MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota2d Structured version   Visualization version   GIF version

Theorem iota2d 6524
Description: A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1 (𝜑𝐵𝑉)
iota2df.2 (𝜑 → ∃!𝑥𝜓)
iota2df.3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
Assertion
Ref Expression
iota2d (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem iota2d
StepHypRef Expression
1 iota2df.1 . 2 (𝜑𝐵𝑉)
2 iota2df.2 . 2 (𝜑 → ∃!𝑥𝜓)
3 iota2df.3 . 2 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
4 nfv 1914 . 2 𝑥𝜑
5 nfvd 1915 . 2 (𝜑 → Ⅎ𝑥𝜒)
6 nfcvd 2900 . 2 (𝜑𝑥𝐵)
71, 2, 3, 4, 5, 6iota2df 6523 1 (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!weu 2568  cio 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-v 3466  df-un 3936  df-ss 3948  df-sn 4607  df-pr 4609  df-uni 4889  df-iota 6489
This theorem is referenced by:  erov  8833  psgnvalii  19495  q1peqb  26118
  Copyright terms: Public domain W3C validator