HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1lem2 Structured version   Visualization version   GIF version

Theorem mdslmd1lem2 30688
Description: Lemma for mdslmd1i 30691. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
mdslmd1lem.5 𝑅C
Assertion
Ref Expression
mdslmd1lem2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))

Proof of Theorem mdslmd1lem2
StepHypRef Expression
1 ssrin 4167 . . . 4 (𝑅𝐷 → (𝑅𝐵) ⊆ (𝐷𝐵))
21adantl 482 . . 3 (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (𝑅𝐵) ⊆ (𝐷𝐵))
32imim1i 63 . 2 (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
4 simpllr 773 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐵 𝑀* 𝐴)
5 mdslmd.3 . . . . . . . . . . . 12 𝐶C
6 mdslmd1lem.5 . . . . . . . . . . . 12 𝑅C
75, 6chub2i 29832 . . . . . . . . . . 11 𝐶 ⊆ (𝑅 𝐶)
8 sstr 3929 . . . . . . . . . . 11 ((𝐴𝐶𝐶 ⊆ (𝑅 𝐶)) → 𝐴 ⊆ (𝑅 𝐶))
97, 8mpan2 688 . . . . . . . . . 10 (𝐴𝐶𝐴 ⊆ (𝑅 𝐶))
109ad2antrr 723 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴 ⊆ (𝑅 𝐶))
1110ad2antlr 724 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅 𝐶))
12 simplr 766 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐷)
1312ad2antlr 724 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝐷)
1411, 13ssind 4166 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ ((𝑅 𝐶) ∩ 𝐷))
15 ssin 4164 . . . . . . . . . 10 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
16 mdslmd.4 . . . . . . . . . . . . 13 𝐷C
175, 16chincli 29822 . . . . . . . . . . . 12 (𝐶𝐷) ∈ C
1817, 6chub2i 29832 . . . . . . . . . . 11 (𝐶𝐷) ⊆ (𝑅 (𝐶𝐷))
19 sstr 3929 . . . . . . . . . . 11 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ (𝑅 (𝐶𝐷))) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2018, 19mpan2 688 . . . . . . . . . 10 (𝐴 ⊆ (𝐶𝐷) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2115, 20sylbi 216 . . . . . . . . 9 ((𝐴𝐶𝐴𝐷) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2221adantr 481 . . . . . . . 8 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2322ad2antlr 724 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2414, 23ssind 4166 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (((𝑅 𝐶) ∩ 𝐷) ∩ (𝑅 (𝐶𝐷))))
25 inss2 4163 . . . . . . . . . . 11 ((𝑅 𝐶) ∩ 𝐷) ⊆ 𝐷
26 sstr 3929 . . . . . . . . . . 11 ((((𝑅 𝐶) ∩ 𝐷) ⊆ 𝐷𝐷 ⊆ (𝐴 𝐵)) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2725, 26mpan 687 . . . . . . . . . 10 (𝐷 ⊆ (𝐴 𝐵) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2827ad2antll 726 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2928ad2antlr 724 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
30 sstr 3929 . . . . . . . . . . . . . 14 ((𝑅𝐷𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3130ancoms 459 . . . . . . . . . . . . 13 ((𝐷 ⊆ (𝐴 𝐵) ∧ 𝑅𝐷) → 𝑅 ⊆ (𝐴 𝐵))
3231ad2ant2l 743 . . . . . . . . . . . 12 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
3332adantll 711 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
3433adantll 711 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
35 ssinss1 4171 . . . . . . . . . . . 12 (𝐶 ⊆ (𝐴 𝐵) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3635ad2antrl 725 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3736ad2antlr 724 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3834, 37jca 512 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
39 mdslmd.1 . . . . . . . . . . 11 𝐴C
40 mdslmd.2 . . . . . . . . . . 11 𝐵C
4139, 40chjcli 29819 . . . . . . . . . 10 (𝐴 𝐵) ∈ C
426, 17, 41chlubi 29833 . . . . . . . . 9 ((𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)) ↔ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
4338, 42sylib 217 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
4429, 43jca 512 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
456, 5chjcli 29819 . . . . . . . . 9 (𝑅 𝐶) ∈ C
4645, 16chincli 29822 . . . . . . . 8 ((𝑅 𝐶) ∩ 𝐷) ∈ C
476, 17chjcli 29819 . . . . . . . 8 (𝑅 (𝐶𝐷)) ∈ C
4846, 47, 41chlubi 29833 . . . . . . 7 ((((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵))
4944, 48sylib 217 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵))
5039, 40, 46, 47mdslle1i 30679 . . . . . 6 ((𝐵 𝑀* 𝐴𝐴 ⊆ (((𝑅 𝐶) ∩ 𝐷) ∩ (𝑅 (𝐶𝐷))) ∧ (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
514, 24, 49, 50syl3anc 1370 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
52 inindir 4161 . . . . . . 7 (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) = (((𝑅 𝐶) ∩ 𝐵) ∩ (𝐷𝐵))
53 sstr 3929 . . . . . . . . . . . . . 14 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴𝑅)
5415, 53sylanb 581 . . . . . . . . . . . . 13 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴𝑅)
5554ad2ant2r 744 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝑅)
56 simplll 772 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝐶)
5755, 56ssind 4166 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅𝐶))
58 simplrl 774 . . . . . . . . . . . . 13 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐶 ⊆ (𝐴 𝐵))
5933, 58jca 512 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)))
606, 5, 41chlubi 29833 . . . . . . . . . . . 12 ((𝑅 ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)) ↔ (𝑅 𝐶) ⊆ (𝐴 𝐵))
6159, 60sylib 217 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 𝐶) ⊆ (𝐴 𝐵))
6257, 61jca 512 . . . . . . . . . 10 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐴 ⊆ (𝑅𝐶) ∧ (𝑅 𝐶) ⊆ (𝐴 𝐵)))
6339, 40, 6, 5mdslj1i 30681 . . . . . . . . . 10 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝑅𝐶) ∧ (𝑅 𝐶) ⊆ (𝐴 𝐵))) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6462, 63sylan2 593 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷))) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6564anassrs 468 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6665ineq1d 4145 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐵) ∩ (𝐷𝐵)) = (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)))
6752, 66eqtr2id 2791 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) = (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵))
6815biimpi 215 . . . . . . . . . . . . 13 ((𝐴𝐶𝐴𝐷) → 𝐴 ⊆ (𝐶𝐷))
6968adantr 481 . . . . . . . . . . . 12 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴 ⊆ (𝐶𝐷))
7054, 69ssind 4166 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)))
7131adantll 711 . . . . . . . . . . . . 13 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → 𝑅 ⊆ (𝐴 𝐵))
7235ad2antrr 723 . . . . . . . . . . . . 13 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7371, 72jca 512 . . . . . . . . . . . 12 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
7473, 42sylib 217 . . . . . . . . . . 11 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
7570, 74anim12i 613 . . . . . . . . . 10 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) ∧ ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷)) → (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
7675an4s 657 . . . . . . . . 9 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
7739, 40, 6, 17mdslj1i 30681 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
7876, 77sylan2 593 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷))) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
7978anassrs 468 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
80 inindir 4161 . . . . . . . . 9 ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵))
8180a1i 11 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵)))
8281oveq2d 7291 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)) = ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))
8379, 82eqtr2d 2779 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) = ((𝑅 (𝐶𝐷)) ∩ 𝐵))
8467, 83sseq12d 3954 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
8551, 84bitr4d 281 . . . 4 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
8685exbiri 808 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
8786a2d 29 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
883, 87syl5 34 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cin 3886  wss 3887   class class class wbr 5074  (class class class)co 7275   C cch 29291   chj 29295   𝑀 cmd 29328   𝑀* cdmd 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-lm 22380  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-dip 29063  df-ssp 29084  df-ph 29175  df-cbn 29225  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hlim 29334  df-hcau 29335  df-sh 29569  df-ch 29583  df-oc 29614  df-ch0 29615  df-shs 29670  df-chj 29672  df-md 30642  df-dmd 30643
This theorem is referenced by:  mdslmd1lem4  30690
  Copyright terms: Public domain W3C validator