾t 𝑉)) |
141 | 117, 140 | oveq12d 7287 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉))))) = ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))) |
142 | 113, 141 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))) |
143 | 96, 142 | jca 512 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) |
144 | 143 | ralrimiva 3103 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∀𝑡 ∈ 𝑥 (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) |
145 | 52 | rgenw 3076 |
. . . . . . . . 9
⊢
∀𝑡 ∈
𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V |
146 | 47 | cbvmptv 5188 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (𝑡 ∈ 𝑥 ↦ (𝑡 ∩ (◡𝐹 “ 𝑉))) |
147 | | sneq 4573 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → {𝑤} = {(𝑡 ∩ (◡𝐹 “ 𝑉))}) |
148 | 147 | difeq2d 4058 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤}) = (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})) |
149 | | ineq1 4141 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝑤 ∩ 𝑧) = ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧)) |
150 | 149 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑤 ∩ 𝑧) = ∅ ↔ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) |
151 | 148, 150 | raleqbidv 3335 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ↔ ∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) |
152 | | reseq2 5881 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝐹 ↾ 𝑤) = (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
153 | | oveq2 7277 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝐶 ↾t 𝑤) = (𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
154 | 153 | oveq1d 7284 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉)) = ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))) |
155 | 152, 154 | eleq12d 2833 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉)) ↔ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) |
156 | 151, 155 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))) ↔ (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))))) |
157 | 146, 156 | ralrnmptw 6964 |
. . . . . . . . 9
⊢
(∀𝑡 ∈
𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))) ↔ ∀𝑡 ∈ 𝑥 (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))))) |
158 | 145, 157 | ax-mp 5 |
. . . . . . . 8
⊢
(∀𝑤 ∈
ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))) ↔ ∀𝑡 ∈ 𝑥 (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) |
159 | 144, 158 | sylibr 233 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉)))) |
160 | 68, 159 | jca 512 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉) ∧ ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))))) |
161 | 7 | cvmscbv 33207 |
. . . . . . . 8
⊢ 𝑆 = (𝑎 ∈ 𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑤 ∈ 𝑏 (∀𝑧 ∈ (𝑏 ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑎))))}) |
162 | 161 | cvmsval 33215 |
. . . . . . 7
⊢ (𝐶 ∈ Top → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∈ (𝑆‘𝑉) ↔ (𝑉 ∈ 𝐽 ∧ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) ∧ (∪ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉) ∧ ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))))))) |
163 | 5, 162 | syl 17 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∈ (𝑆‘𝑉) ↔ (𝑉 ∈ 𝐽 ∧ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) ∧ (∪ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉) ∧ ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))))))) |
164 | 2, 30, 160, 163 | mpbir3and 1341 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∈ (𝑆‘𝑉)) |
165 | 164 | ne0d 4271 |
. . . 4
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (𝑆‘𝑉) ≠ ∅) |
166 | 165 | ex 413 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ (𝑆‘𝑈) → (𝑆‘𝑉) ≠ ∅)) |
167 | 166 | exlimdv 1936 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → (∃𝑥 𝑥 ∈ (𝑆‘𝑈) → (𝑆‘𝑉) ≠ ∅)) |
168 | 1, 167 | syl5bi 241 |
1
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → ((𝑆‘𝑈) ≠ ∅ → (𝑆‘𝑉) ≠ ∅)) |