MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota2 Structured version   Visualization version   GIF version

Theorem iota2 6550
Description: The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypothesis
Ref Expression
iota2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
iota2 ((𝐴𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem iota2
StepHypRef Expression
1 elex 3501 . 2 (𝐴𝐵𝐴 ∈ V)
2 simpl 482 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝐴 ∈ V)
3 simpr 484 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → ∃!𝑥𝜑)
4 iota2.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
54adantl 481 . . 3 (((𝐴 ∈ V ∧ ∃!𝑥𝜑) ∧ 𝑥 = 𝐴) → (𝜑𝜓))
6 nfv 1914 . . . 4 𝑥 𝐴 ∈ V
7 nfeu1 2588 . . . 4 𝑥∃!𝑥𝜑
86, 7nfan 1899 . . 3 𝑥(𝐴 ∈ V ∧ ∃!𝑥𝜑)
9 nfvd 1915 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝜓)
10 nfcvd 2906 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝑥𝐴)
112, 3, 5, 8, 9, 10iota2df 6548 . 2 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
121, 11sylan 580 1 ((𝐴𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  ∃!weu 2568  Vcvv 3480  cio 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-v 3482  df-un 3956  df-ss 3968  df-sn 4627  df-pr 4629  df-uni 4908  df-iota 6514
This theorem is referenced by:  iotan0  6551  pczpre  16885  pcdiv  16890  ringurd  20182  nosupno  27748  nosupfv  27751  noinfno  27763  noinffv  27766  bj-nuliota  37058  unirep  37721  ellimciota  45629
  Copyright terms: Public domain W3C validator