MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtdif Structured version   Visualization version   GIF version

Theorem chtdif 25651
Description: The difference of the Chebyshev function at two points sums the logarithms of the primes in an interval. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtdif (𝑁 ∈ (ℤ𝑀) → ((θ‘𝑁) − (θ‘𝑀)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝))
Distinct variable groups:   𝑀,𝑝   𝑁,𝑝

Proof of Theorem chtdif
StepHypRef Expression
1 eluzelre 12246 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
2 chtval 25603 . . . . 5 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
31, 2syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
4 eluzel2 12240 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5 2z 12006 . . . . . . . . . 10 2 ∈ ℤ
6 ifcl 4513 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
74, 5, 6sylancl 586 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
85a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 2 ∈ ℤ)
94zred 12079 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
10 2re 11703 . . . . . . . . . 10 2 ∈ ℝ
11 min2 12576 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
129, 10, 11sylancl 586 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
13 eluz2 12241 . . . . . . . . 9 (2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 2 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 2))
147, 8, 12, 13syl3anbrc 1337 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
15 ppisval2 25598 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → ((0[,]𝑁) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) ∩ ℙ))
161, 14, 15syl2anc 584 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((0[,]𝑁) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) ∩ ℙ))
17 eluzelz 12245 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
18 flid 13171 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
1917, 18syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → (⌊‘𝑁) = 𝑁)
2019oveq2d 7167 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) = (if(𝑀 ≤ 2, 𝑀, 2)...𝑁))
2120ineq1d 4191 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑁)) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
2216, 21eqtrd 2860 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((0[,]𝑁) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
2322sumeq1d 15050 . . . . 5 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)(log‘𝑝))
249ltp1d 11562 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 < (𝑀 + 1))
25 fzdisj 12927 . . . . . . . . 9 (𝑀 < (𝑀 + 1) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
2624, 25syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
2726ineq1d 4191 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (∅ ∩ ℙ))
28 inindir 4207 . . . . . . 7 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ))
29 0in 4350 . . . . . . 7 (∅ ∩ ℙ) = ∅
3027, 28, 293eqtr3g 2883 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅)
31 min1 12575 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
329, 10, 31sylancl 586 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
33 eluz2 12241 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀))
347, 4, 32, 33syl3anbrc 1337 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
35 id 22 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ𝑀))
36 elfzuzb 12895 . . . . . . . . . 10 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ↔ (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ∧ 𝑁 ∈ (ℤ𝑀)))
3734, 35, 36sylanbrc 583 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁))
38 fzsplit 12926 . . . . . . . . 9 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
3937, 38syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
4039ineq1d 4191 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ))
41 indir 4255 . . . . . . 7 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))
4240, 41syl6eq 2876 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ)))
43 fzfid 13334 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∈ Fin)
44 inss1 4208 . . . . . . 7 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁)
45 ssfi 8730 . . . . . . 7 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∈ Fin ∧ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁)) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ∈ Fin)
4643, 44, 45sylancl 586 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) ∈ Fin)
47 simpr 485 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
4847elin2d 4179 . . . . . . . . . 10 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ℙ)
49 prmnn 16010 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
5048, 49syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ℕ)
5150nnrpd 12422 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → 𝑝 ∈ ℝ+)
5251relogcld 25121 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
5352recnd 10661 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
5430, 42, 46, 53fsumsplit 15089 . . . . 5 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)(log‘𝑝) = (Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)))
5523, 54eqtrd 2860 . . . 4 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝) = (Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)))
563, 55eqtrd 2860 . . 3 (𝑁 ∈ (ℤ𝑀) → (θ‘𝑁) = (Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)))
57 chtval 25603 . . . . 5 (𝑀 ∈ ℝ → (θ‘𝑀) = Σ𝑝 ∈ ((0[,]𝑀) ∩ ℙ)(log‘𝑝))
589, 57syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (θ‘𝑀) = Σ𝑝 ∈ ((0[,]𝑀) ∩ ℙ)(log‘𝑝))
59 ppisval2 25598 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → ((0[,]𝑀) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) ∩ ℙ))
609, 14, 59syl2anc 584 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((0[,]𝑀) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) ∩ ℙ))
61 flid 13171 . . . . . . . . 9 (𝑀 ∈ ℤ → (⌊‘𝑀) = 𝑀)
624, 61syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (⌊‘𝑀) = 𝑀)
6362oveq2d 7167 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) = (if(𝑀 ≤ 2, 𝑀, 2)...𝑀))
6463ineq1d 4191 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...(⌊‘𝑀)) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))
6560, 64eqtrd 2860 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((0[,]𝑀) ∩ ℙ) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))
6665sumeq1d 15050 . . . 4 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ ((0[,]𝑀) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝))
6758, 66eqtrd 2860 . . 3 (𝑁 ∈ (ℤ𝑀) → (θ‘𝑀) = Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝))
6856, 67oveq12d 7169 . 2 (𝑁 ∈ (ℤ𝑀) → ((θ‘𝑁) − (θ‘𝑀)) = ((Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)) − Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝)))
69 fzfi 13333 . . . . . 6 (if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin
70 inss1 4208 . . . . . 6 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)
71 ssfi 8730 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin ∧ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin)
7269, 70, 71mp2an 688 . . . . 5 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin
7372a1i 11 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin)
74 ssun1 4151 . . . . . . 7 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))
7574, 42sseqtrrid 4023 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
7675sselda 3970 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) → 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
7776, 53syldan 591 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
7873, 77fsumcl 15082 . . 3 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) ∈ ℂ)
79 fzfi 13333 . . . . . 6 ((𝑀 + 1)...𝑁) ∈ Fin
80 inss1 4208 . . . . . 6 (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)
81 ssfi 8730 . . . . . 6 ((((𝑀 + 1)...𝑁) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)) → (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin)
8279, 80, 81mp2an 688 . . . . 5 (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin
8382a1i 11 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin)
84 ssun2 4152 . . . . . . 7 (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))
8584, 42sseqtrrid 4023 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
8685sselda 3970 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)) → 𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ))
8786, 53syldan 591 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
8883, 87fsumcl 15082 . . 3 (𝑁 ∈ (ℤ𝑀) → Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝) ∈ ℂ)
8978, 88pncan2d 10991 . 2 (𝑁 ∈ (ℤ𝑀) → ((Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝) + Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝)) − Σ𝑝 ∈ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)(log‘𝑝)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝))
9068, 89eqtrd 2860 1 (𝑁 ∈ (ℤ𝑀) → ((θ‘𝑁) − (θ‘𝑀)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  cun 3937  cin 3938  wss 3939  c0 4294  ifcif 4469   class class class wbr 5062  cfv 6351  (class class class)co 7151  Fincfn 8501  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cmin 10862  cn 11630  2c2 11684  cz 11973  cuz 12235  [,]cicc 12734  ...cfz 12885  cfl 13153  Σcsu 15035  cprime 16007  logclog 25053  θccht 25584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-sum 15036  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-prm 16008  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-psmet 20455  df-xmet 20456  df-met 20457  df-bl 20458  df-mopn 20459  df-fbas 20460  df-fg 20461  df-cnfld 20464  df-top 21420  df-topon 21437  df-topsp 21459  df-bases 21472  df-cld 21545  df-ntr 21546  df-cls 21547  df-nei 21624  df-lp 21662  df-perf 21663  df-cn 21753  df-cnp 21754  df-haus 21841  df-tx 22088  df-hmeo 22281  df-fil 22372  df-fm 22464  df-flim 22465  df-flf 22466  df-xms 22847  df-ms 22848  df-tms 22849  df-cncf 23403  df-limc 24381  df-dv 24382  df-log 25055  df-cht 25590
This theorem is referenced by:  efchtdvds  25652
  Copyright terms: Public domain W3C validator