MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota2 Structured version   Visualization version   GIF version

Theorem iota2 6324
Description: The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypothesis
Ref Expression
iota2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
iota2 ((𝐴𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem iota2
StepHypRef Expression
1 elex 3428 . 2 (𝐴𝐵𝐴 ∈ V)
2 simpl 486 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝐴 ∈ V)
3 simpr 488 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → ∃!𝑥𝜑)
4 iota2.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
54adantl 485 . . 3 (((𝐴 ∈ V ∧ ∃!𝑥𝜑) ∧ 𝑥 = 𝐴) → (𝜑𝜓))
6 nfv 1915 . . . 4 𝑥 𝐴 ∈ V
7 nfeu1 2608 . . . 4 𝑥∃!𝑥𝜑
86, 7nfan 1900 . . 3 𝑥(𝐴 ∈ V ∧ ∃!𝑥𝜑)
9 nfvd 1916 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝜓)
10 nfcvd 2920 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝑥𝐴)
112, 3, 5, 8, 9, 10iota2df 6322 . 2 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
121, 11sylan 583 1 ((𝐴𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  ∃!weu 2587  Vcvv 3409  cio 6292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3697  df-un 3863  df-in 3865  df-ss 3875  df-sn 4523  df-pr 4525  df-uni 4799  df-iota 6294
This theorem is referenced by:  iotan0  6325  pczpre  16239  pcdiv  16244  rngurd  31008  nosupno  33491  nosupfv  33494  noinfno  33506  noinffv  33509  bj-nuliota  34776  unirep  35453  ellimciota  42644
  Copyright terms: Public domain W3C validator