MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgentopon Structured version   Visualization version   GIF version

Theorem kgentopon 23458
Description: The compact generator generates a topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
kgentopon (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))

Proof of Theorem kgentopon
Dummy variables 𝑦 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4875 . . . . . . 7 (𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
2 kgenval 23455 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
3 ssrab2 4039 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ⊆ 𝒫 𝑋
42, 3eqsstrdi 3988 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ⊆ 𝒫 𝑋)
5 sspwuni 5059 . . . . . . . 8 ((𝑘Gen‘𝐽) ⊆ 𝒫 𝑋 (𝑘Gen‘𝐽) ⊆ 𝑋)
64, 5sylib 218 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ⊆ 𝑋)
71, 6sylan9ssr 3958 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → 𝑥𝑋)
8 iunin2 5030 . . . . . . . . . 10 𝑦𝑥 (𝑘𝑦) = (𝑘 𝑦𝑥 𝑦)
9 uniiun 5017 . . . . . . . . . . 11 𝑥 = 𝑦𝑥 𝑦
109ineq2i 4176 . . . . . . . . . 10 (𝑘 𝑥) = (𝑘 𝑦𝑥 𝑦)
11 incom 4168 . . . . . . . . . 10 (𝑘 𝑥) = ( 𝑥𝑘)
128, 10, 113eqtr2i 2758 . . . . . . . . 9 𝑦𝑥 (𝑘𝑦) = ( 𝑥𝑘)
13 cmptop 23315 . . . . . . . . . . 11 ((𝐽t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Top)
1413ad2antll 729 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Top)
15 incom 4168 . . . . . . . . . . . 12 (𝑦𝑘) = (𝑘𝑦)
16 simplr 768 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ⊆ (𝑘Gen‘𝐽))
1716sselda 3943 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → 𝑦 ∈ (𝑘Gen‘𝐽))
18 simplrr 777 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝐽t 𝑘) ∈ Comp)
19 kgeni 23457 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝑘) ∈ Comp) → (𝑦𝑘) ∈ (𝐽t 𝑘))
2017, 18, 19syl2anc 584 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝑦𝑘) ∈ (𝐽t 𝑘))
2115, 20eqeltrrid 2833 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝑘𝑦) ∈ (𝐽t 𝑘))
2221ralrimiva 3125 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ∀𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
23 iunopn 22818 . . . . . . . . . 10 (((𝐽t 𝑘) ∈ Top ∧ ∀𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘)) → 𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
2414, 22, 23syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
2512, 24eqeltrrid 2833 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ( 𝑥𝑘) ∈ (𝐽t 𝑘))
2625expr 456 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))
2726ralrimiva 3125 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))
28 elkgen 23456 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → ( 𝑥 ∈ (𝑘Gen‘𝐽) ↔ ( 𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))))
2928adantr 480 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ( 𝑥 ∈ (𝑘Gen‘𝐽) ↔ ( 𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))))
307, 27, 29mpbir2and 713 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → 𝑥 ∈ (𝑘Gen‘𝐽))
3130ex 412 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)))
3231alrimiv 1927 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)))
33 inss1 4196 . . . . . 6 (𝑥𝑦) ⊆ 𝑥
34 elssuni 4897 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
3534ad2antrl 728 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥 (𝑘Gen‘𝐽))
36 ssidd 3967 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝑋)
37 elpwi 4566 . . . . . . . . . . . . . . . 16 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
3837ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘𝑋)
39 sseqin2 4182 . . . . . . . . . . . . . . 15 (𝑘𝑋 ↔ (𝑋𝑘) = 𝑘)
4038, 39sylib 218 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑋𝑘) = 𝑘)
4137adantr 480 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp) → 𝑘𝑋)
42 resttopon 23081 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
4341, 42sylan2 593 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
44 toponmax 22846 . . . . . . . . . . . . . . 15 ((𝐽t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 ∈ (𝐽t 𝑘))
4543, 44syl 17 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘 ∈ (𝐽t 𝑘))
4640, 45eqeltrd 2828 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑋𝑘) ∈ (𝐽t 𝑘))
4746expr 456 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))
4847ralrimiva 3125 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))
49 elkgen 23456 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → (𝑋 ∈ (𝑘Gen‘𝐽) ↔ (𝑋𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))))
5036, 48, 49mpbir2and 713 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ (𝑘Gen‘𝐽))
51 elssuni 4897 . . . . . . . . . 10 (𝑋 ∈ (𝑘Gen‘𝐽) → 𝑋 (𝑘Gen‘𝐽))
5250, 51syl 17 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 (𝑘Gen‘𝐽))
5352, 6eqssd 3961 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = (𝑘Gen‘𝐽))
5453adantr 480 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑋 = (𝑘Gen‘𝐽))
5535, 54sseqtrrd 3981 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥𝑋)
5633, 55sstrid 3955 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥𝑦) ⊆ 𝑋)
57 inindir 4195 . . . . . . . 8 ((𝑥𝑦) ∩ 𝑘) = ((𝑥𝑘) ∩ (𝑦𝑘))
5813ad2antll 729 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Top)
59 simplrl 776 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘𝐽))
60 simprr 772 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Comp)
61 kgeni 23457 . . . . . . . . . 10 ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝑘) ∈ Comp) → (𝑥𝑘) ∈ (𝐽t 𝑘))
6259, 60, 61syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ (𝐽t 𝑘))
63 simplrr 777 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑦 ∈ (𝑘Gen‘𝐽))
6463, 60, 19syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑦𝑘) ∈ (𝐽t 𝑘))
65 inopn 22819 . . . . . . . . 9 (((𝐽t 𝑘) ∈ Top ∧ (𝑥𝑘) ∈ (𝐽t 𝑘) ∧ (𝑦𝑘) ∈ (𝐽t 𝑘)) → ((𝑥𝑘) ∩ (𝑦𝑘)) ∈ (𝐽t 𝑘))
6658, 62, 64, 65syl3anc 1373 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑥𝑘) ∩ (𝑦𝑘)) ∈ (𝐽t 𝑘))
6757, 66eqeltrid 2832 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘))
6867expr 456 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))
6968ralrimiva 3125 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))
70 elkgen 23456 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → ((𝑥𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
7170adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ((𝑥𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
7256, 69, 71mpbir2and 713 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥𝑦) ∈ (𝑘Gen‘𝐽))
7372ralrimivva 3178 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽))
74 fvex 6853 . . . 4 (𝑘Gen‘𝐽) ∈ V
75 istopg 22815 . . . 4 ((𝑘Gen‘𝐽) ∈ V → ((𝑘Gen‘𝐽) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽))))
7674, 75ax-mp 5 . . 3 ((𝑘Gen‘𝐽) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽)))
7732, 73, 76sylanbrc 583 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ Top)
78 istopon 22832 . 2 ((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ↔ ((𝑘Gen‘𝐽) ∈ Top ∧ 𝑋 = (𝑘Gen‘𝐽)))
7977, 53, 78sylanbrc 583 1 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  {crab 3402  Vcvv 3444  cin 3910  wss 3911  𝒫 cpw 4559   cuni 4867   ciun 4951  cfv 6499  (class class class)co 7369  t crest 17359  Topctop 22813  TopOnctopon 22830  Compccmp 23306  𝑘Genckgen 23453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-en 8896  df-fin 8899  df-fi 9338  df-rest 17361  df-topgen 17382  df-top 22814  df-topon 22831  df-bases 22866  df-cmp 23307  df-kgen 23454
This theorem is referenced by:  kgenuni  23459  kgenftop  23460  kgenhaus  23464  kgenidm  23467  kgencn  23476  kgencn3  23478  kgen2cn  23479
  Copyright terms: Public domain W3C validator