|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iota2d | Structured version Visualization version GIF version | ||
| Description: A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| iota2df.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) | 
| iota2df.2 | ⊢ (𝜑 → ∃!𝑥𝜓) | 
| iota2df.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| iota2d | ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iota2df.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | iota2df.2 | . 2 ⊢ (𝜑 → ∃!𝑥𝜓) | |
| 3 | iota2df.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
| 4 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 5 | nfvd 1914 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 6 | nfcvd 2905 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | iota2df 6547 | 1 ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃!weu 2567 ℩cio 6511 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-v 3481 df-un 3955 df-ss 3967 df-sn 4626 df-pr 4628 df-uni 4907 df-iota 6513 | 
| This theorem is referenced by: erov 8855 psgnvalii 19528 q1peqb 26196 | 
| Copyright terms: Public domain | W3C validator |