MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota2 Structured version   Visualization version   GIF version

Theorem iota2 6057
Description: The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypothesis
Ref Expression
iota2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
iota2 ((𝐴𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem iota2
StepHypRef Expression
1 elex 3365 . 2 (𝐴𝐵𝐴 ∈ V)
2 simpl 474 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝐴 ∈ V)
3 simpr 477 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → ∃!𝑥𝜑)
4 iota2.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
54adantl 473 . . 3 (((𝐴 ∈ V ∧ ∃!𝑥𝜑) ∧ 𝑥 = 𝐴) → (𝜑𝜓))
6 nfv 2009 . . . 4 𝑥 𝐴 ∈ V
7 nfeu1 2590 . . . 4 𝑥∃!𝑥𝜑
86, 7nfan 1998 . . 3 𝑥(𝐴 ∈ V ∧ ∃!𝑥𝜑)
9 nfvd 2010 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝜓)
10 nfcvd 2908 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝑥𝐴)
112, 3, 5, 8, 9, 10iota2df 6055 . 2 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
121, 11sylan 575 1 ((𝐴𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  ∃!weu 2581  Vcvv 3350  cio 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-v 3352  df-sbc 3597  df-un 3737  df-sn 4335  df-pr 4337  df-uni 4595  df-iota 6031
This theorem is referenced by:  pczpre  15831  pcdiv  15836  rngurd  30235  nosupno  32293  nosupfv  32296  bj-nuliota  33446  unirep  33930  ellimciota  40484
  Copyright terms: Public domain W3C validator