MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erov Structured version   Visualization version   GIF version

Theorem erov 8754
Description: The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1 ð― = (ðī / 𝑅)
eropr.2 ðū = (ðĩ / 𝑆)
eropr.3 (𝜑 → 𝑇 ∈ 𝑍)
eropr.4 (𝜑 → 𝑅 Er 𝑈)
eropr.5 (𝜑 → 𝑆 Er 𝑉)
eropr.6 (𝜑 → 𝑇 Er 𝑊)
eropr.7 (𝜑 → ðī ⊆ 𝑈)
eropr.8 (𝜑 → ðĩ ⊆ 𝑉)
eropr.9 (𝜑 → ðķ ⊆ 𝑊)
eropr.10 (𝜑 → + :(ðī × ðĩ)âŸķðķ)
eropr.11 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))
eropr.12 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
eropr.13 (𝜑 → 𝑅 ∈ 𝑋)
eropr.14 (𝜑 → 𝑆 ∈ 𝑌)
Assertion
Ref Expression
erov ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → ([𝑃]𝑅 âĻĢ [𝑄]𝑆) = [(𝑃 + 𝑄)]𝑇)
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧,ðī   ðĩ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ð―,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝑃,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝑅,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ðū,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝑄,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝑆,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   + ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝑇,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝑋,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,𝑧   𝑌,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,𝑧
Allowed substitution hints:   ðķ(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   âĻĢ (ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑈(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   ð―(ð‘Ē,ð‘Ą,𝑠,𝑟)   ðū(ð‘Ē,ð‘Ą,𝑠,𝑟)   𝑉(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑊(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑋(ð‘Ĩ,ð‘Ķ)   𝑌(ð‘Ĩ,ð‘Ķ)   𝑍(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)

Proof of Theorem erov
StepHypRef Expression
1 eropr.1 . . . . 5 ð― = (ðī / 𝑅)
2 eropr.2 . . . . 5 ðū = (ðĩ / 𝑆)
3 eropr.3 . . . . 5 (𝜑 → 𝑇 ∈ 𝑍)
4 eropr.4 . . . . 5 (𝜑 → 𝑅 Er 𝑈)
5 eropr.5 . . . . 5 (𝜑 → 𝑆 Er 𝑉)
6 eropr.6 . . . . 5 (𝜑 → 𝑇 Er 𝑊)
7 eropr.7 . . . . 5 (𝜑 → ðī ⊆ 𝑈)
8 eropr.8 . . . . 5 (𝜑 → ðĩ ⊆ 𝑉)
9 eropr.9 . . . . 5 (𝜑 → ðķ ⊆ 𝑊)
10 eropr.10 . . . . 5 (𝜑 → + :(ðī × ðĩ)âŸķðķ)
11 eropr.11 . . . . 5 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))
12 eropr.12 . . . . 5 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12erovlem 8753 . . . 4 (𝜑 → âĻĢ = (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
14133ad2ant1 1134 . . 3 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → âĻĢ = (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
15 simprl 770 . . . . . . . 8 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ (ð‘Ĩ = [𝑃]𝑅 ∧ ð‘Ķ = [𝑄]𝑆)) → ð‘Ĩ = [𝑃]𝑅)
1615eqeq1d 2739 . . . . . . 7 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ (ð‘Ĩ = [𝑃]𝑅 ∧ ð‘Ķ = [𝑄]𝑆)) → (ð‘Ĩ = [𝑝]𝑅 ↔ [𝑃]𝑅 = [𝑝]𝑅))
17 simprr 772 . . . . . . . 8 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ (ð‘Ĩ = [𝑃]𝑅 ∧ ð‘Ķ = [𝑄]𝑆)) → ð‘Ķ = [𝑄]𝑆)
1817eqeq1d 2739 . . . . . . 7 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ (ð‘Ĩ = [𝑃]𝑅 ∧ ð‘Ķ = [𝑄]𝑆)) → (ð‘Ķ = [𝑞]𝑆 ↔ [𝑄]𝑆 = [𝑞]𝑆))
1916, 18anbi12d 632 . . . . . 6 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ (ð‘Ĩ = [𝑃]𝑅 ∧ ð‘Ķ = [𝑄]𝑆)) → ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ↔ ([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆)))
2019anbi1d 631 . . . . 5 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ (ð‘Ĩ = [𝑃]𝑅 ∧ ð‘Ķ = [𝑄]𝑆)) → (((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
21202rexbidv 3214 . . . 4 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ (ð‘Ĩ = [𝑃]𝑅 ∧ ð‘Ķ = [𝑄]𝑆)) → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
2221iotabidv 6481 . . 3 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ (ð‘Ĩ = [𝑃]𝑅 ∧ ð‘Ķ = [𝑄]𝑆)) → (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
23 eropr.13 . . . . 5 (𝜑 → 𝑅 ∈ 𝑋)
24 ecelqsg 8712 . . . . . 6 ((𝑅 ∈ 𝑋 ∧ 𝑃 ∈ ðī) → [𝑃]𝑅 ∈ (ðī / 𝑅))
2524, 1eleqtrrdi 2849 . . . . 5 ((𝑅 ∈ 𝑋 ∧ 𝑃 ∈ ðī) → [𝑃]𝑅 ∈ ð―)
2623, 25sylan 581 . . . 4 ((𝜑 ∧ 𝑃 ∈ ðī) → [𝑃]𝑅 ∈ ð―)
27263adant3 1133 . . 3 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → [𝑃]𝑅 ∈ ð―)
28 eropr.14 . . . . 5 (𝜑 → 𝑆 ∈ 𝑌)
29 ecelqsg 8712 . . . . . 6 ((𝑆 ∈ 𝑌 ∧ 𝑄 ∈ ðĩ) → [𝑄]𝑆 ∈ (ðĩ / 𝑆))
3029, 2eleqtrrdi 2849 . . . . 5 ((𝑆 ∈ 𝑌 ∧ 𝑄 ∈ ðĩ) → [𝑄]𝑆 ∈ ðū)
3128, 30sylan 581 . . . 4 ((𝜑 ∧ 𝑄 ∈ ðĩ) → [𝑄]𝑆 ∈ ðū)
32313adant2 1132 . . 3 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → [𝑄]𝑆 ∈ ðū)
33 iotaex 6470 . . . 4 (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ V
3433a1i 11 . . 3 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ V)
3514, 22, 27, 32, 34ovmpod 7508 . 2 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → ([𝑃]𝑅 âĻĢ [𝑄]𝑆) = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
36 eqid 2737 . . . . . . 7 [𝑃]𝑅 = [𝑃]𝑅
37 eqid 2737 . . . . . . 7 [𝑄]𝑆 = [𝑄]𝑆
3836, 37pm3.2i 472 . . . . . 6 ([𝑃]𝑅 = [𝑃]𝑅 ∧ [𝑄]𝑆 = [𝑄]𝑆)
39 eqid 2737 . . . . . 6 [(𝑃 + 𝑄)]𝑇 = [(𝑃 + 𝑄)]𝑇
4038, 39pm3.2i 472 . . . . 5 (([𝑃]𝑅 = [𝑃]𝑅 ∧ [𝑄]𝑆 = [𝑄]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑃 + 𝑄)]𝑇)
41 eceq1 8687 . . . . . . . . 9 (𝑝 = 𝑃 → [𝑝]𝑅 = [𝑃]𝑅)
4241eqeq2d 2748 . . . . . . . 8 (𝑝 = 𝑃 → ([𝑃]𝑅 = [𝑝]𝑅 ↔ [𝑃]𝑅 = [𝑃]𝑅))
4342anbi1d 631 . . . . . . 7 (𝑝 = 𝑃 → (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ↔ ([𝑃]𝑅 = [𝑃]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆)))
44 oveq1 7365 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝 + 𝑞) = (𝑃 + 𝑞))
4544eceq1d 8688 . . . . . . . 8 (𝑝 = 𝑃 → [(𝑝 + 𝑞)]𝑇 = [(𝑃 + 𝑞)]𝑇)
4645eqeq2d 2748 . . . . . . 7 (𝑝 = 𝑃 → ([(𝑃 + 𝑄)]𝑇 = [(𝑝 + 𝑞)]𝑇 ↔ [(𝑃 + 𝑄)]𝑇 = [(𝑃 + 𝑞)]𝑇))
4743, 46anbi12d 632 . . . . . 6 (𝑝 = 𝑃 → ((([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑝 + 𝑞)]𝑇) ↔ (([𝑃]𝑅 = [𝑃]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑃 + 𝑞)]𝑇)))
48 eceq1 8687 . . . . . . . . 9 (𝑞 = 𝑄 → [𝑞]𝑆 = [𝑄]𝑆)
4948eqeq2d 2748 . . . . . . . 8 (𝑞 = 𝑄 → ([𝑄]𝑆 = [𝑞]𝑆 ↔ [𝑄]𝑆 = [𝑄]𝑆))
5049anbi2d 630 . . . . . . 7 (𝑞 = 𝑄 → (([𝑃]𝑅 = [𝑃]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ↔ ([𝑃]𝑅 = [𝑃]𝑅 ∧ [𝑄]𝑆 = [𝑄]𝑆)))
51 oveq2 7366 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑃 + 𝑞) = (𝑃 + 𝑄))
5251eceq1d 8688 . . . . . . . 8 (𝑞 = 𝑄 → [(𝑃 + 𝑞)]𝑇 = [(𝑃 + 𝑄)]𝑇)
5352eqeq2d 2748 . . . . . . 7 (𝑞 = 𝑄 → ([(𝑃 + 𝑄)]𝑇 = [(𝑃 + 𝑞)]𝑇 ↔ [(𝑃 + 𝑄)]𝑇 = [(𝑃 + 𝑄)]𝑇))
5450, 53anbi12d 632 . . . . . 6 (𝑞 = 𝑄 → ((([𝑃]𝑅 = [𝑃]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑃 + 𝑞)]𝑇) ↔ (([𝑃]𝑅 = [𝑃]𝑅 ∧ [𝑄]𝑆 = [𝑄]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑃 + 𝑄)]𝑇)))
5547, 54rspc2ev 3593 . . . . 5 ((𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ ∧ (([𝑃]𝑅 = [𝑃]𝑅 ∧ [𝑄]𝑆 = [𝑄]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑃 + 𝑄)]𝑇)) → ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑝 + 𝑞)]𝑇))
5640, 55mp3an3 1451 . . . 4 ((𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑝 + 𝑞)]𝑇))
57563adant1 1131 . . 3 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑝 + 𝑞)]𝑇))
58 ecexg 8653 . . . . . 6 (𝑇 ∈ 𝑍 → [(𝑃 + 𝑄)]𝑇 ∈ V)
593, 58syl 17 . . . . 5 (𝜑 → [(𝑃 + 𝑄)]𝑇 ∈ V)
60593ad2ant1 1134 . . . 4 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → [(𝑃 + 𝑄)]𝑇 ∈ V)
61 simp1 1137 . . . . 5 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → 𝜑)
621, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11eroveu 8752 . . . . 5 ((𝜑 ∧ ([𝑃]𝑅 ∈ ð― ∧ [𝑄]𝑆 ∈ ðū)) → ∃!𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
6361, 27, 32, 62syl12anc 836 . . . 4 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → ∃!𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
64 simpr 486 . . . . . . 7 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ 𝑧 = [(𝑃 + 𝑄)]𝑇) → 𝑧 = [(𝑃 + 𝑄)]𝑇)
6564eqeq1d 2739 . . . . . 6 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ 𝑧 = [(𝑃 + 𝑄)]𝑇) → (𝑧 = [(𝑝 + 𝑞)]𝑇 ↔ [(𝑃 + 𝑄)]𝑇 = [(𝑝 + 𝑞)]𝑇))
6665anbi2d 630 . . . . 5 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ 𝑧 = [(𝑃 + 𝑄)]𝑇) → ((([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑝 + 𝑞)]𝑇)))
67662rexbidv 3214 . . . 4 (((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) ∧ 𝑧 = [(𝑃 + 𝑄)]𝑇) → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑝 + 𝑞)]𝑇)))
6860, 63, 67iota2d 6485 . . 3 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ [(𝑃 + 𝑄)]𝑇 = [(𝑝 + 𝑞)]𝑇) ↔ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = [(𝑃 + 𝑄)]𝑇))
6957, 68mpbid 231 . 2 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (([𝑃]𝑅 = [𝑝]𝑅 ∧ [𝑄]𝑆 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = [(𝑃 + 𝑄)]𝑇)
7035, 69eqtrd 2777 1 ((𝜑 ∧ 𝑃 ∈ ðī ∧ 𝑄 ∈ ðĩ) → ([𝑃]𝑅 âĻĢ [𝑄]𝑆) = [(𝑃 + 𝑄)]𝑇)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  âˆƒ!weu 2567  âˆƒwrex 3074  Vcvv 3446   ⊆ wss 3911   class class class wbr 5106   × cxp 5632  â„Đcio 6447  âŸķwf 6493  (class class class)co 7358  {coprab 7359   ∈ cmpo 7360   Er wer 8646  [cec 8647   / cqs 8648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8649  df-ec 8651  df-qs 8655
This theorem is referenced by:  erov2  8756
  Copyright terms: Public domain W3C validator