MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppidif Structured version   Visualization version   GIF version

Theorem ppidif 27095
Description: The difference of the prime-counting function π at two points counts the number of primes in an interval. (Contributed by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
ppidif (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))

Proof of Theorem ppidif
StepHypRef Expression
1 eluzelz 12737 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2 eluzel2 12732 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3 2z 12499 . . . . . . 7 2 ∈ ℤ
4 ifcl 4516 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
52, 3, 4sylancl 586 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
63a1i 11 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 2 ∈ ℤ)
72zred 12572 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
8 2re 12194 . . . . . . 7 2 ∈ ℝ
9 min2 13084 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
107, 8, 9sylancl 586 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
11 eluz2 12733 . . . . . 6 (2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 2 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 2))
125, 6, 10, 11syl3anbrc 1344 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
13 ppival2g 27061 . . . . 5 ((𝑁 ∈ ℤ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → (π𝑁) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)))
141, 12, 13syl2anc 584 . . . 4 (𝑁 ∈ (ℤ𝑀) → (π𝑁) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)))
15 min1 13083 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
167, 8, 15sylancl 586 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
17 eluz2 12733 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀))
185, 2, 16, 17syl3anbrc 1344 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
19 id 22 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ𝑀))
20 elfzuzb 13413 . . . . . . . . 9 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ↔ (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ∧ 𝑁 ∈ (ℤ𝑀)))
2118, 19, 20sylanbrc 583 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁))
22 fzsplit 13445 . . . . . . . 8 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2321, 22syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2423ineq1d 4164 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ))
25 indir 4231 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))
2624, 25eqtrdi 2782 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ)))
2726fveq2d 6821 . . . 4 (𝑁 ∈ (ℤ𝑀) → (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) = (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))))
28 fzfi 13874 . . . . . 6 (if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin
29 inss1 4182 . . . . . 6 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)
30 ssfi 9077 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin ∧ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin)
3128, 29, 30mp2an 692 . . . . 5 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin
32 fzfi 13874 . . . . . 6 ((𝑀 + 1)...𝑁) ∈ Fin
33 inss1 4182 . . . . . 6 (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)
34 ssfi 9077 . . . . . 6 ((((𝑀 + 1)...𝑁) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)) → (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin)
3532, 33, 34mp2an 692 . . . . 5 (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin
367ltp1d 12047 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 < (𝑀 + 1))
37 fzdisj 13446 . . . . . . . 8 (𝑀 < (𝑀 + 1) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
3836, 37syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
3938ineq1d 4164 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (∅ ∩ ℙ))
40 inindir 4181 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ))
41 0in 4342 . . . . . 6 (∅ ∩ ℙ) = ∅
4239, 40, 413eqtr3g 2789 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅)
43 hashun 14284 . . . . 5 ((((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin ∧ (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅) → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4431, 35, 42, 43mp3an12i 1467 . . . 4 (𝑁 ∈ (ℤ𝑀) → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4514, 27, 443eqtrd 2770 . . 3 (𝑁 ∈ (ℤ𝑀) → (π𝑁) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
46 ppival2g 27061 . . . 4 ((𝑀 ∈ ℤ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → (π𝑀) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)))
472, 12, 46syl2anc 584 . . 3 (𝑁 ∈ (ℤ𝑀) → (π𝑀) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)))
4845, 47oveq12d 7359 . 2 (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))))
49 hashcl 14258 . . . . 5 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin → (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℕ0)
5031, 49ax-mp 5 . . . 4 (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℕ0
5150nn0cni 12388 . . 3 (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℂ
52 hashcl 14258 . . . . 5 ((((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin → (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℕ0)
5335, 52ax-mp 5 . . . 4 (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℕ0
5453nn0cni 12388 . . 3 (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℂ
55 pncan2 11362 . . 3 (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℂ ∧ (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℂ) → (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))
5651, 54, 55mp2an 692 . 2 (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))
5748, 56eqtrdi 2782 1 (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cun 3895  cin 3896  wss 3897  c0 4278  ifcif 4470   class class class wbr 5086  cfv 6476  (class class class)co 7341  Fincfn 8864  cc 10999  cr 11000  1c1 11002   + caddc 11004   < clt 11141  cle 11142  cmin 11339  2c2 12175  0cn0 12376  cz 12463  cuz 12727  ...cfz 13402  chash 14232  cprime 16577  πcppi 27026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-icc 13247  df-fz 13403  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159  df-prm 16578  df-ppi 27032
This theorem is referenced by:  ppiub  27137  chtppilimlem1  27406
  Copyright terms: Public domain W3C validator