| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iota2d | Structured version Visualization version GIF version | ||
| Description: A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| iota2df.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| iota2df.2 | ⊢ (𝜑 → ∃!𝑥𝜓) |
| iota2df.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| iota2d | ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | iota2df.2 | . 2 ⊢ (𝜑 → ∃!𝑥𝜓) | |
| 3 | iota2df.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
| 4 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 5 | nfvd 1915 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 6 | nfcvd 2900 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | iota2df 6523 | 1 ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2568 ℩cio 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-v 3466 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 |
| This theorem is referenced by: erov 8833 psgnvalii 19495 q1peqb 26118 |
| Copyright terms: Public domain | W3C validator |