Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnvalii | Structured version Visualization version GIF version |
Description: Any representation of a permutation is length matching the permutation sign. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
Ref | Expression |
---|---|
psgnval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnvalii | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (-1↑(♯‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnval.g | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐷) | |
2 | psgnval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
3 | psgnval.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
4 | 1, 2, 3 | psgneldm2i 19111 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐺 Σg 𝑊) ∈ dom 𝑁) |
5 | 1, 2, 3 | psgnval 19113 | . . 3 ⊢ ((𝐺 Σg 𝑊) ∈ dom 𝑁 → (𝑁‘(𝐺 Σg 𝑊)) = (℩𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (℩𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
7 | simpr 485 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → 𝑊 ∈ Word 𝑇) | |
8 | eqidd 2741 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑊)) | |
9 | eqidd 2741 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊))) | |
10 | oveq2 7279 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑊)) | |
11 | 10 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ↔ (𝐺 Σg 𝑊) = (𝐺 Σg 𝑊))) |
12 | fveq2 6771 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
13 | 12 | oveq2d 7287 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑊))) |
14 | 13 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊)))) |
15 | 11, 14 | anbi12d 631 | . . . . 5 ⊢ (𝑤 = 𝑊 → (((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))) ↔ ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑊) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊))))) |
16 | 15 | rspcev 3561 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑇 ∧ ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑊) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊)))) → ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)))) |
17 | 7, 8, 9, 16 | syl12anc 834 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)))) |
18 | ovexd 7306 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (-1↑(♯‘𝑊)) ∈ V) | |
19 | 1, 2, 3 | psgneu 19112 | . . . . 5 ⊢ ((𝐺 Σg 𝑊) ∈ dom 𝑁 → ∃!𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) |
20 | 4, 19 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → ∃!𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) |
21 | eqeq1 2744 | . . . . . . 7 ⊢ (𝑠 = (-1↑(♯‘𝑊)) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)))) | |
22 | 21 | anbi2d 629 | . . . . . 6 ⊢ (𝑠 = (-1↑(♯‘𝑊)) → (((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))))) |
23 | 22 | rexbidv 3228 | . . . . 5 ⊢ (𝑠 = (-1↑(♯‘𝑊)) → (∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))))) |
24 | 23 | adantl 482 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑠 = (-1↑(♯‘𝑊))) → (∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))))) |
25 | 18, 20, 24 | iota2d 6420 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))) ↔ (℩𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (-1↑(♯‘𝑊)))) |
26 | 17, 25 | mpbid 231 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (℩𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (-1↑(♯‘𝑊))) |
27 | 6, 26 | eqtrd 2780 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (-1↑(♯‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃!weu 2570 ∃wrex 3067 Vcvv 3431 dom cdm 5590 ran crn 5591 ℩cio 6388 ‘cfv 6432 (class class class)co 7271 1c1 10873 -cneg 11206 ↑cexp 13780 ♯chash 14042 Word cword 14215 Σg cgsu 17149 SymGrpcsymg 18972 pmTrspcpmtr 19047 pmSgncpsgn 19095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1507 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-ot 4576 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12582 df-rp 12730 df-fz 13239 df-fzo 13382 df-seq 13720 df-exp 13781 df-hash 14043 df-word 14216 df-lsw 14264 df-concat 14272 df-s1 14299 df-substr 14352 df-pfx 14382 df-splice 14461 df-reverse 14470 df-s2 14559 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-tset 16979 df-0g 17150 df-gsum 17151 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-submnd 18429 df-efmnd 18506 df-grp 18578 df-minusg 18579 df-subg 18750 df-ghm 18830 df-gim 18873 df-oppg 18948 df-symg 18973 df-pmtr 19048 df-psgn 19097 |
This theorem is referenced by: psgnpmtr 19116 psgn0fv0 19117 psgnsn 19126 psgnprfval1 19128 psgnghm 20783 cyc3genpm 31415 |
Copyright terms: Public domain | W3C validator |