![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnvalii | Structured version Visualization version GIF version |
Description: Any representation of a permutation is length matching the permutation sign. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
Ref | Expression |
---|---|
psgnval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnvalii | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (-1↑(♯‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnval.g | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐷) | |
2 | psgnval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
3 | psgnval.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
4 | 1, 2, 3 | psgneldm2i 19538 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐺 Σg 𝑊) ∈ dom 𝑁) |
5 | 1, 2, 3 | psgnval 19540 | . . 3 ⊢ ((𝐺 Σg 𝑊) ∈ dom 𝑁 → (𝑁‘(𝐺 Σg 𝑊)) = (℩𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (℩𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
7 | simpr 484 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → 𝑊 ∈ Word 𝑇) | |
8 | eqidd 2736 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑊)) | |
9 | eqidd 2736 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊))) | |
10 | oveq2 7439 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑊)) | |
11 | 10 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ↔ (𝐺 Σg 𝑊) = (𝐺 Σg 𝑊))) |
12 | fveq2 6907 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
13 | 12 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑊))) |
14 | 13 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊)))) |
15 | 11, 14 | anbi12d 632 | . . . . 5 ⊢ (𝑤 = 𝑊 → (((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))) ↔ ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑊) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊))))) |
16 | 15 | rspcev 3622 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑇 ∧ ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑊) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊)))) → ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)))) |
17 | 7, 8, 9, 16 | syl12anc 837 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)))) |
18 | ovexd 7466 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (-1↑(♯‘𝑊)) ∈ V) | |
19 | 1, 2, 3 | psgneu 19539 | . . . . 5 ⊢ ((𝐺 Σg 𝑊) ∈ dom 𝑁 → ∃!𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) |
20 | 4, 19 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → ∃!𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) |
21 | eqeq1 2739 | . . . . . . 7 ⊢ (𝑠 = (-1↑(♯‘𝑊)) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)))) | |
22 | 21 | anbi2d 630 | . . . . . 6 ⊢ (𝑠 = (-1↑(♯‘𝑊)) → (((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))))) |
23 | 22 | rexbidv 3177 | . . . . 5 ⊢ (𝑠 = (-1↑(♯‘𝑊)) → (∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))))) |
24 | 23 | adantl 481 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑠 = (-1↑(♯‘𝑊))) → (∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))))) |
25 | 18, 20, 24 | iota2d 6551 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))) ↔ (℩𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (-1↑(♯‘𝑊)))) |
26 | 17, 25 | mpbid 232 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (℩𝑠∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (-1↑(♯‘𝑊))) |
27 | 6, 26 | eqtrd 2775 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (-1↑(♯‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃!weu 2566 ∃wrex 3068 Vcvv 3478 dom cdm 5689 ran crn 5690 ℩cio 6514 ‘cfv 6563 (class class class)co 7431 1c1 11154 -cneg 11491 ↑cexp 14099 ♯chash 14366 Word cword 14549 Σg cgsu 17487 SymGrpcsymg 19401 pmTrspcpmtr 19474 pmSgncpsgn 19522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-word 14550 df-lsw 14598 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-splice 14785 df-reverse 14794 df-s2 14884 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-tset 17317 df-0g 17488 df-gsum 17489 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-efmnd 18895 df-grp 18967 df-minusg 18968 df-subg 19154 df-ghm 19244 df-gim 19290 df-oppg 19377 df-symg 19402 df-pmtr 19475 df-psgn 19524 |
This theorem is referenced by: psgnpmtr 19543 psgn0fv0 19544 psgnsn 19553 psgnprfval1 19555 psgnghm 21616 cyc3genpm 33155 |
Copyright terms: Public domain | W3C validator |