HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1lem2 Structured version   Visualization version   GIF version

Theorem mdslmd1lem2 32298
Description: Lemma for mdslmd1i 32301. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
mdslmd1lem.5 𝑅C
Assertion
Ref Expression
mdslmd1lem2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))

Proof of Theorem mdslmd1lem2
StepHypRef Expression
1 ssrin 4187 . . . 4 (𝑅𝐷 → (𝑅𝐵) ⊆ (𝐷𝐵))
21adantl 481 . . 3 (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (𝑅𝐵) ⊆ (𝐷𝐵))
32imim1i 63 . 2 (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
4 simpllr 775 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐵 𝑀* 𝐴)
5 mdslmd.3 . . . . . . . . . . . 12 𝐶C
6 mdslmd1lem.5 . . . . . . . . . . . 12 𝑅C
75, 6chub2i 31442 . . . . . . . . . . 11 𝐶 ⊆ (𝑅 𝐶)
8 sstr 3938 . . . . . . . . . . 11 ((𝐴𝐶𝐶 ⊆ (𝑅 𝐶)) → 𝐴 ⊆ (𝑅 𝐶))
97, 8mpan2 691 . . . . . . . . . 10 (𝐴𝐶𝐴 ⊆ (𝑅 𝐶))
109ad2antrr 726 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴 ⊆ (𝑅 𝐶))
1110ad2antlr 727 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅 𝐶))
12 simplr 768 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐷)
1312ad2antlr 727 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝐷)
1411, 13ssind 4186 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ ((𝑅 𝐶) ∩ 𝐷))
15 ssin 4184 . . . . . . . . . 10 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
16 mdslmd.4 . . . . . . . . . . . . 13 𝐷C
175, 16chincli 31432 . . . . . . . . . . . 12 (𝐶𝐷) ∈ C
1817, 6chub2i 31442 . . . . . . . . . . 11 (𝐶𝐷) ⊆ (𝑅 (𝐶𝐷))
19 sstr 3938 . . . . . . . . . . 11 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ (𝑅 (𝐶𝐷))) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2018, 19mpan2 691 . . . . . . . . . 10 (𝐴 ⊆ (𝐶𝐷) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2115, 20sylbi 217 . . . . . . . . 9 ((𝐴𝐶𝐴𝐷) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2221adantr 480 . . . . . . . 8 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2322ad2antlr 727 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2414, 23ssind 4186 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (((𝑅 𝐶) ∩ 𝐷) ∩ (𝑅 (𝐶𝐷))))
25 inss2 4183 . . . . . . . . . . 11 ((𝑅 𝐶) ∩ 𝐷) ⊆ 𝐷
26 sstr 3938 . . . . . . . . . . 11 ((((𝑅 𝐶) ∩ 𝐷) ⊆ 𝐷𝐷 ⊆ (𝐴 𝐵)) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2725, 26mpan 690 . . . . . . . . . 10 (𝐷 ⊆ (𝐴 𝐵) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2827ad2antll 729 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2928ad2antlr 727 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
30 sstr 3938 . . . . . . . . . . . . . 14 ((𝑅𝐷𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3130ancoms 458 . . . . . . . . . . . . 13 ((𝐷 ⊆ (𝐴 𝐵) ∧ 𝑅𝐷) → 𝑅 ⊆ (𝐴 𝐵))
3231ad2ant2l 746 . . . . . . . . . . . 12 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
3332adantll 714 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
3433adantll 714 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
35 ssinss1 4191 . . . . . . . . . . . 12 (𝐶 ⊆ (𝐴 𝐵) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3635ad2antrl 728 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3736ad2antlr 727 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3834, 37jca 511 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
39 mdslmd.1 . . . . . . . . . . 11 𝐴C
40 mdslmd.2 . . . . . . . . . . 11 𝐵C
4139, 40chjcli 31429 . . . . . . . . . 10 (𝐴 𝐵) ∈ C
426, 17, 41chlubi 31443 . . . . . . . . 9 ((𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)) ↔ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
4338, 42sylib 218 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
4429, 43jca 511 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
456, 5chjcli 31429 . . . . . . . . 9 (𝑅 𝐶) ∈ C
4645, 16chincli 31432 . . . . . . . 8 ((𝑅 𝐶) ∩ 𝐷) ∈ C
476, 17chjcli 31429 . . . . . . . 8 (𝑅 (𝐶𝐷)) ∈ C
4846, 47, 41chlubi 31443 . . . . . . 7 ((((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵))
4944, 48sylib 218 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵))
5039, 40, 46, 47mdslle1i 32289 . . . . . 6 ((𝐵 𝑀* 𝐴𝐴 ⊆ (((𝑅 𝐶) ∩ 𝐷) ∩ (𝑅 (𝐶𝐷))) ∧ (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
514, 24, 49, 50syl3anc 1373 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
52 inindir 4181 . . . . . . 7 (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) = (((𝑅 𝐶) ∩ 𝐵) ∩ (𝐷𝐵))
53 sstr 3938 . . . . . . . . . . . . . 14 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴𝑅)
5415, 53sylanb 581 . . . . . . . . . . . . 13 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴𝑅)
5554ad2ant2r 747 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝑅)
56 simplll 774 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝐶)
5755, 56ssind 4186 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅𝐶))
58 simplrl 776 . . . . . . . . . . . . 13 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐶 ⊆ (𝐴 𝐵))
5933, 58jca 511 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)))
606, 5, 41chlubi 31443 . . . . . . . . . . . 12 ((𝑅 ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)) ↔ (𝑅 𝐶) ⊆ (𝐴 𝐵))
6159, 60sylib 218 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 𝐶) ⊆ (𝐴 𝐵))
6257, 61jca 511 . . . . . . . . . 10 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐴 ⊆ (𝑅𝐶) ∧ (𝑅 𝐶) ⊆ (𝐴 𝐵)))
6339, 40, 6, 5mdslj1i 32291 . . . . . . . . . 10 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝑅𝐶) ∧ (𝑅 𝐶) ⊆ (𝐴 𝐵))) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6462, 63sylan2 593 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷))) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6564anassrs 467 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6665ineq1d 4164 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐵) ∩ (𝐷𝐵)) = (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)))
6752, 66eqtr2id 2779 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) = (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵))
6815biimpi 216 . . . . . . . . . . . . 13 ((𝐴𝐶𝐴𝐷) → 𝐴 ⊆ (𝐶𝐷))
6968adantr 480 . . . . . . . . . . . 12 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴 ⊆ (𝐶𝐷))
7054, 69ssind 4186 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)))
7131adantll 714 . . . . . . . . . . . . 13 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → 𝑅 ⊆ (𝐴 𝐵))
7235ad2antrr 726 . . . . . . . . . . . . 13 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7371, 72jca 511 . . . . . . . . . . . 12 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
7473, 42sylib 218 . . . . . . . . . . 11 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
7570, 74anim12i 613 . . . . . . . . . 10 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) ∧ ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷)) → (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
7675an4s 660 . . . . . . . . 9 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
7739, 40, 6, 17mdslj1i 32291 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
7876, 77sylan2 593 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷))) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
7978anassrs 467 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
80 inindir 4181 . . . . . . . . 9 ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵))
8180a1i 11 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵)))
8281oveq2d 7357 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)) = ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))
8379, 82eqtr2d 2767 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) = ((𝑅 (𝐶𝐷)) ∩ 𝐵))
8467, 83sseq12d 3963 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
8551, 84bitr4d 282 . . . 4 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
8685exbiri 810 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
8786a2d 29 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
883, 87syl5 34 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cin 3896  wss 3897   class class class wbr 5086  (class class class)co 7341   C cch 30901   chj 30905   𝑀 cmd 30938   𝑀* cdmd 30939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cc 10321  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080  ax-mulf 11081  ax-hilex 30971  ax-hfvadd 30972  ax-hvcom 30973  ax-hvass 30974  ax-hv0cl 30975  ax-hvaddid 30976  ax-hfvmul 30977  ax-hvmulid 30978  ax-hvmulass 30979  ax-hvdistr1 30980  ax-hvdistr2 30981  ax-hvmul0 30982  ax-hfi 31051  ax-his1 31054  ax-his2 31055  ax-his3 31056  ax-his4 31057  ax-hcompl 31174
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-rlim 15391  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-cn 23137  df-cnp 23138  df-lm 23139  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cfil 25177  df-cau 25178  df-cmet 25179  df-grpo 30465  df-gid 30466  df-ginv 30467  df-gdiv 30468  df-ablo 30517  df-vc 30531  df-nv 30564  df-va 30567  df-ba 30568  df-sm 30569  df-0v 30570  df-vs 30571  df-nmcv 30572  df-ims 30573  df-dip 30673  df-ssp 30694  df-ph 30785  df-cbn 30835  df-hnorm 30940  df-hba 30941  df-hvsub 30943  df-hlim 30944  df-hcau 30945  df-sh 31179  df-ch 31193  df-oc 31224  df-ch0 31225  df-shs 31280  df-chj 31282  df-md 32252  df-dmd 32253
This theorem is referenced by:  mdslmd1lem4  32300
  Copyright terms: Public domain W3C validator