MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtdif Structured version   Visualization version   GIF version

Theorem chtdif 27219
Description: The difference of the Chebyshev function at two points sums the logarithms of the primes in an interval. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtdif (𝑁 ∈ (ℤ𝑀) → ((θ‘𝑁) − (θ‘𝑀)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝))
Distinct variable groups:   𝑀,𝑝   𝑁,𝑝

Proof of Theorem chtdif
StepHypRef Expression
1 eluzelre 12914 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
2 chtval 27171 . . . . 5 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
31, 2syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
4 eluzel2 12908 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5 2z 12675 . . . . . . . . . 10 2 ∈ ℤ
6 ifcl 4593 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
74, 5, 6sylancl 585 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
85a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 2 ∈ ℤ)
94zred 12747 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
10 2re 12367 . . . . . . . . . 10 2 ∈ ℝ
11 min2 13252 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
129, 10, 11sylancl 585 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
13 eluz2 12909 . . . . . . . . 9 (2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 2 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 2))
147, 8, 12, 13syl3anbrc 1343 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
15 ppisval2 27166 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → ((0[,]𝑁) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) ∩ ℙ))
161, 14, 15syl2anc 583 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((0[,]𝑁) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) ∩ ℙ))
17 eluzelz 12913 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
18 flid 13859 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
1917, 18syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → (⌊‘𝑁) = 𝑁)
2019oveq2d 7464 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) = (if(𝑀 ≤ 2, 𝑀, 2)...𝑁))
2120ineq1d 4240 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
2216, 21eqtrd 2780 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((0[,]𝑁) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
2322sumeq1d 15748 . . . . 5 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)(log‘𝑝))
249ltp1d 12225 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 < (𝑀 + 1))
25 fzdisj 13611 . . . . . . . . 9 (𝑀 < (𝑀 + 1) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
2624, 25syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
2726ineq1d 4240 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (∅ ∩ ℙ))
28 inindir 4257 . . . . . . 7 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ))
29 0in 4420 . . . . . . 7 (∅ ∩ ℙ) = ∅
3027, 28, 293eqtr3g 2803 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅)
31 min1 13251 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
329, 10, 31sylancl 585 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
33 eluz2 12909 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀))
347, 4, 32, 33syl3anbrc 1343 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
35 id 22 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ𝑀))
36 elfzuzb 13578 . . . . . . . . . 10 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ↔ (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ∧ 𝑁 ∈ (ℤ𝑀)))
3734, 35, 36sylanbrc 582 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁))
38 fzsplit 13610 . . . . . . . . 9 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
3937, 38syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
4039ineq1d 4240 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ))
41 indir 4305 . . . . . . 7 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))
4240, 41eqtrdi 2796 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ)))
43 fzfid 14024 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∈ Fin)
44 inss1 4258 . . . . . . 7 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁)
45 ssfi 9240 . . . . . . 7 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∈ Fin ∧ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁)) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ∈ Fin)
4643, 44, 45sylancl 585 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ∈ Fin)
47 simpr 484 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
4847elin2d 4228 . . . . . . . . . 10 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ℙ)
49 prmnn 16721 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
5048, 49syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ℕ)
5150nnrpd 13097 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ℝ+)
5251relogcld 26683 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
5352recnd 11318 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
5430, 42, 46, 53fsumsplit 15789 . . . . 5 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)(log‘𝑝) = (Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)))
5523, 54eqtrd 2780 . . . 4 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝) = (Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)))
563, 55eqtrd 2780 . . 3 (𝑁 ∈ (ℤ𝑀) → (θ‘𝑁) = (Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)))
57 chtval 27171 . . . . 5 (𝑀 ∈ ℝ → (θ‘𝑀) = Σ𝑝 ∈ ((0[,]𝑀) ∩ ℙ)(log‘𝑝))
589, 57syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (θ‘𝑀) = Σ𝑝 ∈ ((0[,]𝑀) ∩ ℙ)(log‘𝑝))
59 ppisval2 27166 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → ((0[,]𝑀) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) ∩ ℙ))
609, 14, 59syl2anc 583 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((0[,]𝑀) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) ∩ ℙ))
61 flid 13859 . . . . . . . . 9 (𝑀 ∈ ℤ → (⌊‘𝑀) = 𝑀)
624, 61syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (⌊‘𝑀) = 𝑀)
6362oveq2d 7464 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) = (if(𝑀 ≤ 2, 𝑀, 2)...𝑀))
6463ineq1d 4240 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))
6560, 64eqtrd 2780 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((0[,]𝑀) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))
6665sumeq1d 15748 . . . 4 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ ((0[,]𝑀) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝))
6758, 66eqtrd 2780 . . 3 (𝑁 ∈ (ℤ𝑀) → (θ‘𝑀) = Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝))
6856, 67oveq12d 7466 . 2 (𝑁 ∈ (ℤ𝑀) → ((θ‘𝑁) − (θ‘𝑀)) = ((Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)) − Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝)))
69 fzfi 14023 . . . . . 6 (if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin
70 inss1 4258 . . . . . 6 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)
71 ssfi 9240 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin ∧ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin)
7269, 70, 71mp2an 691 . . . . 5 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin
7372a1i 11 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin)
74 ssun1 4201 . . . . . . 7 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))
7574, 42sseqtrrid 4062 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
7675sselda 4008 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) → 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
7776, 53syldan 590 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
7873, 77fsumcl 15781 . . 3 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) ∈ ℂ)
79 fzfi 14023 . . . . . 6 ((𝑀 + 1)...𝑁) ∈ Fin
80 inss1 4258 . . . . . 6 (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)
81 ssfi 9240 . . . . . 6 ((((𝑀 + 1)...𝑁) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)) → (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin)
8279, 80, 81mp2an 691 . . . . 5 (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin
8382a1i 11 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin)
84 ssun2 4202 . . . . . . 7 (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))
8584, 42sseqtrrid 4062 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
8685sselda 4008 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)) → 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
8786, 53syldan 590 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
8883, 87fsumcl 15781 . . 3 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝) ∈ ℂ)
8978, 88pncan2d 11649 . 2 (𝑁 ∈ (ℤ𝑀) → ((Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)) − Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝))
9068, 89eqtrd 2780 1 (𝑁 ∈ (ℤ𝑀) → ((θ‘𝑁) − (θ‘𝑀)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cun 3974  cin 3975  wss 3976  c0 4352  ifcif 4548   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  2c2 12348  cz 12639  cuz 12903  [,]cicc 13410  ...cfz 13567  cfl 13841  Σcsu 15734  cprime 16718  logclog 26614  θccht 27152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-prm 16719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cht 27158
This theorem is referenced by:  efchtdvds  27220
  Copyright terms: Public domain W3C validator