MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppidif Structured version   Visualization version   GIF version

Theorem ppidif 27089
Description: The difference of the prime-counting function π at two points counts the number of primes in an interval. (Contributed by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
ppidif (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))

Proof of Theorem ppidif
StepHypRef Expression
1 eluzelz 12763 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2 eluzel2 12758 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3 2z 12525 . . . . . . 7 2 ∈ ℤ
4 ifcl 4524 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
52, 3, 4sylancl 586 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
63a1i 11 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 2 ∈ ℤ)
72zred 12598 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
8 2re 12220 . . . . . . 7 2 ∈ ℝ
9 min2 13110 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
107, 8, 9sylancl 586 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
11 eluz2 12759 . . . . . 6 (2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 2 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 2))
125, 6, 10, 11syl3anbrc 1344 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
13 ppival2g 27055 . . . . 5 ((𝑁 ∈ ℤ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → (π𝑁) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)))
141, 12, 13syl2anc 584 . . . 4 (𝑁 ∈ (ℤ𝑀) → (π𝑁) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)))
15 min1 13109 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
167, 8, 15sylancl 586 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
17 eluz2 12759 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀))
185, 2, 16, 17syl3anbrc 1344 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
19 id 22 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ𝑀))
20 elfzuzb 13439 . . . . . . . . 9 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ↔ (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ∧ 𝑁 ∈ (ℤ𝑀)))
2118, 19, 20sylanbrc 583 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁))
22 fzsplit 13471 . . . . . . . 8 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2321, 22syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2423ineq1d 4172 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ))
25 indir 4239 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))
2624, 25eqtrdi 2780 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ)))
2726fveq2d 6830 . . . 4 (𝑁 ∈ (ℤ𝑀) → (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) = (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))))
28 fzfi 13897 . . . . . 6 (if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin
29 inss1 4190 . . . . . 6 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)
30 ssfi 9097 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin ∧ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin)
3128, 29, 30mp2an 692 . . . . 5 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin
32 fzfi 13897 . . . . . 6 ((𝑀 + 1)...𝑁) ∈ Fin
33 inss1 4190 . . . . . 6 (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)
34 ssfi 9097 . . . . . 6 ((((𝑀 + 1)...𝑁) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)) → (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin)
3532, 33, 34mp2an 692 . . . . 5 (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin
367ltp1d 12073 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 < (𝑀 + 1))
37 fzdisj 13472 . . . . . . . 8 (𝑀 < (𝑀 + 1) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
3836, 37syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
3938ineq1d 4172 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (∅ ∩ ℙ))
40 inindir 4189 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ))
41 0in 4350 . . . . . 6 (∅ ∩ ℙ) = ∅
4239, 40, 413eqtr3g 2787 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅)
43 hashun 14307 . . . . 5 ((((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin ∧ (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅) → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4431, 35, 42, 43mp3an12i 1467 . . . 4 (𝑁 ∈ (ℤ𝑀) → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4514, 27, 443eqtrd 2768 . . 3 (𝑁 ∈ (ℤ𝑀) → (π𝑁) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
46 ppival2g 27055 . . . 4 ((𝑀 ∈ ℤ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → (π𝑀) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)))
472, 12, 46syl2anc 584 . . 3 (𝑁 ∈ (ℤ𝑀) → (π𝑀) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)))
4845, 47oveq12d 7371 . 2 (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))))
49 hashcl 14281 . . . . 5 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin → (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℕ0)
5031, 49ax-mp 5 . . . 4 (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℕ0
5150nn0cni 12414 . . 3 (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℂ
52 hashcl 14281 . . . . 5 ((((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin → (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℕ0)
5335, 52ax-mp 5 . . . 4 (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℕ0
5453nn0cni 12414 . . 3 (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℂ
55 pncan2 11388 . . 3 (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℂ ∧ (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℂ) → (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))
5651, 54, 55mp2an 692 . 2 (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))
5748, 56eqtrdi 2780 1 (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3903  cin 3904  wss 3905  c0 4286  ifcif 4478   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  cr 11027  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11365  2c2 12201  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  chash 14255  cprime 16600  πcppi 27020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-icc 13273  df-fz 13429  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-prm 16601  df-ppi 27026
This theorem is referenced by:  ppiub  27131  chtppilimlem1  27400
  Copyright terms: Public domain W3C validator