Step | Hyp | Ref
| Expression |
1 | | elfvdm 6788 |
. . . 4
⊢ (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) |
2 | | ssexg 5242 |
. . . . 5
⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ dom fBas) → 𝐴 ∈ V) |
3 | 2 | ancoms 458 |
. . . 4
⊢ ((𝑌 ∈ dom fBas ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
4 | 1, 3 | sylan 579 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
5 | | restsspw 17059 |
. . . 4
⊢ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴 |
6 | 5 | a1i 11 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴) |
7 | | fbasne0 22889 |
. . . . . 6
⊢ (𝐹 ∈ (fBas‘𝑌) → 𝐹 ≠ ∅) |
8 | 7 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐹 ≠ ∅) |
9 | | n0 4277 |
. . . . 5
⊢ (𝐹 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐹) |
10 | 8, 9 | sylib 217 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ∃𝑥 𝑥 ∈ 𝐹) |
11 | | elrestr 17056 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴)) |
12 | 11 | 3expia 1119 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑥 ∈ 𝐹 → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴))) |
13 | 4, 12 | syldan 590 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑥 ∈ 𝐹 → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴))) |
14 | | ne0i 4265 |
. . . . . 6
⊢ ((𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴) → (𝐹 ↾t 𝐴) ≠ ∅) |
15 | 13, 14 | syl6 35 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑥 ∈ 𝐹 → (𝐹 ↾t 𝐴) ≠ ∅)) |
16 | 15 | exlimdv 1937 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∃𝑥 𝑥 ∈ 𝐹 → (𝐹 ↾t 𝐴) ≠ ∅)) |
17 | 10, 16 | mpd 15 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝐹 ↾t 𝐴) ≠ ∅) |
18 | | fbasssin 22895 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑧 ∩ 𝑤)) |
19 | 18 | 3expb 1118 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑧 ∩ 𝑤)) |
20 | 19 | adantlr 711 |
. . . . . 6
⊢ (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑧 ∩ 𝑤)) |
21 | | simplll 771 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → 𝐹 ∈ (fBas‘𝑌)) |
22 | 4 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → 𝐴 ∈ V) |
23 | | simprl 767 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → 𝑥 ∈ 𝐹) |
24 | 21, 22, 23, 11 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴)) |
25 | | ssrin 4164 |
. . . . . . . . 9
⊢ (𝑥 ⊆ (𝑧 ∩ 𝑤) → (𝑥 ∩ 𝐴) ⊆ ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
26 | 25 | ad2antll 725 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → (𝑥 ∩ 𝐴) ⊆ ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
27 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
28 | 27 | inex1 5236 |
. . . . . . . . 9
⊢ (𝑥 ∩ 𝐴) ∈ V |
29 | 28 | elpw 4534 |
. . . . . . . 8
⊢ ((𝑥 ∩ 𝐴) ∈ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴) ↔ (𝑥 ∩ 𝐴) ⊆ ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
30 | 26, 29 | sylibr 233 |
. . . . . . 7
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → (𝑥 ∩ 𝐴) ∈ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
31 | | inelcm 4395 |
. . . . . . 7
⊢ (((𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴) ∧ (𝑥 ∩ 𝐴) ∈ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) → ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅) |
32 | 24, 30, 31 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝑧 ∩ 𝑤))) → ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅) |
33 | 20, 32 | rexlimddv 3219 |
. . . . 5
⊢ (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ (𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹)) → ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅) |
34 | 33 | ralrimivva 3114 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ∀𝑧 ∈ 𝐹 ∀𝑤 ∈ 𝐹 ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅) |
35 | | vex 3426 |
. . . . . . 7
⊢ 𝑧 ∈ V |
36 | 35 | inex1 5236 |
. . . . . 6
⊢ (𝑧 ∩ 𝐴) ∈ V |
37 | 36 | a1i 11 |
. . . . 5
⊢ (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ 𝑧 ∈ 𝐹) → (𝑧 ∩ 𝐴) ∈ V) |
38 | | elrest 17055 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑧 ∈ 𝐹 𝑥 = (𝑧 ∩ 𝐴))) |
39 | 4, 38 | syldan 590 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑥 ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑧 ∈ 𝐹 𝑥 = (𝑧 ∩ 𝐴))) |
40 | | vex 3426 |
. . . . . . . 8
⊢ 𝑤 ∈ V |
41 | 40 | inex1 5236 |
. . . . . . 7
⊢ (𝑤 ∩ 𝐴) ∈ V |
42 | 41 | a1i 11 |
. . . . . 6
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ 𝑥 = (𝑧 ∩ 𝐴)) ∧ 𝑤 ∈ 𝐹) → (𝑤 ∩ 𝐴) ∈ V) |
43 | | elrest 17055 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑦 ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑤 ∈ 𝐹 𝑦 = (𝑤 ∩ 𝐴))) |
44 | 4, 43 | syldan 590 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑦 ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑤 ∈ 𝐹 𝑦 = (𝑤 ∩ 𝐴))) |
45 | 44 | adantr 480 |
. . . . . 6
⊢ (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ 𝑥 = (𝑧 ∩ 𝐴)) → (𝑦 ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑤 ∈ 𝐹 𝑦 = (𝑤 ∩ 𝐴))) |
46 | | ineq12 4138 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝑧 ∩ 𝐴) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → (𝑥 ∩ 𝑦) = ((𝑧 ∩ 𝐴) ∩ (𝑤 ∩ 𝐴))) |
47 | | inindir 4158 |
. . . . . . . . . . 11
⊢ ((𝑧 ∩ 𝑤) ∩ 𝐴) = ((𝑧 ∩ 𝐴) ∩ (𝑤 ∩ 𝐴)) |
48 | 46, 47 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝑧 ∩ 𝐴) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → (𝑥 ∩ 𝑦) = ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
49 | 48 | pweqd 4549 |
. . . . . . . . 9
⊢ ((𝑥 = (𝑧 ∩ 𝐴) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → 𝒫 (𝑥 ∩ 𝑦) = 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) |
50 | 49 | ineq2d 4143 |
. . . . . . . 8
⊢ ((𝑥 = (𝑧 ∩ 𝐴) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → ((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) = ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴))) |
51 | 50 | neeq1d 3002 |
. . . . . . 7
⊢ ((𝑥 = (𝑧 ∩ 𝐴) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → (((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅)) |
52 | 51 | adantll 710 |
. . . . . 6
⊢ ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ 𝑥 = (𝑧 ∩ 𝐴)) ∧ 𝑦 = (𝑤 ∩ 𝐴)) → (((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅)) |
53 | 42, 45, 52 | ralxfr2d 5328 |
. . . . 5
⊢ (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) ∧ 𝑥 = (𝑧 ∩ 𝐴)) → (∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑤 ∈ 𝐹 ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅)) |
54 | 37, 39, 53 | ralxfr2d 5328 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑧 ∈ 𝐹 ∀𝑤 ∈ 𝐹 ((𝐹 ↾t 𝐴) ∩ 𝒫 ((𝑧 ∩ 𝑤) ∩ 𝐴)) ≠ ∅)) |
55 | 34, 54 | mpbird 256 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) |
56 | | isfbas 22888 |
. . . . . 6
⊢ (𝐴 ∈ V → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ((𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴 ∧ ((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∅ ∉ (𝐹 ↾t 𝐴) ∧ ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
57 | 56 | baibd 539 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∅ ∉ (𝐹 ↾t 𝐴) ∧ ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
58 | | 3anan32 1095 |
. . . . 5
⊢ (((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∅
∉ (𝐹
↾t 𝐴)
∧ ∀𝑥 ∈
(𝐹 ↾t
𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ↔ (((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ∧ ∅ ∉ (𝐹 ↾t 𝐴))) |
59 | 57, 58 | bitrdi 286 |
. . . 4
⊢ ((𝐴 ∈ V ∧ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ (((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ∧ ∅ ∉ (𝐹 ↾t 𝐴)))) |
60 | 59 | baibd 539 |
. . 3
⊢ (((𝐴 ∈ V ∧ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴) ∧ ((𝐹 ↾t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹 ↾t 𝐴)∀𝑦 ∈ (𝐹 ↾t 𝐴)((𝐹 ↾t 𝐴) ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∅ ∉ (𝐹 ↾t 𝐴))) |
61 | 4, 6, 17, 55, 60 | syl22anc 835 |
. 2
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∅ ∉ (𝐹 ↾t 𝐴))) |
62 | | df-nel 3049 |
. 2
⊢ (∅
∉ (𝐹
↾t 𝐴)
↔ ¬ ∅ ∈ (𝐹 ↾t 𝐴)) |
63 | 61, 62 | bitrdi 286 |
1
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹 ↾t 𝐴))) |