| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intexrab | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
| Ref | Expression |
|---|---|
| intexrab | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intexab 5284 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
| 2 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rab 3396 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 4 | 3 | inteqi 4901 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 5 | 4 | eleq1i 2822 | . 2 ⊢ (∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∃wrex 3056 {crab 3395 Vcvv 3436 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-in 3909 df-ss 3919 df-nul 4284 df-int 4898 |
| This theorem is referenced by: onintrab2 7730 rankf 9684 rankvalb 9687 cardf2 9833 tskmval 10727 rgspnval 20525 lspval 20906 aspval 21808 clsval 22950 spanval 31308 fldgenval 33273 |
| Copyright terms: Public domain | W3C validator |