MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfbas2 Structured version   Visualization version   GIF version

Theorem trfbas2 23338
Description: Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
trfbas2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))

Proof of Theorem trfbas2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6925 . . . 4 (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
2 ssexg 5322 . . . . 5 ((𝐴𝑌𝑌 ∈ dom fBas) → 𝐴 ∈ V)
32ancoms 459 . . . 4 ((𝑌 ∈ dom fBas ∧ 𝐴𝑌) → 𝐴 ∈ V)
41, 3sylan 580 . . 3 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
5 restsspw 17373 . . . 4 (𝐹t 𝐴) ⊆ 𝒫 𝐴
65a1i 11 . . 3 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝐹t 𝐴) ⊆ 𝒫 𝐴)
7 fbasne0 23325 . . . . . 6 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ≠ ∅)
87adantr 481 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → 𝐹 ≠ ∅)
9 n0 4345 . . . . 5 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
108, 9sylib 217 . . . 4 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ∃𝑥 𝑥𝐹)
11 elrestr 17370 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑥𝐹) → (𝑥𝐴) ∈ (𝐹t 𝐴))
12113expia 1121 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑥𝐹 → (𝑥𝐴) ∈ (𝐹t 𝐴)))
134, 12syldan 591 . . . . . 6 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝑥𝐹 → (𝑥𝐴) ∈ (𝐹t 𝐴)))
14 ne0i 4333 . . . . . 6 ((𝑥𝐴) ∈ (𝐹t 𝐴) → (𝐹t 𝐴) ≠ ∅)
1513, 14syl6 35 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝑥𝐹 → (𝐹t 𝐴) ≠ ∅))
1615exlimdv 1936 . . . 4 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (∃𝑥 𝑥𝐹 → (𝐹t 𝐴) ≠ ∅))
1710, 16mpd 15 . . 3 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝐹t 𝐴) ≠ ∅)
18 fbasssin 23331 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑧𝐹𝑤𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝑧𝑤))
19183expb 1120 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑌) ∧ (𝑧𝐹𝑤𝐹)) → ∃𝑥𝐹 𝑥 ⊆ (𝑧𝑤))
2019adantlr 713 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) → ∃𝑥𝐹 𝑥 ⊆ (𝑧𝑤))
21 simplll 773 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → 𝐹 ∈ (fBas‘𝑌))
224ad2antrr 724 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → 𝐴 ∈ V)
23 simprl 769 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → 𝑥𝐹)
2421, 22, 23, 11syl3anc 1371 . . . . . . 7 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → (𝑥𝐴) ∈ (𝐹t 𝐴))
25 ssrin 4232 . . . . . . . . 9 (𝑥 ⊆ (𝑧𝑤) → (𝑥𝐴) ⊆ ((𝑧𝑤) ∩ 𝐴))
2625ad2antll 727 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → (𝑥𝐴) ⊆ ((𝑧𝑤) ∩ 𝐴))
27 vex 3478 . . . . . . . . . 10 𝑥 ∈ V
2827inex1 5316 . . . . . . . . 9 (𝑥𝐴) ∈ V
2928elpw 4605 . . . . . . . 8 ((𝑥𝐴) ∈ 𝒫 ((𝑧𝑤) ∩ 𝐴) ↔ (𝑥𝐴) ⊆ ((𝑧𝑤) ∩ 𝐴))
3026, 29sylibr 233 . . . . . . 7 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → (𝑥𝐴) ∈ 𝒫 ((𝑧𝑤) ∩ 𝐴))
31 inelcm 4463 . . . . . . 7 (((𝑥𝐴) ∈ (𝐹t 𝐴) ∧ (𝑥𝐴) ∈ 𝒫 ((𝑧𝑤) ∩ 𝐴)) → ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅)
3224, 30, 31syl2anc 584 . . . . . 6 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅)
3320, 32rexlimddv 3161 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) → ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅)
3433ralrimivva 3200 . . . 4 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ∀𝑧𝐹𝑤𝐹 ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅)
35 vex 3478 . . . . . . 7 𝑧 ∈ V
3635inex1 5316 . . . . . 6 (𝑧𝐴) ∈ V
3736a1i 11 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝐹) → (𝑧𝐴) ∈ V)
38 elrest 17369 . . . . . 6 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐹t 𝐴) ↔ ∃𝑧𝐹 𝑥 = (𝑧𝐴)))
394, 38syldan 591 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝑥 ∈ (𝐹t 𝐴) ↔ ∃𝑧𝐹 𝑥 = (𝑧𝐴)))
40 vex 3478 . . . . . . . 8 𝑤 ∈ V
4140inex1 5316 . . . . . . 7 (𝑤𝐴) ∈ V
4241a1i 11 . . . . . 6 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) ∧ 𝑤𝐹) → (𝑤𝐴) ∈ V)
43 elrest 17369 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑦 ∈ (𝐹t 𝐴) ↔ ∃𝑤𝐹 𝑦 = (𝑤𝐴)))
444, 43syldan 591 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝑦 ∈ (𝐹t 𝐴) ↔ ∃𝑤𝐹 𝑦 = (𝑤𝐴)))
4544adantr 481 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) → (𝑦 ∈ (𝐹t 𝐴) ↔ ∃𝑤𝐹 𝑦 = (𝑤𝐴)))
46 ineq12 4206 . . . . . . . . . . 11 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑤𝐴)) → (𝑥𝑦) = ((𝑧𝐴) ∩ (𝑤𝐴)))
47 inindir 4226 . . . . . . . . . . 11 ((𝑧𝑤) ∩ 𝐴) = ((𝑧𝐴) ∩ (𝑤𝐴))
4846, 47eqtr4di 2790 . . . . . . . . . 10 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑤𝐴)) → (𝑥𝑦) = ((𝑧𝑤) ∩ 𝐴))
4948pweqd 4618 . . . . . . . . 9 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑤𝐴)) → 𝒫 (𝑥𝑦) = 𝒫 ((𝑧𝑤) ∩ 𝐴))
5049ineq2d 4211 . . . . . . . 8 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑤𝐴)) → ((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) = ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)))
5150neeq1d 3000 . . . . . . 7 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑤𝐴)) → (((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅))
5251adantll 712 . . . . . 6 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) ∧ 𝑦 = (𝑤𝐴)) → (((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅))
5342, 45, 52ralxfr2d 5407 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) → (∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑤𝐹 ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅))
5437, 39, 53ralxfr2d 5407 . . . 4 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑧𝐹𝑤𝐹 ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅))
5534, 54mpbird 256 . . 3 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
56 isfbas 23324 . . . . . 6 (𝐴 ∈ V → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ((𝐹t 𝐴) ⊆ 𝒫 𝐴 ∧ ((𝐹t 𝐴) ≠ ∅ ∧ ∅ ∉ (𝐹t 𝐴) ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
5756baibd 540 . . . . 5 ((𝐴 ∈ V ∧ (𝐹t 𝐴) ⊆ 𝒫 𝐴) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ((𝐹t 𝐴) ≠ ∅ ∧ ∅ ∉ (𝐹t 𝐴) ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
58 3anan32 1097 . . . . 5 (((𝐹t 𝐴) ≠ ∅ ∧ ∅ ∉ (𝐹t 𝐴) ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (((𝐹t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ∧ ∅ ∉ (𝐹t 𝐴)))
5957, 58bitrdi 286 . . . 4 ((𝐴 ∈ V ∧ (𝐹t 𝐴) ⊆ 𝒫 𝐴) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ (((𝐹t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ∧ ∅ ∉ (𝐹t 𝐴))))
6059baibd 540 . . 3 (((𝐴 ∈ V ∧ (𝐹t 𝐴) ⊆ 𝒫 𝐴) ∧ ((𝐹t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ∅ ∉ (𝐹t 𝐴)))
614, 6, 17, 55, 60syl22anc 837 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ∅ ∉ (𝐹t 𝐴)))
62 df-nel 3047 . 2 (∅ ∉ (𝐹t 𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴))
6361, 62bitrdi 286 1 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2940  wnel 3046  wral 3061  wrex 3070  Vcvv 3474  cin 3946  wss 3947  c0 4321  𝒫 cpw 4601  dom cdm 5675  cfv 6540  (class class class)co 7405  t crest 17362  fBascfbas 20924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-rest 17364  df-fbas 20933
This theorem is referenced by:  trfbas  23339  uzfbas  23393  trcfilu  23790
  Copyright terms: Public domain W3C validator