MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota2 Structured version   Visualization version   GIF version

Theorem iota2 6552
Description: The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypothesis
Ref Expression
iota2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
iota2 ((𝐴𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem iota2
StepHypRef Expression
1 elex 3499 . 2 (𝐴𝐵𝐴 ∈ V)
2 simpl 482 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝐴 ∈ V)
3 simpr 484 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → ∃!𝑥𝜑)
4 iota2.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
54adantl 481 . . 3 (((𝐴 ∈ V ∧ ∃!𝑥𝜑) ∧ 𝑥 = 𝐴) → (𝜑𝜓))
6 nfv 1912 . . . 4 𝑥 𝐴 ∈ V
7 nfeu1 2586 . . . 4 𝑥∃!𝑥𝜑
86, 7nfan 1897 . . 3 𝑥(𝐴 ∈ V ∧ ∃!𝑥𝜑)
9 nfvd 1913 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝜓)
10 nfcvd 2904 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝑥𝐴)
112, 3, 5, 8, 9, 10iota2df 6550 . 2 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
121, 11sylan 580 1 ((𝐴𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  ∃!weu 2566  Vcvv 3478  cio 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-v 3480  df-un 3968  df-ss 3980  df-sn 4632  df-pr 4634  df-uni 4913  df-iota 6516
This theorem is referenced by:  iotan0  6553  pczpre  16881  pcdiv  16886  ringurd  20203  nosupno  27763  nosupfv  27766  noinfno  27778  noinffv  27781  bj-nuliota  37040  unirep  37701  ellimciota  45570
  Copyright terms: Public domain W3C validator