Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intexrab | Structured version Visualization version GIF version |
Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
Ref | Expression |
---|---|
intexrab | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intexab 5266 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
2 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rab 3074 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
4 | 3 | inteqi 4888 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
5 | 4 | eleq1i 2830 | . 2 ⊢ (∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
6 | 1, 2, 5 | 3bitr4i 302 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1785 ∈ wcel 2109 {cab 2716 ∃wrex 3066 {crab 3069 Vcvv 3430 ∩ cint 4884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 df-int 4885 |
This theorem is referenced by: onintrab2 7637 rankf 9536 rankvalb 9539 cardf2 9685 tskmval 10579 lspval 20218 aspval 21058 clsval 22169 spanval 29674 rgspnval 40973 |
Copyright terms: Public domain | W3C validator |