MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota2d Structured version   Visualization version   GIF version

Theorem iota2d 6089
Description: A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1 (𝜑𝐵𝑉)
iota2df.2 (𝜑 → ∃!𝑥𝜓)
iota2df.3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
Assertion
Ref Expression
iota2d (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem iota2d
StepHypRef Expression
1 iota2df.1 . 2 (𝜑𝐵𝑉)
2 iota2df.2 . 2 (𝜑 → ∃!𝑥𝜓)
3 iota2df.3 . 2 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
4 nfv 2010 . 2 𝑥𝜑
5 nfvd 2011 . 2 (𝜑 → Ⅎ𝑥𝜒)
6 nfcvd 2942 . 2 (𝜑𝑥𝐵)
71, 2, 3, 4, 5, 6iota2df 6088 1 (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  ∃!weu 2608  cio 6062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-v 3387  df-sbc 3634  df-un 3774  df-sn 4369  df-pr 4371  df-uni 4629  df-iota 6064
This theorem is referenced by:  erov  8083  psgnvalii  18242  q1peqb  24255
  Copyright terms: Public domain W3C validator