![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iota2d | Structured version Visualization version GIF version |
Description: A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
Ref | Expression |
---|---|
iota2df.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
iota2df.2 | ⊢ (𝜑 → ∃!𝑥𝜓) |
iota2df.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
iota2d | ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota2df.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
2 | iota2df.2 | . 2 ⊢ (𝜑 → ∃!𝑥𝜓) | |
3 | iota2df.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
4 | nfv 1916 | . 2 ⊢ Ⅎ𝑥𝜑 | |
5 | nfvd 1917 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
6 | nfcvd 2903 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | iota2df 6530 | 1 ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃!weu 2561 ℩cio 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-v 3475 df-un 3953 df-in 3955 df-ss 3965 df-sn 4629 df-pr 4631 df-uni 4909 df-iota 6495 |
This theorem is referenced by: erov 8814 psgnvalii 19425 q1peqb 26010 |
Copyright terms: Public domain | W3C validator |