HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1lem2 Structured version   Visualization version   GIF version

Theorem mdslmd1lem2 32307
Description: Lemma for mdslmd1i 32310. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
mdslmd1lem.5 𝑅C
Assertion
Ref Expression
mdslmd1lem2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))

Proof of Theorem mdslmd1lem2
StepHypRef Expression
1 ssrin 4217 . . . 4 (𝑅𝐷 → (𝑅𝐵) ⊆ (𝐷𝐵))
21adantl 481 . . 3 (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (𝑅𝐵) ⊆ (𝐷𝐵))
32imim1i 63 . 2 (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
4 simpllr 775 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐵 𝑀* 𝐴)
5 mdslmd.3 . . . . . . . . . . . 12 𝐶C
6 mdslmd1lem.5 . . . . . . . . . . . 12 𝑅C
75, 6chub2i 31451 . . . . . . . . . . 11 𝐶 ⊆ (𝑅 𝐶)
8 sstr 3967 . . . . . . . . . . 11 ((𝐴𝐶𝐶 ⊆ (𝑅 𝐶)) → 𝐴 ⊆ (𝑅 𝐶))
97, 8mpan2 691 . . . . . . . . . 10 (𝐴𝐶𝐴 ⊆ (𝑅 𝐶))
109ad2antrr 726 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴 ⊆ (𝑅 𝐶))
1110ad2antlr 727 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅 𝐶))
12 simplr 768 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐷)
1312ad2antlr 727 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝐷)
1411, 13ssind 4216 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ ((𝑅 𝐶) ∩ 𝐷))
15 ssin 4214 . . . . . . . . . 10 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
16 mdslmd.4 . . . . . . . . . . . . 13 𝐷C
175, 16chincli 31441 . . . . . . . . . . . 12 (𝐶𝐷) ∈ C
1817, 6chub2i 31451 . . . . . . . . . . 11 (𝐶𝐷) ⊆ (𝑅 (𝐶𝐷))
19 sstr 3967 . . . . . . . . . . 11 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ (𝑅 (𝐶𝐷))) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2018, 19mpan2 691 . . . . . . . . . 10 (𝐴 ⊆ (𝐶𝐷) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2115, 20sylbi 217 . . . . . . . . 9 ((𝐴𝐶𝐴𝐷) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2221adantr 480 . . . . . . . 8 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2322ad2antlr 727 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2414, 23ssind 4216 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (((𝑅 𝐶) ∩ 𝐷) ∩ (𝑅 (𝐶𝐷))))
25 inss2 4213 . . . . . . . . . . 11 ((𝑅 𝐶) ∩ 𝐷) ⊆ 𝐷
26 sstr 3967 . . . . . . . . . . 11 ((((𝑅 𝐶) ∩ 𝐷) ⊆ 𝐷𝐷 ⊆ (𝐴 𝐵)) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2725, 26mpan 690 . . . . . . . . . 10 (𝐷 ⊆ (𝐴 𝐵) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2827ad2antll 729 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2928ad2antlr 727 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
30 sstr 3967 . . . . . . . . . . . . . 14 ((𝑅𝐷𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3130ancoms 458 . . . . . . . . . . . . 13 ((𝐷 ⊆ (𝐴 𝐵) ∧ 𝑅𝐷) → 𝑅 ⊆ (𝐴 𝐵))
3231ad2ant2l 746 . . . . . . . . . . . 12 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
3332adantll 714 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
3433adantll 714 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
35 ssinss1 4221 . . . . . . . . . . . 12 (𝐶 ⊆ (𝐴 𝐵) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3635ad2antrl 728 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3736ad2antlr 727 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3834, 37jca 511 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
39 mdslmd.1 . . . . . . . . . . 11 𝐴C
40 mdslmd.2 . . . . . . . . . . 11 𝐵C
4139, 40chjcli 31438 . . . . . . . . . 10 (𝐴 𝐵) ∈ C
426, 17, 41chlubi 31452 . . . . . . . . 9 ((𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)) ↔ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
4338, 42sylib 218 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
4429, 43jca 511 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
456, 5chjcli 31438 . . . . . . . . 9 (𝑅 𝐶) ∈ C
4645, 16chincli 31441 . . . . . . . 8 ((𝑅 𝐶) ∩ 𝐷) ∈ C
476, 17chjcli 31438 . . . . . . . 8 (𝑅 (𝐶𝐷)) ∈ C
4846, 47, 41chlubi 31452 . . . . . . 7 ((((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵))
4944, 48sylib 218 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵))
5039, 40, 46, 47mdslle1i 32298 . . . . . 6 ((𝐵 𝑀* 𝐴𝐴 ⊆ (((𝑅 𝐶) ∩ 𝐷) ∩ (𝑅 (𝐶𝐷))) ∧ (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
514, 24, 49, 50syl3anc 1373 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
52 inindir 4211 . . . . . . 7 (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) = (((𝑅 𝐶) ∩ 𝐵) ∩ (𝐷𝐵))
53 sstr 3967 . . . . . . . . . . . . . 14 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴𝑅)
5415, 53sylanb 581 . . . . . . . . . . . . 13 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴𝑅)
5554ad2ant2r 747 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝑅)
56 simplll 774 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝐶)
5755, 56ssind 4216 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅𝐶))
58 simplrl 776 . . . . . . . . . . . . 13 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐶 ⊆ (𝐴 𝐵))
5933, 58jca 511 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)))
606, 5, 41chlubi 31452 . . . . . . . . . . . 12 ((𝑅 ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)) ↔ (𝑅 𝐶) ⊆ (𝐴 𝐵))
6159, 60sylib 218 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 𝐶) ⊆ (𝐴 𝐵))
6257, 61jca 511 . . . . . . . . . 10 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐴 ⊆ (𝑅𝐶) ∧ (𝑅 𝐶) ⊆ (𝐴 𝐵)))
6339, 40, 6, 5mdslj1i 32300 . . . . . . . . . 10 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝑅𝐶) ∧ (𝑅 𝐶) ⊆ (𝐴 𝐵))) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6462, 63sylan2 593 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷))) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6564anassrs 467 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6665ineq1d 4194 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐵) ∩ (𝐷𝐵)) = (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)))
6752, 66eqtr2id 2783 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) = (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵))
6815biimpi 216 . . . . . . . . . . . . 13 ((𝐴𝐶𝐴𝐷) → 𝐴 ⊆ (𝐶𝐷))
6968adantr 480 . . . . . . . . . . . 12 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴 ⊆ (𝐶𝐷))
7054, 69ssind 4216 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)))
7131adantll 714 . . . . . . . . . . . . 13 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → 𝑅 ⊆ (𝐴 𝐵))
7235ad2antrr 726 . . . . . . . . . . . . 13 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7371, 72jca 511 . . . . . . . . . . . 12 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
7473, 42sylib 218 . . . . . . . . . . 11 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
7570, 74anim12i 613 . . . . . . . . . 10 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) ∧ ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷)) → (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
7675an4s 660 . . . . . . . . 9 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
7739, 40, 6, 17mdslj1i 32300 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
7876, 77sylan2 593 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷))) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
7978anassrs 467 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
80 inindir 4211 . . . . . . . . 9 ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵))
8180a1i 11 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵)))
8281oveq2d 7421 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)) = ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))
8379, 82eqtr2d 2771 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) = ((𝑅 (𝐶𝐷)) ∩ 𝐵))
8467, 83sseq12d 3992 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
8551, 84bitr4d 282 . . . 4 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
8685exbiri 810 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
8786a2d 29 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
883, 87syl5 34 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cin 3925  wss 3926   class class class wbr 5119  (class class class)co 7405   C cch 30910   chj 30914   𝑀 cmd 30947   𝑀* cdmd 30948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209  ax-hilex 30980  ax-hfvadd 30981  ax-hvcom 30982  ax-hvass 30983  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987  ax-hvmulass 30988  ax-hvdistr1 30989  ax-hvdistr2 30990  ax-hvmul0 30991  ax-hfi 31060  ax-his1 31063  ax-his2 31064  ax-his3 31065  ax-his4 31066  ax-hcompl 31183
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-cn 23165  df-cnp 23166  df-lm 23167  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cfil 25207  df-cau 25208  df-cmet 25209  df-grpo 30474  df-gid 30475  df-ginv 30476  df-gdiv 30477  df-ablo 30526  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-vs 30580  df-nmcv 30581  df-ims 30582  df-dip 30682  df-ssp 30703  df-ph 30794  df-cbn 30844  df-hnorm 30949  df-hba 30950  df-hvsub 30952  df-hlim 30953  df-hcau 30954  df-sh 31188  df-ch 31202  df-oc 31233  df-ch0 31234  df-shs 31289  df-chj 31291  df-md 32261  df-dmd 32262
This theorem is referenced by:  mdslmd1lem4  32309
  Copyright terms: Public domain W3C validator