MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppidif Structured version   Visualization version   GIF version

Theorem ppidif 27049
Description: The difference of the prime-counting function π at two points counts the number of primes in an interval. (Contributed by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
ppidif (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))

Proof of Theorem ppidif
StepHypRef Expression
1 eluzelz 12779 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2 eluzel2 12774 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3 2z 12541 . . . . . . 7 2 ∈ ℤ
4 ifcl 4530 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
52, 3, 4sylancl 586 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
63a1i 11 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 2 ∈ ℤ)
72zred 12614 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
8 2re 12236 . . . . . . 7 2 ∈ ℝ
9 min2 13126 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
107, 8, 9sylancl 586 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
11 eluz2 12775 . . . . . 6 (2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 2 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 2))
125, 6, 10, 11syl3anbrc 1344 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
13 ppival2g 27015 . . . . 5 ((𝑁 ∈ ℤ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → (π𝑁) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)))
141, 12, 13syl2anc 584 . . . 4 (𝑁 ∈ (ℤ𝑀) → (π𝑁) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)))
15 min1 13125 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
167, 8, 15sylancl 586 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
17 eluz2 12775 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀))
185, 2, 16, 17syl3anbrc 1344 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
19 id 22 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ𝑀))
20 elfzuzb 13455 . . . . . . . . 9 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ↔ (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ∧ 𝑁 ∈ (ℤ𝑀)))
2118, 19, 20sylanbrc 583 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁))
22 fzsplit 13487 . . . . . . . 8 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2321, 22syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2423ineq1d 4178 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ))
25 indir 4245 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))
2624, 25eqtrdi 2780 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ)))
2726fveq2d 6844 . . . 4 (𝑁 ∈ (ℤ𝑀) → (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) = (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))))
28 fzfi 13913 . . . . . 6 (if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin
29 inss1 4196 . . . . . 6 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)
30 ssfi 9114 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin ∧ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin)
3128, 29, 30mp2an 692 . . . . 5 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin
32 fzfi 13913 . . . . . 6 ((𝑀 + 1)...𝑁) ∈ Fin
33 inss1 4196 . . . . . 6 (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)
34 ssfi 9114 . . . . . 6 ((((𝑀 + 1)...𝑁) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)) → (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin)
3532, 33, 34mp2an 692 . . . . 5 (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin
367ltp1d 12089 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 < (𝑀 + 1))
37 fzdisj 13488 . . . . . . . 8 (𝑀 < (𝑀 + 1) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
3836, 37syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
3938ineq1d 4178 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (∅ ∩ ℙ))
40 inindir 4195 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ))
41 0in 4356 . . . . . 6 (∅ ∩ ℙ) = ∅
4239, 40, 413eqtr3g 2787 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅)
43 hashun 14323 . . . . 5 ((((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin ∧ (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅) → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4431, 35, 42, 43mp3an12i 1467 . . . 4 (𝑁 ∈ (ℤ𝑀) → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4514, 27, 443eqtrd 2768 . . 3 (𝑁 ∈ (ℤ𝑀) → (π𝑁) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
46 ppival2g 27015 . . . 4 ((𝑀 ∈ ℤ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → (π𝑀) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)))
472, 12, 46syl2anc 584 . . 3 (𝑁 ∈ (ℤ𝑀) → (π𝑀) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)))
4845, 47oveq12d 7387 . 2 (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))))
49 hashcl 14297 . . . . 5 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin → (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℕ0)
5031, 49ax-mp 5 . . . 4 (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℕ0
5150nn0cni 12430 . . 3 (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℂ
52 hashcl 14297 . . . . 5 ((((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin → (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℕ0)
5335, 52ax-mp 5 . . . 4 (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℕ0
5453nn0cni 12430 . . 3 (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℂ
55 pncan2 11404 . . 3 (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℂ ∧ (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℂ) → (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))
5651, 54, 55mp2an 692 . 2 (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))
5748, 56eqtrdi 2780 1 (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3909  cin 3910  wss 3911  c0 4292  ifcif 4484   class class class wbr 5102  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  2c2 12217  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  chash 14271  cprime 16617  πcppi 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-icc 13289  df-fz 13445  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618  df-ppi 26986
This theorem is referenced by:  ppiub  27091  chtppilimlem1  27360
  Copyright terms: Public domain W3C validator