HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1lem2 Structured version   Visualization version   GIF version

Theorem mdslmd1lem2 30113
Description: Lemma for mdslmd1i 30116. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
mdslmd1lem.5 𝑅C
Assertion
Ref Expression
mdslmd1lem2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))

Proof of Theorem mdslmd1lem2
StepHypRef Expression
1 ssrin 4163 . . . 4 (𝑅𝐷 → (𝑅𝐵) ⊆ (𝐷𝐵))
21adantl 485 . . 3 (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (𝑅𝐵) ⊆ (𝐷𝐵))
32imim1i 63 . 2 (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
4 simpllr 775 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐵 𝑀* 𝐴)
5 mdslmd.3 . . . . . . . . . . . 12 𝐶C
6 mdslmd1lem.5 . . . . . . . . . . . 12 𝑅C
75, 6chub2i 29257 . . . . . . . . . . 11 𝐶 ⊆ (𝑅 𝐶)
8 sstr 3926 . . . . . . . . . . 11 ((𝐴𝐶𝐶 ⊆ (𝑅 𝐶)) → 𝐴 ⊆ (𝑅 𝐶))
97, 8mpan2 690 . . . . . . . . . 10 (𝐴𝐶𝐴 ⊆ (𝑅 𝐶))
109ad2antrr 725 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴 ⊆ (𝑅 𝐶))
1110ad2antlr 726 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅 𝐶))
12 simplr 768 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐷)
1312ad2antlr 726 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝐷)
1411, 13ssind 4162 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ ((𝑅 𝐶) ∩ 𝐷))
15 ssin 4160 . . . . . . . . . 10 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
16 mdslmd.4 . . . . . . . . . . . . 13 𝐷C
175, 16chincli 29247 . . . . . . . . . . . 12 (𝐶𝐷) ∈ C
1817, 6chub2i 29257 . . . . . . . . . . 11 (𝐶𝐷) ⊆ (𝑅 (𝐶𝐷))
19 sstr 3926 . . . . . . . . . . 11 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ (𝑅 (𝐶𝐷))) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2018, 19mpan2 690 . . . . . . . . . 10 (𝐴 ⊆ (𝐶𝐷) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2115, 20sylbi 220 . . . . . . . . 9 ((𝐴𝐶𝐴𝐷) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2221adantr 484 . . . . . . . 8 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2322ad2antlr 726 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2414, 23ssind 4162 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (((𝑅 𝐶) ∩ 𝐷) ∩ (𝑅 (𝐶𝐷))))
25 inss2 4159 . . . . . . . . . . 11 ((𝑅 𝐶) ∩ 𝐷) ⊆ 𝐷
26 sstr 3926 . . . . . . . . . . 11 ((((𝑅 𝐶) ∩ 𝐷) ⊆ 𝐷𝐷 ⊆ (𝐴 𝐵)) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2725, 26mpan 689 . . . . . . . . . 10 (𝐷 ⊆ (𝐴 𝐵) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2827ad2antll 728 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2928ad2antlr 726 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
30 sstr 3926 . . . . . . . . . . . . . 14 ((𝑅𝐷𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3130ancoms 462 . . . . . . . . . . . . 13 ((𝐷 ⊆ (𝐴 𝐵) ∧ 𝑅𝐷) → 𝑅 ⊆ (𝐴 𝐵))
3231ad2ant2l 745 . . . . . . . . . . . 12 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
3332adantll 713 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
3433adantll 713 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
35 ssinss1 4167 . . . . . . . . . . . 12 (𝐶 ⊆ (𝐴 𝐵) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3635ad2antrl 727 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3736ad2antlr 726 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3834, 37jca 515 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
39 mdslmd.1 . . . . . . . . . . 11 𝐴C
40 mdslmd.2 . . . . . . . . . . 11 𝐵C
4139, 40chjcli 29244 . . . . . . . . . 10 (𝐴 𝐵) ∈ C
426, 17, 41chlubi 29258 . . . . . . . . 9 ((𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)) ↔ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
4338, 42sylib 221 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
4429, 43jca 515 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
456, 5chjcli 29244 . . . . . . . . 9 (𝑅 𝐶) ∈ C
4645, 16chincli 29247 . . . . . . . 8 ((𝑅 𝐶) ∩ 𝐷) ∈ C
476, 17chjcli 29244 . . . . . . . 8 (𝑅 (𝐶𝐷)) ∈ C
4846, 47, 41chlubi 29258 . . . . . . 7 ((((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵))
4944, 48sylib 221 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵))
5039, 40, 46, 47mdslle1i 30104 . . . . . 6 ((𝐵 𝑀* 𝐴𝐴 ⊆ (((𝑅 𝐶) ∩ 𝐷) ∩ (𝑅 (𝐶𝐷))) ∧ (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
514, 24, 49, 50syl3anc 1368 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
52 inindir 4157 . . . . . . 7 (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) = (((𝑅 𝐶) ∩ 𝐵) ∩ (𝐷𝐵))
53 sstr 3926 . . . . . . . . . . . . . 14 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴𝑅)
5415, 53sylanb 584 . . . . . . . . . . . . 13 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴𝑅)
5554ad2ant2r 746 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝑅)
56 simplll 774 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝐶)
5755, 56ssind 4162 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅𝐶))
58 simplrl 776 . . . . . . . . . . . . 13 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐶 ⊆ (𝐴 𝐵))
5933, 58jca 515 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)))
606, 5, 41chlubi 29258 . . . . . . . . . . . 12 ((𝑅 ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)) ↔ (𝑅 𝐶) ⊆ (𝐴 𝐵))
6159, 60sylib 221 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 𝐶) ⊆ (𝐴 𝐵))
6257, 61jca 515 . . . . . . . . . 10 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐴 ⊆ (𝑅𝐶) ∧ (𝑅 𝐶) ⊆ (𝐴 𝐵)))
6339, 40, 6, 5mdslj1i 30106 . . . . . . . . . 10 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝑅𝐶) ∧ (𝑅 𝐶) ⊆ (𝐴 𝐵))) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6462, 63sylan2 595 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷))) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6564anassrs 471 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6665ineq1d 4141 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐵) ∩ (𝐷𝐵)) = (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)))
6752, 66syl5req 2849 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) = (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵))
6815biimpi 219 . . . . . . . . . . . . 13 ((𝐴𝐶𝐴𝐷) → 𝐴 ⊆ (𝐶𝐷))
6968adantr 484 . . . . . . . . . . . 12 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴 ⊆ (𝐶𝐷))
7054, 69ssind 4162 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)))
7131adantll 713 . . . . . . . . . . . . 13 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → 𝑅 ⊆ (𝐴 𝐵))
7235ad2antrr 725 . . . . . . . . . . . . 13 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7371, 72jca 515 . . . . . . . . . . . 12 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
7473, 42sylib 221 . . . . . . . . . . 11 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
7570, 74anim12i 615 . . . . . . . . . 10 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) ∧ ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷)) → (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
7675an4s 659 . . . . . . . . 9 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
7739, 40, 6, 17mdslj1i 30106 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
7876, 77sylan2 595 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷))) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
7978anassrs 471 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
80 inindir 4157 . . . . . . . . 9 ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵))
8180a1i 11 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵)))
8281oveq2d 7155 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)) = ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))
8379, 82eqtr2d 2837 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) = ((𝑅 (𝐶𝐷)) ∩ 𝐵))
8467, 83sseq12d 3951 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
8551, 84bitr4d 285 . . . 4 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
8685exbiri 810 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
8786a2d 29 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
883, 87syl5 34 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  cin 3883  wss 3884   class class class wbr 5033  (class class class)co 7139   C cch 28716   chj 28720   𝑀 cmd 28753   𝑀* cdmd 28754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610  ax-hilex 28786  ax-hfvadd 28787  ax-hvcom 28788  ax-hvass 28789  ax-hv0cl 28790  ax-hvaddid 28791  ax-hfvmul 28792  ax-hvmulid 28793  ax-hvmulass 28794  ax-hvdistr1 28795  ax-hvdistr2 28796  ax-hvmul0 28797  ax-hfi 28866  ax-his1 28869  ax-his2 28870  ax-his3 28871  ax-his4 28872  ax-hcompl 28989
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-sum 15039  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-cn 21836  df-cnp 21837  df-lm 21838  df-haus 21924  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cfil 23863  df-cau 23864  df-cmet 23865  df-grpo 28280  df-gid 28281  df-ginv 28282  df-gdiv 28283  df-ablo 28332  df-vc 28346  df-nv 28379  df-va 28382  df-ba 28383  df-sm 28384  df-0v 28385  df-vs 28386  df-nmcv 28387  df-ims 28388  df-dip 28488  df-ssp 28509  df-ph 28600  df-cbn 28650  df-hnorm 28755  df-hba 28756  df-hvsub 28758  df-hlim 28759  df-hcau 28760  df-sh 28994  df-ch 29008  df-oc 29039  df-ch0 29040  df-shs 29095  df-chj 29097  df-md 30067  df-dmd 30068
This theorem is referenced by:  mdslmd1lem4  30115
  Copyright terms: Public domain W3C validator