Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iota2 | Structured version Visualization version GIF version |
Description: The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
iota2.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
iota2 | ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | simpl 483 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝐴 ∈ V) | |
3 | simpr 485 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → ∃!𝑥𝜑) | |
4 | iota2.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | adantl 482 | . . 3 ⊢ (((𝐴 ∈ V ∧ ∃!𝑥𝜑) ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
6 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V | |
7 | nfeu1 2588 | . . . 4 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
8 | 6, 7 | nfan 1902 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ ∃!𝑥𝜑) |
9 | nfvd 1918 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝜓) | |
10 | nfcvd 2908 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝐴) | |
11 | 2, 3, 5, 8, 9, 10 | iota2df 6420 | . 2 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
12 | 1, 11 | sylan 580 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!weu 2568 Vcvv 3432 ℩cio 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 |
This theorem is referenced by: iotan0 6423 pczpre 16548 pcdiv 16553 rngurd 31482 nosupno 33906 nosupfv 33909 noinfno 33921 noinffv 33924 bj-nuliota 35228 unirep 35871 ellimciota 43155 |
Copyright terms: Public domain | W3C validator |