MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgentopon Structured version   Visualization version   GIF version

Theorem kgentopon 21561
Description: The compact generator generates a topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
kgentopon (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))

Proof of Theorem kgentopon
Dummy variables 𝑦 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4596 . . . . . . 7 (𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
2 kgenval 21558 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
3 ssrab2 3836 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ⊆ 𝒫 𝑋
42, 3syl6eqss 3804 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ⊆ 𝒫 𝑋)
5 sspwuni 4746 . . . . . . . 8 ((𝑘Gen‘𝐽) ⊆ 𝒫 𝑋 (𝑘Gen‘𝐽) ⊆ 𝑋)
64, 5sylib 208 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ⊆ 𝑋)
71, 6sylan9ssr 3766 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → 𝑥𝑋)
8 iunin2 4719 . . . . . . . . . 10 𝑦𝑥 (𝑘𝑦) = (𝑘 𝑦𝑥 𝑦)
9 uniiun 4708 . . . . . . . . . . 11 𝑥 = 𝑦𝑥 𝑦
109ineq2i 3962 . . . . . . . . . 10 (𝑘 𝑥) = (𝑘 𝑦𝑥 𝑦)
11 incom 3956 . . . . . . . . . 10 (𝑘 𝑥) = ( 𝑥𝑘)
128, 10, 113eqtr2i 2799 . . . . . . . . 9 𝑦𝑥 (𝑘𝑦) = ( 𝑥𝑘)
13 cmptop 21418 . . . . . . . . . . 11 ((𝐽t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Top)
1413ad2antll 708 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Top)
15 incom 3956 . . . . . . . . . . . 12 (𝑦𝑘) = (𝑘𝑦)
16 simplr 752 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ⊆ (𝑘Gen‘𝐽))
1716sselda 3752 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → 𝑦 ∈ (𝑘Gen‘𝐽))
18 simplrr 763 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝐽t 𝑘) ∈ Comp)
19 kgeni 21560 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝑘) ∈ Comp) → (𝑦𝑘) ∈ (𝐽t 𝑘))
2017, 18, 19syl2anc 573 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝑦𝑘) ∈ (𝐽t 𝑘))
2115, 20syl5eqelr 2855 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝑘𝑦) ∈ (𝐽t 𝑘))
2221ralrimiva 3115 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ∀𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
23 iunopn 20922 . . . . . . . . . 10 (((𝐽t 𝑘) ∈ Top ∧ ∀𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘)) → 𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
2414, 22, 23syl2anc 573 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
2512, 24syl5eqelr 2855 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ( 𝑥𝑘) ∈ (𝐽t 𝑘))
2625expr 444 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))
2726ralrimiva 3115 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))
28 elkgen 21559 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → ( 𝑥 ∈ (𝑘Gen‘𝐽) ↔ ( 𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))))
2928adantr 466 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ( 𝑥 ∈ (𝑘Gen‘𝐽) ↔ ( 𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))))
307, 27, 29mpbir2and 692 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → 𝑥 ∈ (𝑘Gen‘𝐽))
3130ex 397 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)))
3231alrimiv 2007 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)))
33 inss1 3981 . . . . . 6 (𝑥𝑦) ⊆ 𝑥
34 elssuni 4604 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
3534ad2antrl 707 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥 (𝑘Gen‘𝐽))
36 ssid 3773 . . . . . . . . . . . 12 𝑋𝑋
3736a1i 11 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝑋)
38 elpwi 4308 . . . . . . . . . . . . . . . 16 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
3938ad2antrl 707 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘𝑋)
40 sseqin2 3968 . . . . . . . . . . . . . . 15 (𝑘𝑋 ↔ (𝑋𝑘) = 𝑘)
4139, 40sylib 208 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑋𝑘) = 𝑘)
4238adantr 466 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp) → 𝑘𝑋)
43 resttopon 21185 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
4442, 43sylan2 580 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
45 toponmax 20950 . . . . . . . . . . . . . . 15 ((𝐽t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 ∈ (𝐽t 𝑘))
4644, 45syl 17 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘 ∈ (𝐽t 𝑘))
4741, 46eqeltrd 2850 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑋𝑘) ∈ (𝐽t 𝑘))
4847expr 444 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))
4948ralrimiva 3115 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))
50 elkgen 21559 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → (𝑋 ∈ (𝑘Gen‘𝐽) ↔ (𝑋𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))))
5137, 49, 50mpbir2and 692 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ (𝑘Gen‘𝐽))
52 elssuni 4604 . . . . . . . . . 10 (𝑋 ∈ (𝑘Gen‘𝐽) → 𝑋 (𝑘Gen‘𝐽))
5351, 52syl 17 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 (𝑘Gen‘𝐽))
5453, 6eqssd 3769 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = (𝑘Gen‘𝐽))
5554adantr 466 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑋 = (𝑘Gen‘𝐽))
5635, 55sseqtr4d 3791 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥𝑋)
5733, 56syl5ss 3763 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥𝑦) ⊆ 𝑋)
58 inindir 3980 . . . . . . . 8 ((𝑥𝑦) ∩ 𝑘) = ((𝑥𝑘) ∩ (𝑦𝑘))
5913ad2antll 708 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Top)
60 simplrl 762 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘𝐽))
61 simprr 756 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Comp)
62 kgeni 21560 . . . . . . . . . 10 ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝑘) ∈ Comp) → (𝑥𝑘) ∈ (𝐽t 𝑘))
6360, 61, 62syl2anc 573 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ (𝐽t 𝑘))
64 simplrr 763 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑦 ∈ (𝑘Gen‘𝐽))
6564, 61, 19syl2anc 573 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑦𝑘) ∈ (𝐽t 𝑘))
66 inopn 20923 . . . . . . . . 9 (((𝐽t 𝑘) ∈ Top ∧ (𝑥𝑘) ∈ (𝐽t 𝑘) ∧ (𝑦𝑘) ∈ (𝐽t 𝑘)) → ((𝑥𝑘) ∩ (𝑦𝑘)) ∈ (𝐽t 𝑘))
6759, 63, 65, 66syl3anc 1476 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑥𝑘) ∩ (𝑦𝑘)) ∈ (𝐽t 𝑘))
6858, 67syl5eqel 2854 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘))
6968expr 444 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))
7069ralrimiva 3115 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))
71 elkgen 21559 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → ((𝑥𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
7271adantr 466 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ((𝑥𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
7357, 70, 72mpbir2and 692 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥𝑦) ∈ (𝑘Gen‘𝐽))
7473ralrimivva 3120 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽))
75 fvex 6344 . . . 4 (𝑘Gen‘𝐽) ∈ V
76 istopg 20919 . . . 4 ((𝑘Gen‘𝐽) ∈ V → ((𝑘Gen‘𝐽) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽))))
7775, 76ax-mp 5 . . 3 ((𝑘Gen‘𝐽) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽)))
7832, 74, 77sylanbrc 572 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ Top)
79 istopon 20936 . 2 ((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ↔ ((𝑘Gen‘𝐽) ∈ Top ∧ 𝑋 = (𝑘Gen‘𝐽)))
8078, 54, 79sylanbrc 572 1 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wal 1629   = wceq 1631  wcel 2145  wral 3061  {crab 3065  Vcvv 3351  cin 3722  wss 3723  𝒫 cpw 4298   cuni 4575   ciun 4655  cfv 6030  (class class class)co 6795  t crest 16288  Topctop 20917  TopOnctopon 20934  Compccmp 21409  𝑘Genckgen 21556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-oadd 7720  df-er 7899  df-en 8113  df-fin 8116  df-fi 8476  df-rest 16290  df-topgen 16311  df-top 20918  df-topon 20935  df-bases 20970  df-cmp 21410  df-kgen 21557
This theorem is referenced by:  kgenuni  21562  kgenftop  21563  kgenhaus  21567  kgenidm  21570  kgencn  21579  kgencn3  21581  kgen2cn  21582
  Copyright terms: Public domain W3C validator