| Step | Hyp | Ref
| Expression |
| 1 | | elfvdm 6943 |
. . . 4
⊢ (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) |
| 2 | | ssexg 5323 |
. . . . 5
⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ dom fBas) → 𝐴 ∈ V) |
| 3 | 2 | ancoms 458 |
. . . 4
⊢ ((𝑌 ∈ dom fBas ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
| 4 | 1, 3 | sylan 580 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
| 5 | | restsspw 17476 |
. . . 4
⊢ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴 |
| 6 | 5 | a1i 11 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴) |
| 7 | | fbasne0 23838 |
. . . . . 6
⊢ (𝐹 ∈ (fBas‘𝑌) → 𝐹 ≠ ∅) |
| 8 | 7 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐹 ≠ ∅) |
| 9 | | n0 4353 |
. . . . 5
⊢ (𝐹 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐹) |
| 10 | 8, 9 | sylib 218 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ∃𝑥 𝑥 ∈ 𝐹) |
| 11 | | elrestr 17473 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴)) |
| 12 | 11 | 3expia 1122 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑥 ∈ 𝐹 → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴))) |
| 13 | 4, 12 | syldan 591 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑥 ∈ 𝐹 → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴))) |
| 14 | | ne0i 4341 |
. . . . . 6
⊢ ((𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴) → (𝐹 ↾t 𝐴) ≠ ∅) |
| 15 | 13, 14 | syl6 35 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑥 ∈ 𝐹 → (𝐹 ↾t 𝐴) ≠ ∅)) |
| 16 | 15 | exlimdv 1933 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∃𝑥 𝑥 ∈ 𝐹 → (𝐹 ↾t 𝐴) ≠ ∅)) |
| 17 | 10, 16 | mpd 15 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝐹 ↾t 𝐴) ≠ ∅) |
| 18 | | fbasssin 23844 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑧 ∩ 𝑤)) |
| 19 | 18 | 3expb 1121 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑧 ∩ 𝑤)) |
| 20 | 19 | adantlr 715 |
. . . . . 6
⊢ (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑧 ∩ 𝑤)) |
| 21 | | simplll 775 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → 𝐹 ∈ (fBas‘𝑌)) |
| 22 | 4 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → 𝐴 ∈ V) |
| 23 | | simprl 771 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → 𝑥 ∈ 𝐹) |
| 24 | 21, 22, 23, 11 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴)) |
| 25 | | ssrin 4242 |
. . . . . . . . 9
⊢ (𝑥 ⊆ (𝑧 ∩ 𝑤) → (𝑥 ∩ 𝐴) ⊆ ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
| 26 | 25 | ad2antll 729 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → (𝑥 ∩ 𝐴) ⊆ ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
| 27 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 28 | 27 | inex1 5317 |
. . . . . . . . 9
⊢ (𝑥 ∩ 𝐴) ∈ V |
| 29 | 28 | elpw 4604 |
. . . . . . . 8
⊢ ((𝑥 ∩ 𝐴) ∈ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴) ↔ (𝑥 ∩ 𝐴) ⊆ ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
| 30 | 26, 29 | sylibr 234 |
. . . . . . 7
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → (𝑥 ∩ 𝐴) ∈ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
| 31 | | inelcm 4465 |
. . . . . . 7
⊢ (((𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴) ∧ (𝑥 ∩ 𝐴) ∈ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) → ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅) |
| 32 | 24, 30, 31 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅) |
| 33 | 20, 32 | rexlimddv 3161 |
. . . . 5
⊢ (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) → ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅) |
| 34 | 33 | ralrimivva 3202 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ∀𝑧 ∈ 𝐹 ∀𝑤 ∈ 𝐹 ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅) |
| 35 | | vex 3484 |
. . . . . . 7
⊢ 𝑧 ∈ V |
| 36 | 35 | inex1 5317 |
. . . . . 6
⊢ (𝑧 ∩ 𝐴) ∈ V |
| 37 | 36 | a1i 11 |
. . . . 5
⊢ (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ 𝑧 ∈ 𝐹) → (𝑧 ∩ 𝐴) ∈ V) |
| 38 | | elrest 17472 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑧 ∈ 𝐹 𝑥 = (𝑧 ∩ 𝐴))) |
| 39 | 4, 38 | syldan 591 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑥 ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑧 ∈ 𝐹 𝑥 = (𝑧 ∩ 𝐴))) |
| 40 | | vex 3484 |
. . . . . . . 8
⊢ 𝑤 ∈ V |
| 41 | 40 | inex1 5317 |
. . . . . . 7
⊢ (𝑤 ∩ 𝐴) ∈ V |
| 42 | 41 | a1i 11 |
. . . . . 6
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ 𝑥 = (𝑧 ∩ 𝐴)) ∧ 𝑤 ∈ 𝐹) → (𝑤 ∩ 𝐴) ∈ V) |
| 43 | | elrest 17472 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑦 ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑤 ∈ 𝐹 𝑦 = (𝑤 ∩ 𝐴))) |
| 44 | 4, 43 | syldan 591 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑦 ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑤 ∈ 𝐹 𝑦 = (𝑤 ∩ 𝐴))) |
| 45 | 44 | adantr 480 |
. . . . . 6
⊢ (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ 𝑥 = (𝑧 ∩ 𝐴)) → (𝑦 ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑤 ∈ 𝐹 𝑦 = (𝑤 ∩ 𝐴))) |
| 46 | | ineq12 4215 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝑧 ∩ 𝐴) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → (𝑥 ∩ 𝑦) = ((𝑧 ∩ 𝐴) ∩ (𝑤 ∩ 𝐴))) |
| 47 | | inindir 4236 |
. . . . . . . . . . 11
⊢ ((𝑧 ∩ 𝑤) ∩ 𝐴) = ((𝑧 ∩ 𝐴) ∩ (𝑤 ∩ 𝐴)) |
| 48 | 46, 47 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝑧 ∩ 𝐴) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → (𝑥 ∩ 𝑦) = ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
| 49 | 48 | pweqd 4617 |
. . . . . . . . 9
⊢ ((𝑥 = (𝑧 ∩ 𝐴) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → 𝒫 (𝑥 ∩ 𝑦) = 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
| 50 | 49 | ineq2d 4220 |
. . . . . . . 8
⊢ ((𝑥 = (𝑧 ∩ 𝐴) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → ((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) = ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴))) |
| 51 | 50 | neeq1d 3000 |
. . . . . . 7
⊢ ((𝑥 = (𝑧 ∩ 𝐴) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → (((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅)) |
| 52 | 51 | adantll 714 |
. . . . . 6
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ 𝑥 = (𝑧 ∩ 𝐴)) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → (((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅)) |
| 53 | 42, 45, 52 | ralxfr2d 5410 |
. . . . 5
⊢ (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ 𝑥 = (𝑧 ∩ 𝐴)) → (∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑤 ∈ 𝐹 ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅)) |
| 54 | 37, 39, 53 | ralxfr2d 5410 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑧 ∈ 𝐹 ∀𝑤 ∈ 𝐹 ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅)) |
| 55 | 34, 54 | mpbird 257 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) |
| 56 | | isfbas 23837 |
. . . . . 6
⊢ (𝐴 ∈ V → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ((𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴 ∧ ((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∅ ∉ (𝐹 ↾t 𝐴) ∧ ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
| 57 | 56 | baibd 539 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∅ ∉ (𝐹 ↾t 𝐴) ∧ ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
| 58 | | 3anan32 1097 |
. . . . 5
⊢ (((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∅
∉ (𝐹
↾t 𝐴)
∧ ∀𝑥 ∈
(𝐹 ↾t
𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ↔ (((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ∧ ∅ ∉ (𝐹 ↾t 𝐴))) |
| 59 | 57, 58 | bitrdi 287 |
. . . 4
⊢ ((𝐴 ∈ V ∧ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ (((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ∧ ∅ ∉ (𝐹 ↾t 𝐴)))) |
| 60 | 59 | baibd 539 |
. . 3
⊢ (((𝐴 ∈ V ∧ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴) ∧ ((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∅ ∉ (𝐹 ↾t 𝐴))) |
| 61 | 4, 6, 17, 55, 60 | syl22anc 839 |
. 2
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∅ ∉ (𝐹 ↾t 𝐴))) |
| 62 | | df-nel 3047 |
. 2
⊢ (∅
∉ (𝐹
↾t 𝐴)
↔ ¬ ∅ ∈ (𝐹 ↾t 𝐴)) |
| 63 | 61, 62 | bitrdi 287 |
1
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹 ↾t 𝐴))) |