MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intexrab Structured version   Visualization version   GIF version

Theorem intexrab 5207
Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003.)
Assertion
Ref Expression
intexrab (∃𝑥𝐴 𝜑 {𝑥𝐴𝜑} ∈ V)

Proof of Theorem intexrab
StepHypRef Expression
1 intexab 5206 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
2 df-rex 3112 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
3 df-rab 3115 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43inteqi 4842 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
54eleq1i 2880 . 2 ( {𝑥𝐴𝜑} ∈ V ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
61, 2, 53bitr4i 306 1 (∃𝑥𝐴 𝜑 {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wex 1781  wcel 2111  {cab 2776  wrex 3107  {crab 3110  Vcvv 3441   cint 4838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-in 3888  df-ss 3898  df-nul 4244  df-int 4839
This theorem is referenced by:  onintrab2  7497  rankf  9207  rankvalb  9210  cardf2  9356  tskmval  10250  lspval  19740  aspval  20559  clsval  21642  spanval  29116  rgspnval  40112
  Copyright terms: Public domain W3C validator