MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intexrab Structured version   Visualization version   GIF version

Theorem intexrab 5322
Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003.)
Assertion
Ref Expression
intexrab (∃𝑥𝐴 𝜑 {𝑥𝐴𝜑} ∈ V)

Proof of Theorem intexrab
StepHypRef Expression
1 intexab 5321 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
2 df-rex 3062 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
3 df-rab 3421 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43inteqi 4931 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
54eleq1i 2826 . 2 ( {𝑥𝐴𝜑} ∈ V ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
61, 2, 53bitr4i 303 1 (∃𝑥𝐴 𝜑 {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  {cab 2714  wrex 3061  {crab 3420  Vcvv 3464   cint 4927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-in 3938  df-ss 3948  df-nul 4314  df-int 4928
This theorem is referenced by:  onintrab2  7796  rankf  9813  rankvalb  9816  cardf2  9962  tskmval  10858  rgspnval  20577  lspval  20937  aspval  21838  clsval  22980  spanval  31319  fldgenval  33311
  Copyright terms: Public domain W3C validator