| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | n0 4353 | . 2
⊢ ((𝑆‘𝑈) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑆‘𝑈)) | 
| 2 |  | simpl2 1193 | . . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑉 ∈ 𝐽) | 
| 3 |  | simpl1 1192 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 4 |  | cvmtop1 35265 | . . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) | 
| 5 | 3, 4 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐶 ∈ Top) | 
| 6 | 5 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → 𝐶 ∈ Top) | 
| 7 |  | cvmcov.1 | . . . . . . . . . . . . 13
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | 
| 8 | 7 | cvmsss 35272 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑆‘𝑈) → 𝑥 ⊆ 𝐶) | 
| 9 | 8 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑥 ⊆ 𝐶) | 
| 10 | 9 | sselda 3983 | . . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐶) | 
| 11 |  | cvmcn 35267 | . . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) | 
| 12 | 3, 11 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐹 ∈ (𝐶 Cn 𝐽)) | 
| 13 |  | cnima 23273 | . . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝑉 ∈ 𝐽) → (◡𝐹 “ 𝑉) ∈ 𝐶) | 
| 14 | 12, 2, 13 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (◡𝐹 “ 𝑉) ∈ 𝐶) | 
| 15 | 14 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → (◡𝐹 “ 𝑉) ∈ 𝐶) | 
| 16 |  | inopn 22905 | . . . . . . . . . 10
⊢ ((𝐶 ∈ Top ∧ 𝑦 ∈ 𝐶 ∧ (◡𝐹 “ 𝑉) ∈ 𝐶) → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝐶) | 
| 17 | 6, 10, 15, 16 | syl3anc 1373 | . . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝐶) | 
| 18 | 17 | fmpttd 7135 | . . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))):𝑥⟶𝐶) | 
| 19 | 18 | frnd 6744 | . . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶) | 
| 20 | 7 | cvmsn0 35273 | . . . . . . . . 9
⊢ (𝑥 ∈ (𝑆‘𝑈) → 𝑥 ≠ ∅) | 
| 21 | 20 | adantl 481 | . . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑥 ≠ ∅) | 
| 22 |  | dmmptg 6262 | . . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝑥 (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ V → dom (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = 𝑥) | 
| 23 |  | inex1g 5319 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑥 → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ V) | 
| 24 | 22, 23 | mprg 3067 | . . . . . . . . . . 11
⊢ dom
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = 𝑥 | 
| 25 | 24 | eqeq1i 2742 | . . . . . . . . . 10
⊢ (dom
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅ ↔ 𝑥 = ∅) | 
| 26 |  | dm0rn0 5935 | . . . . . . . . . 10
⊢ (dom
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅ ↔ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅) | 
| 27 | 25, 26 | bitr3i 277 | . . . . . . . . 9
⊢ (𝑥 = ∅ ↔ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅) | 
| 28 | 27 | necon3bii 2993 | . . . . . . . 8
⊢ (𝑥 ≠ ∅ ↔ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) | 
| 29 | 21, 28 | sylib 218 | . . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) | 
| 30 | 19, 29 | jca 511 | . . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅)) | 
| 31 |  | inss2 4238 | . . . . . . . . . . . 12
⊢ (𝑦 ∩ (◡𝐹 “ 𝑉)) ⊆ (◡𝐹 “ 𝑉) | 
| 32 |  | elpw2g 5333 | . . . . . . . . . . . . 13
⊢ ((◡𝐹 “ 𝑉) ∈ 𝐶 → ((𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝒫 (◡𝐹 “ 𝑉) ↔ (𝑦 ∩ (◡𝐹 “ 𝑉)) ⊆ (◡𝐹 “ 𝑉))) | 
| 33 | 15, 32 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝒫 (◡𝐹 “ 𝑉) ↔ (𝑦 ∩ (◡𝐹 “ 𝑉)) ⊆ (◡𝐹 “ 𝑉))) | 
| 34 | 31, 33 | mpbiri 258 | . . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝒫 (◡𝐹 “ 𝑉)) | 
| 35 | 34 | fmpttd 7135 | . . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))):𝑥⟶𝒫 (◡𝐹 “ 𝑉)) | 
| 36 | 35 | frnd 6744 | . . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝒫 (◡𝐹 “ 𝑉)) | 
| 37 |  | sspwuni 5100 | . . . . . . . . 9
⊢ (ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝒫 (◡𝐹 “ 𝑉) ↔ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ (◡𝐹 “ 𝑉)) | 
| 38 | 36, 37 | sylib 218 | . . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ (◡𝐹 “ 𝑉)) | 
| 39 |  | simpl3 1194 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑉 ⊆ 𝑈) | 
| 40 |  | imass2 6120 | . . . . . . . . . . . 12
⊢ (𝑉 ⊆ 𝑈 → (◡𝐹 “ 𝑉) ⊆ (◡𝐹 “ 𝑈)) | 
| 41 | 39, 40 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (◡𝐹 “ 𝑉) ⊆ (◡𝐹 “ 𝑈)) | 
| 42 | 7 | cvmsuni 35274 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑆‘𝑈) → ∪ 𝑥 = (◡𝐹 “ 𝑈)) | 
| 43 | 42 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∪ 𝑥 = (◡𝐹 “ 𝑈)) | 
| 44 | 41, 43 | sseqtrrd 4021 | . . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (◡𝐹 “ 𝑉) ⊆ ∪ 𝑥) | 
| 45 | 44 | sselda 3983 | . . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → 𝑧 ∈ ∪ 𝑥) | 
| 46 |  | eqid 2737 | . . . . . . . . . . . . . . 15
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉)) | 
| 47 |  | ineq1 4213 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑡 → (𝑦 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉))) | 
| 48 | 47 | rspceeqv 3645 | . . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ 𝑥 ∧ (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉))) → ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) | 
| 49 | 46, 48 | mpan2 691 | . . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝑥 → ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) | 
| 50 | 49 | ad2antrl 728 | . . . . . . . . . . . . 13
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) | 
| 51 |  | vex 3484 | . . . . . . . . . . . . . . 15
⊢ 𝑡 ∈ V | 
| 52 | 51 | inex1 5317 | . . . . . . . . . . . . . 14
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V | 
| 53 |  | eqid 2737 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) | 
| 54 | 53 | elrnmpt 5969 | . . . . . . . . . . . . . 14
⊢ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉)))) | 
| 55 | 52, 54 | ax-mp 5 | . . . . . . . . . . . . 13
⊢ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) | 
| 56 | 50, 55 | sylibr 234 | . . . . . . . . . . . 12
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))) | 
| 57 |  | simprr 773 | . . . . . . . . . . . . 13
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → 𝑧 ∈ 𝑡) | 
| 58 |  | simplr 769 | . . . . . . . . . . . . 13
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → 𝑧 ∈ (◡𝐹 “ 𝑉)) | 
| 59 | 57, 58 | elind 4200 | . . . . . . . . . . . 12
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → 𝑧 ∈ (𝑡 ∩ (◡𝐹 “ 𝑉))) | 
| 60 |  | eleq2 2830 | . . . . . . . . . . . . 13
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ (𝑡 ∩ (◡𝐹 “ 𝑉)))) | 
| 61 | 60 | rspcev 3622 | . . . . . . . . . . . 12
⊢ (((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∧ 𝑧 ∈ (𝑡 ∩ (◡𝐹 “ 𝑉))) → ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤) | 
| 62 | 56, 59, 61 | syl2anc 584 | . . . . . . . . . . 11
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤) | 
| 63 | 62 | rexlimdvaa 3156 | . . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → (∃𝑡 ∈ 𝑥 𝑧 ∈ 𝑡 → ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤)) | 
| 64 |  | eluni2 4911 | . . . . . . . . . 10
⊢ (𝑧 ∈ ∪ 𝑥
↔ ∃𝑡 ∈
𝑥 𝑧 ∈ 𝑡) | 
| 65 |  | eluni2 4911 | . . . . . . . . . 10
⊢ (𝑧 ∈ ∪ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤) | 
| 66 | 63, 64, 65 | 3imtr4g 296 | . . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → (𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))))) | 
| 67 | 45, 66 | mpd 15 | . . . . . . . 8
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → 𝑧 ∈ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))) | 
| 68 | 38, 67 | eqelssd 4005 | . . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉)) | 
| 69 |  | eldifsn 4786 | . . . . . . . . . . . 12
⊢ (𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))}) ↔ (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∧ 𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)))) | 
| 70 |  | vex 3484 | . . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V | 
| 71 | 53 | elrnmpt 5969 | . . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)))) | 
| 72 | 70, 71 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉))) | 
| 73 | 47 | equcoms 2019 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑦 → (𝑦 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉))) | 
| 74 | 73 | necon3ai 2965 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ¬ 𝑡 = 𝑦) | 
| 75 |  | simpllr 776 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ (𝑆‘𝑈)) | 
| 76 |  | simplr 769 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → 𝑡 ∈ 𝑥) | 
| 77 |  | simpr 484 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | 
| 78 | 7 | cvmsdisj 35275 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ (𝑆‘𝑈) ∧ 𝑡 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥) → (𝑡 = 𝑦 ∨ (𝑡 ∩ 𝑦) = ∅)) | 
| 79 | 75, 76, 77, 78 | syl3anc 1373 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → (𝑡 = 𝑦 ∨ (𝑡 ∩ 𝑦) = ∅)) | 
| 80 | 79 | ord 865 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → (¬ 𝑡 = 𝑦 → (𝑡 ∩ 𝑦) = ∅)) | 
| 81 |  | inss1 4237 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) ⊆ (𝑡 ∩ 𝑦) | 
| 82 |  | sseq0 4403 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) ⊆ (𝑡 ∩ 𝑦) ∧ (𝑡 ∩ 𝑦) = ∅) → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅) | 
| 83 | 81, 82 | mpan 690 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑡 ∩ 𝑦) = ∅ → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅) | 
| 84 | 74, 80, 83 | syl56 36 | . . . . . . . . . . . . . . . 16
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅)) | 
| 85 |  | neeq1 3003 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) ↔ (𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)))) | 
| 86 |  | ineq2 4214 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ (𝑦 ∩ (◡𝐹 “ 𝑉)))) | 
| 87 |  | inindir 4236 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ (𝑦 ∩ (◡𝐹 “ 𝑉))) | 
| 88 | 86, 87 | eqtr4di 2795 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉))) | 
| 89 | 88 | eqeq1d 2739 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ↔ ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅)) | 
| 90 | 85, 89 | imbi12d 344 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → ((𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅) ↔ ((𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅))) | 
| 91 | 84, 90 | syl5ibrcom 247 | . . . . . . . . . . . . . . 15
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅))) | 
| 92 | 91 | rexlimdva 3155 | . . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (∃𝑦 ∈ 𝑥 𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅))) | 
| 93 | 72, 92 | biimtrid 242 | . . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅))) | 
| 94 | 93 | impd 410 | . . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∧ 𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉))) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) | 
| 95 | 69, 94 | biimtrid 242 | . . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))}) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) | 
| 96 | 95 | ralrimiv 3145 | . . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅) | 
| 97 |  | inss1 4237 | . . . . . . . . . . . . 13
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡 | 
| 98 |  | resabs1 6024 | . . . . . . . . . . . . 13
⊢ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡 → ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉)))) | 
| 99 | 97, 98 | ax-mp 5 | . . . . . . . . . . . 12
⊢ ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) | 
| 100 | 7 | cvmshmeo 35276 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (𝑆‘𝑈) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡) ∈ ((𝐶 ↾t 𝑡)Homeo(𝐽 ↾t 𝑈))) | 
| 101 | 100 | adantll 714 | . . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡) ∈ ((𝐶 ↾t 𝑡)Homeo(𝐽 ↾t 𝑈))) | 
| 102 | 5 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝐶 ∈ Top) | 
| 103 | 9 | sselda 3983 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 ∈ 𝐶) | 
| 104 |  | elssuni 4937 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐶 → 𝑡 ⊆ ∪ 𝐶) | 
| 105 | 103, 104 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 ⊆ ∪ 𝐶) | 
| 106 |  | eqid 2737 | . . . . . . . . . . . . . . . 16
⊢ ∪ 𝐶 =
∪ 𝐶 | 
| 107 | 106 | restuni 23170 | . . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ Top ∧ 𝑡 ⊆ ∪ 𝐶)
→ 𝑡 = ∪ (𝐶
↾t 𝑡)) | 
| 108 | 102, 105,
107 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 = ∪ (𝐶 ↾t 𝑡)) | 
| 109 | 97, 108 | sseqtrid 4026 | . . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ ∪
(𝐶 ↾t
𝑡)) | 
| 110 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢ ∪ (𝐶
↾t 𝑡) =
∪ (𝐶 ↾t 𝑡) | 
| 111 | 110 | hmeores 23779 | . . . . . . . . . . . . 13
⊢ (((𝐹 ↾ 𝑡) ∈ ((𝐶 ↾t 𝑡)Homeo(𝐽 ↾t 𝑈)) ∧ (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ ∪
(𝐶 ↾t
𝑡)) → ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))))) | 
| 112 | 101, 109,
111 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))))) | 
| 113 | 99, 112 | eqeltrrid 2846 | . . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))))) | 
| 114 | 97 | a1i 11 | . . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡) | 
| 115 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 ∈ 𝑥) | 
| 116 |  | restabs 23173 | . . . . . . . . . . . . 13
⊢ ((𝐶 ∈ Top ∧ (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡 ∧ 𝑡 ∈ 𝑥) → ((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))) | 
| 117 | 102, 114,
115, 116 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))) | 
| 118 |  | incom 4209 | . . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) = ((◡𝐹 “ 𝑉) ∩ 𝑡) | 
| 119 |  | cnvresima 6250 | . . . . . . . . . . . . . . . . 17
⊢ (◡(𝐹 ↾ 𝑡) “ 𝑉) = ((◡𝐹 “ 𝑉) ∩ 𝑡) | 
| 120 | 118, 119 | eqtr4i 2768 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) = (◡(𝐹 ↾ 𝑡) “ 𝑉) | 
| 121 | 120 | imaeq2i 6076 | . . . . . . . . . . . . . . 15
⊢ ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉))) = ((𝐹 ↾ 𝑡) “ (◡(𝐹 ↾ 𝑡) “ 𝑉)) | 
| 122 | 3 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 123 |  | simplr 769 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑥 ∈ (𝑆‘𝑈)) | 
| 124 | 7 | cvmsf1o 35277 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥 ∈ (𝑆‘𝑈) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑈) | 
| 125 | 122, 123,
115, 124 | syl3anc 1373 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑈) | 
| 126 |  | f1ofo 6855 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑈 → (𝐹 ↾ 𝑡):𝑡–onto→𝑈) | 
| 127 | 125, 126 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡):𝑡–onto→𝑈) | 
| 128 | 39 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑉 ⊆ 𝑈) | 
| 129 |  | foimacnv 6865 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹 ↾ 𝑡):𝑡–onto→𝑈 ∧ 𝑉 ⊆ 𝑈) → ((𝐹 ↾ 𝑡) “ (◡(𝐹 ↾ 𝑡) “ 𝑉)) = 𝑉) | 
| 130 | 127, 128,
129 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐹 ↾ 𝑡) “ (◡(𝐹 ↾ 𝑡) “ 𝑉)) = 𝑉) | 
| 131 | 121, 130 | eqtrid 2789 | . . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉))) = 𝑉) | 
| 132 | 131 | oveq2d 7447 | . . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))) = ((𝐽 ↾t 𝑈) ↾t 𝑉)) | 
| 133 |  | cvmtop2 35266 | . . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) | 
| 134 | 3, 133 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐽 ∈ Top) | 
| 135 | 7 | cvmsrcl 35269 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) | 
| 136 | 135 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑈 ∈ 𝐽) | 
| 137 |  | restabs 23173 | . . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑉 ⊆ 𝑈 ∧ 𝑈 ∈ 𝐽) → ((𝐽 ↾t 𝑈) ↾t 𝑉) = (𝐽 ↾t 𝑉)) | 
| 138 | 134, 39, 136, 137 | syl3anc 1373 | . . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ((𝐽 ↾t 𝑈) ↾t 𝑉) = (𝐽 ↾t 𝑉)) | 
| 139 | 138 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐽 ↾t 𝑈) ↾t 𝑉) = (𝐽 ↾t 𝑉)) | 
| 140 | 132, 139 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))) = (𝐽 ↾t 𝑉)) | 
| 141 | 117, 140 | oveq12d 7449 | . . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉))))) = ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))) | 
| 142 | 113, 141 | eleqtrd 2843 | . . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))) | 
| 143 | 96, 142 | jca 511 | . . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) | 
| 144 | 143 | ralrimiva 3146 | . . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∀𝑡 ∈ 𝑥 (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) | 
| 145 | 52 | rgenw 3065 | . . . . . . . . 9
⊢
∀𝑡 ∈
𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V | 
| 146 | 47 | cbvmptv 5255 | . . . . . . . . . 10
⊢ (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (𝑡 ∈ 𝑥 ↦ (𝑡 ∩ (◡𝐹 “ 𝑉))) | 
| 147 |  | sneq 4636 | . . . . . . . . . . . . 13
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → {𝑤} = {(𝑡 ∩ (◡𝐹 “ 𝑉))}) | 
| 148 | 147 | difeq2d 4126 | . . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤}) = (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})) | 
| 149 |  | ineq1 4213 | . . . . . . . . . . . . 13
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝑤 ∩ 𝑧) = ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧)) | 
| 150 | 149 | eqeq1d 2739 | . . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑤 ∩ 𝑧) = ∅ ↔ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) | 
| 151 | 148, 150 | raleqbidv 3346 | . . . . . . . . . . 11
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ↔ ∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) | 
| 152 |  | reseq2 5992 | . . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝐹 ↾ 𝑤) = (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉)))) | 
| 153 |  | oveq2 7439 | . . . . . . . . . . . . 13
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝐶 ↾t 𝑤) = (𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))) | 
| 154 | 153 | oveq1d 7446 | . . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉)) = ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))) | 
| 155 | 152, 154 | eleq12d 2835 | . . . . . . . . . . 11
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉)) ↔ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) | 
| 156 | 151, 155 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))) ↔ (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))))) | 
| 157 | 146, 156 | ralrnmptw 7114 | . . . . . . . . 9
⊢
(∀𝑡 ∈
𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))) ↔ ∀𝑡 ∈ 𝑥 (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))))) | 
| 158 | 145, 157 | ax-mp 5 | . . . . . . . 8
⊢
(∀𝑤 ∈
ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))) ↔ ∀𝑡 ∈ 𝑥 (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) | 
| 159 | 144, 158 | sylibr 234 | . . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉)))) | 
| 160 | 68, 159 | jca 511 | . . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉) ∧ ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))))) | 
| 161 | 7 | cvmscbv 35263 | . . . . . . . 8
⊢ 𝑆 = (𝑎 ∈ 𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑤 ∈ 𝑏 (∀𝑧 ∈ (𝑏 ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑎))))}) | 
| 162 | 161 | cvmsval 35271 | . . . . . . 7
⊢ (𝐶 ∈ Top → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∈ (𝑆‘𝑉) ↔ (𝑉 ∈ 𝐽 ∧ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) ∧ (∪ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉) ∧ ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))))))) | 
| 163 | 5, 162 | syl 17 | . . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∈ (𝑆‘𝑉) ↔ (𝑉 ∈ 𝐽 ∧ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) ∧ (∪ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉) ∧ ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))))))) | 
| 164 | 2, 30, 160, 163 | mpbir3and 1343 | . . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∈ (𝑆‘𝑉)) | 
| 165 | 164 | ne0d 4342 | . . . 4
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (𝑆‘𝑉) ≠ ∅) | 
| 166 | 165 | ex 412 | . . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ (𝑆‘𝑈) → (𝑆‘𝑉) ≠ ∅)) | 
| 167 | 166 | exlimdv 1933 | . 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → (∃𝑥 𝑥 ∈ (𝑆‘𝑈) → (𝑆‘𝑉) ≠ ∅)) | 
| 168 | 1, 167 | biimtrid 242 | 1
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → ((𝑆‘𝑈) ≠ ∅ → (𝑆‘𝑉) ≠ ∅)) |