MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgentopon Structured version   Visualization version   GIF version

Theorem kgentopon 22143
Description: The compact generator generates a topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
kgentopon (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))

Proof of Theorem kgentopon
Dummy variables 𝑦 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4808 . . . . . . 7 (𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
2 kgenval 22140 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
3 ssrab2 4007 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ⊆ 𝒫 𝑋
42, 3eqsstrdi 3969 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ⊆ 𝒫 𝑋)
5 sspwuni 4985 . . . . . . . 8 ((𝑘Gen‘𝐽) ⊆ 𝒫 𝑋 (𝑘Gen‘𝐽) ⊆ 𝑋)
64, 5sylib 221 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ⊆ 𝑋)
71, 6sylan9ssr 3929 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → 𝑥𝑋)
8 iunin2 4956 . . . . . . . . . 10 𝑦𝑥 (𝑘𝑦) = (𝑘 𝑦𝑥 𝑦)
9 uniiun 4945 . . . . . . . . . . 11 𝑥 = 𝑦𝑥 𝑦
109ineq2i 4136 . . . . . . . . . 10 (𝑘 𝑥) = (𝑘 𝑦𝑥 𝑦)
11 incom 4128 . . . . . . . . . 10 (𝑘 𝑥) = ( 𝑥𝑘)
128, 10, 113eqtr2i 2827 . . . . . . . . 9 𝑦𝑥 (𝑘𝑦) = ( 𝑥𝑘)
13 cmptop 22000 . . . . . . . . . . 11 ((𝐽t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Top)
1413ad2antll 728 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Top)
15 incom 4128 . . . . . . . . . . . 12 (𝑦𝑘) = (𝑘𝑦)
16 simplr 768 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ⊆ (𝑘Gen‘𝐽))
1716sselda 3915 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → 𝑦 ∈ (𝑘Gen‘𝐽))
18 simplrr 777 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝐽t 𝑘) ∈ Comp)
19 kgeni 22142 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝑘) ∈ Comp) → (𝑦𝑘) ∈ (𝐽t 𝑘))
2017, 18, 19syl2anc 587 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝑦𝑘) ∈ (𝐽t 𝑘))
2115, 20eqeltrrid 2895 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝑘𝑦) ∈ (𝐽t 𝑘))
2221ralrimiva 3149 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ∀𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
23 iunopn 21503 . . . . . . . . . 10 (((𝐽t 𝑘) ∈ Top ∧ ∀𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘)) → 𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
2414, 22, 23syl2anc 587 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
2512, 24eqeltrrid 2895 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ( 𝑥𝑘) ∈ (𝐽t 𝑘))
2625expr 460 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))
2726ralrimiva 3149 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))
28 elkgen 22141 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → ( 𝑥 ∈ (𝑘Gen‘𝐽) ↔ ( 𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))))
2928adantr 484 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ( 𝑥 ∈ (𝑘Gen‘𝐽) ↔ ( 𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))))
307, 27, 29mpbir2and 712 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → 𝑥 ∈ (𝑘Gen‘𝐽))
3130ex 416 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)))
3231alrimiv 1928 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)))
33 inss1 4155 . . . . . 6 (𝑥𝑦) ⊆ 𝑥
34 elssuni 4830 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
3534ad2antrl 727 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥 (𝑘Gen‘𝐽))
36 ssidd 3938 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝑋)
37 elpwi 4506 . . . . . . . . . . . . . . . 16 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
3837ad2antrl 727 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘𝑋)
39 sseqin2 4142 . . . . . . . . . . . . . . 15 (𝑘𝑋 ↔ (𝑋𝑘) = 𝑘)
4038, 39sylib 221 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑋𝑘) = 𝑘)
4137adantr 484 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp) → 𝑘𝑋)
42 resttopon 21766 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
4341, 42sylan2 595 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
44 toponmax 21531 . . . . . . . . . . . . . . 15 ((𝐽t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 ∈ (𝐽t 𝑘))
4543, 44syl 17 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘 ∈ (𝐽t 𝑘))
4640, 45eqeltrd 2890 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑋𝑘) ∈ (𝐽t 𝑘))
4746expr 460 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))
4847ralrimiva 3149 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))
49 elkgen 22141 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → (𝑋 ∈ (𝑘Gen‘𝐽) ↔ (𝑋𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))))
5036, 48, 49mpbir2and 712 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ (𝑘Gen‘𝐽))
51 elssuni 4830 . . . . . . . . . 10 (𝑋 ∈ (𝑘Gen‘𝐽) → 𝑋 (𝑘Gen‘𝐽))
5250, 51syl 17 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 (𝑘Gen‘𝐽))
5352, 6eqssd 3932 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = (𝑘Gen‘𝐽))
5453adantr 484 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑋 = (𝑘Gen‘𝐽))
5535, 54sseqtrrd 3956 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥𝑋)
5633, 55sstrid 3926 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥𝑦) ⊆ 𝑋)
57 inindir 4154 . . . . . . . 8 ((𝑥𝑦) ∩ 𝑘) = ((𝑥𝑘) ∩ (𝑦𝑘))
5813ad2antll 728 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Top)
59 simplrl 776 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘𝐽))
60 simprr 772 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Comp)
61 kgeni 22142 . . . . . . . . . 10 ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝑘) ∈ Comp) → (𝑥𝑘) ∈ (𝐽t 𝑘))
6259, 60, 61syl2anc 587 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ (𝐽t 𝑘))
63 simplrr 777 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑦 ∈ (𝑘Gen‘𝐽))
6463, 60, 19syl2anc 587 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑦𝑘) ∈ (𝐽t 𝑘))
65 inopn 21504 . . . . . . . . 9 (((𝐽t 𝑘) ∈ Top ∧ (𝑥𝑘) ∈ (𝐽t 𝑘) ∧ (𝑦𝑘) ∈ (𝐽t 𝑘)) → ((𝑥𝑘) ∩ (𝑦𝑘)) ∈ (𝐽t 𝑘))
6658, 62, 64, 65syl3anc 1368 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑥𝑘) ∩ (𝑦𝑘)) ∈ (𝐽t 𝑘))
6757, 66eqeltrid 2894 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘))
6867expr 460 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))
6968ralrimiva 3149 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))
70 elkgen 22141 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → ((𝑥𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
7170adantr 484 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ((𝑥𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
7256, 69, 71mpbir2and 712 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥𝑦) ∈ (𝑘Gen‘𝐽))
7372ralrimivva 3156 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽))
74 fvex 6658 . . . 4 (𝑘Gen‘𝐽) ∈ V
75 istopg 21500 . . . 4 ((𝑘Gen‘𝐽) ∈ V → ((𝑘Gen‘𝐽) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽))))
7674, 75ax-mp 5 . . 3 ((𝑘Gen‘𝐽) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽)))
7732, 73, 76sylanbrc 586 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ Top)
78 istopon 21517 . 2 ((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ↔ ((𝑘Gen‘𝐽) ∈ Top ∧ 𝑋 = (𝑘Gen‘𝐽)))
7977, 53, 78sylanbrc 586 1 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800   ciun 4881  cfv 6324  (class class class)co 7135  t crest 16686  Topctop 21498  TopOnctopon 21515  Compccmp 21991  𝑘Genckgen 22138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-er 8272  df-en 8493  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-kgen 22139
This theorem is referenced by:  kgenuni  22144  kgenftop  22145  kgenhaus  22149  kgenidm  22152  kgencn  22161  kgencn3  22163  kgen2cn  22164
  Copyright terms: Public domain W3C validator