![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iota2 | Structured version Visualization version GIF version |
Description: The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
iota2.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
iota2 | ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝐴 ∈ V) | |
3 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → ∃!𝑥𝜑) | |
4 | iota2.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ V ∧ ∃!𝑥𝜑) ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
6 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V | |
7 | nfeu1 2591 | . . . 4 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
8 | 6, 7 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ ∃!𝑥𝜑) |
9 | nfvd 1914 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝜓) | |
10 | nfcvd 2909 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝐴) | |
11 | 2, 3, 5, 8, 9, 10 | iota2df 6560 | . 2 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
12 | 1, 11 | sylan 579 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃!weu 2571 Vcvv 3488 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 |
This theorem is referenced by: iotan0 6563 pczpre 16894 pcdiv 16899 ringurd 20212 nosupno 27766 nosupfv 27769 noinfno 27781 noinffv 27784 bj-nuliota 37023 unirep 37674 ellimciota 45535 |
Copyright terms: Public domain | W3C validator |