Step | Hyp | Ref
| Expression |
1 | | uniss 4844 |
. . . . . . 7
⊢ (𝑥 ⊆
(𝑘Gen‘𝐽)
→ ∪ 𝑥 ⊆ ∪
(𝑘Gen‘𝐽)) |
2 | | kgenval 22594 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(𝑘Gen‘𝐽) =
{𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) |
3 | | ssrab2 4009 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))} ⊆ 𝒫 𝑋 |
4 | 2, 3 | eqsstrdi 3971 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(𝑘Gen‘𝐽)
⊆ 𝒫 𝑋) |
5 | | sspwuni 5025 |
. . . . . . . 8
⊢
((𝑘Gen‘𝐽) ⊆ 𝒫 𝑋 ↔ ∪
(𝑘Gen‘𝐽)
⊆ 𝑋) |
6 | 4, 5 | sylib 217 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∪ (𝑘Gen‘𝐽) ⊆ 𝑋) |
7 | 1, 6 | sylan9ssr 3931 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ∪ 𝑥
⊆ 𝑋) |
8 | | iunin2 4996 |
. . . . . . . . . 10
⊢ ∪ 𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) = (𝑘 ∩ ∪
𝑦 ∈ 𝑥 𝑦) |
9 | | uniiun 4984 |
. . . . . . . . . . 11
⊢ ∪ 𝑥 =
∪ 𝑦 ∈ 𝑥 𝑦 |
10 | 9 | ineq2i 4140 |
. . . . . . . . . 10
⊢ (𝑘 ∩ ∪ 𝑥) =
(𝑘 ∩ ∪ 𝑦 ∈ 𝑥 𝑦) |
11 | | incom 4131 |
. . . . . . . . . 10
⊢ (𝑘 ∩ ∪ 𝑥) =
(∪ 𝑥 ∩ 𝑘) |
12 | 8, 10, 11 | 3eqtr2i 2772 |
. . . . . . . . 9
⊢ ∪ 𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) = (∪ 𝑥 ∩ 𝑘) |
13 | | cmptop 22454 |
. . . . . . . . . . 11
⊢ ((𝐽 ↾t 𝑘) ∈ Comp → (𝐽 ↾t 𝑘) ∈ Top) |
14 | 13 | ad2antll 725 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ Top) |
15 | | incom 4131 |
. . . . . . . . . . . 12
⊢ (𝑦 ∩ 𝑘) = (𝑘 ∩ 𝑦) |
16 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ⊆ (𝑘Gen‘𝐽)) |
17 | 16 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ (𝑘Gen‘𝐽)) |
18 | | simplrr 774 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) ∧ 𝑦 ∈ 𝑥) → (𝐽 ↾t 𝑘) ∈ Comp) |
19 | | kgeni 22596 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝑘)
∈ Comp) → (𝑦
∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
20 | 17, 18, 19 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) ∧ 𝑦 ∈ 𝑥) → (𝑦 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
21 | 15, 20 | eqeltrrid 2844 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) ∧ 𝑦 ∈ 𝑥) → (𝑘 ∩ 𝑦) ∈ (𝐽 ↾t 𝑘)) |
22 | 21 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ∀𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) ∈ (𝐽 ↾t 𝑘)) |
23 | | iunopn 21955 |
. . . . . . . . . 10
⊢ (((𝐽 ↾t 𝑘) ∈ Top ∧ ∀𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) ∈ (𝐽 ↾t 𝑘)) → ∪
𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) ∈ (𝐽 ↾t 𝑘)) |
24 | 14, 22, 23 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ∪ 𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) ∈ (𝐽 ↾t 𝑘)) |
25 | 12, 24 | eqeltrrid 2844 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (∪ 𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
26 | 25 | expr 456 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽 ↾t 𝑘) ∈ Comp → (∪ 𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
27 | 26 | ralrimiva 3107 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (∪ 𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
28 | | elkgen 22595 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∪ 𝑥
∈ (𝑘Gen‘𝐽) ↔ (∪ 𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (∪ 𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
29 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → (∪ 𝑥
∈ (𝑘Gen‘𝐽) ↔ (∪ 𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (∪ 𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
30 | 7, 27, 29 | mpbir2and 709 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ∪ 𝑥
∈ (𝑘Gen‘𝐽)) |
31 | 30 | ex 412 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ⊆ (𝑘Gen‘𝐽) → ∪ 𝑥
∈ (𝑘Gen‘𝐽))) |
32 | 31 | alrimiv 1931 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → ∪ 𝑥
∈ (𝑘Gen‘𝐽))) |
33 | | inss1 4159 |
. . . . . 6
⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 |
34 | | elssuni 4868 |
. . . . . . . 8
⊢ (𝑥 ∈
(𝑘Gen‘𝐽)
→ 𝑥 ⊆ ∪ (𝑘Gen‘𝐽)) |
35 | 34 | ad2antrl 724 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥 ⊆ ∪
(𝑘Gen‘𝐽)) |
36 | | ssidd 3940 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ⊆ 𝑋) |
37 | | elpwi 4539 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝒫 𝑋 → 𝑘 ⊆ 𝑋) |
38 | 37 | ad2antrl 724 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑘 ⊆ 𝑋) |
39 | | sseqin2 4146 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ⊆ 𝑋 ↔ (𝑋 ∩ 𝑘) = 𝑘) |
40 | 38, 39 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑋 ∩ 𝑘) = 𝑘) |
41 | 37 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp) → 𝑘 ⊆ 𝑋) |
42 | | resttopon 22220 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ⊆ 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
43 | 41, 42 | sylan2 592 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
44 | | toponmax 21983 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 ∈ (𝐽 ↾t 𝑘)) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑘 ∈ (𝐽 ↾t 𝑘)) |
46 | 40, 45 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑋 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
47 | 46 | expr 456 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽 ↾t 𝑘) ∈ Comp → (𝑋 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
48 | 47 | ralrimiva 3107 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑋 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
49 | | elkgen 22595 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑋 ∈ (𝑘Gen‘𝐽) ↔ (𝑋 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑋 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
50 | 36, 48, 49 | mpbir2and 709 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ (𝑘Gen‘𝐽)) |
51 | | elssuni 4868 |
. . . . . . . . . 10
⊢ (𝑋 ∈
(𝑘Gen‘𝐽)
→ 𝑋 ⊆ ∪ (𝑘Gen‘𝐽)) |
52 | 50, 51 | syl 17 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ⊆ ∪
(𝑘Gen‘𝐽)) |
53 | 52, 6 | eqssd 3934 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪
(𝑘Gen‘𝐽)) |
54 | 53 | adantr 480 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑋 = ∪
(𝑘Gen‘𝐽)) |
55 | 35, 54 | sseqtrrd 3958 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥 ⊆ 𝑋) |
56 | 33, 55 | sstrid 3928 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥 ∩ 𝑦) ⊆ 𝑋) |
57 | | inindir 4158 |
. . . . . . . 8
⊢ ((𝑥 ∩ 𝑦) ∩ 𝑘) = ((𝑥 ∩ 𝑘) ∩ (𝑦 ∩ 𝑘)) |
58 | 13 | ad2antll 725 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ Top) |
59 | | simplrl 773 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘𝐽)) |
60 | | simprr 769 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ Comp) |
61 | | kgeni 22596 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝑘)
∈ Comp) → (𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
62 | 59, 60, 61 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
63 | | simplrr 774 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑦 ∈ (𝑘Gen‘𝐽)) |
64 | 63, 60, 19 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑦 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
65 | | inopn 21956 |
. . . . . . . . 9
⊢ (((𝐽 ↾t 𝑘) ∈ Top ∧ (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘) ∧ (𝑦 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → ((𝑥 ∩ 𝑘) ∩ (𝑦 ∩ 𝑘)) ∈ (𝐽 ↾t 𝑘)) |
66 | 58, 62, 64, 65 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((𝑥 ∩ 𝑘) ∩ (𝑦 ∩ 𝑘)) ∈ (𝐽 ↾t 𝑘)) |
67 | 57, 66 | eqeltrid 2843 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((𝑥 ∩ 𝑦) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
68 | 67 | expr 456 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽 ↾t 𝑘) ∈ Comp → ((𝑥 ∩ 𝑦) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
69 | 68 | ralrimiva 3107 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((𝑥 ∩ 𝑦) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
70 | | elkgen 22595 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥 ∩ 𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((𝑥 ∩ 𝑦) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
71 | 70 | adantr 480 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ((𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥 ∩ 𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((𝑥 ∩ 𝑦) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
72 | 56, 69, 71 | mpbir2and 709 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽)) |
73 | 72 | ralrimivva 3114 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥 ∈
(𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽)) |
74 | | fvex 6769 |
. . . 4
⊢
(𝑘Gen‘𝐽) ∈ V |
75 | | istopg 21952 |
. . . 4
⊢
((𝑘Gen‘𝐽) ∈ V → ((𝑘Gen‘𝐽) ∈ Top ↔
(∀𝑥(𝑥 ⊆
(𝑘Gen‘𝐽)
→ ∪ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽)))) |
76 | 74, 75 | ax-mp 5 |
. . 3
⊢
((𝑘Gen‘𝐽) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → ∪ 𝑥
∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽))) |
77 | 32, 73, 76 | sylanbrc 582 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(𝑘Gen‘𝐽)
∈ Top) |
78 | | istopon 21969 |
. 2
⊢
((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ↔ ((𝑘Gen‘𝐽) ∈ Top ∧ 𝑋 = ∪
(𝑘Gen‘𝐽))) |
79 | 77, 53, 78 | sylanbrc 582 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(𝑘Gen‘𝐽)
∈ (TopOn‘𝑋)) |