| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovtpos | Structured version Visualization version GIF version | ||
| Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to ℝ or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| ovtpos | ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtpos 8217 | . . . . 5 ⊢ (𝑦 ∈ V → (〈𝐴, 𝐵〉tpos 𝐹𝑦 ↔ 〈𝐵, 𝐴〉𝐹𝑦)) | |
| 2 | 1 | elv 3455 | . . . 4 ⊢ (〈𝐴, 𝐵〉tpos 𝐹𝑦 ↔ 〈𝐵, 𝐴〉𝐹𝑦) |
| 3 | 2 | iotabii 6499 | . . 3 ⊢ (℩𝑦〈𝐴, 𝐵〉tpos 𝐹𝑦) = (℩𝑦〈𝐵, 𝐴〉𝐹𝑦) |
| 4 | df-fv 6522 | . . 3 ⊢ (tpos 𝐹‘〈𝐴, 𝐵〉) = (℩𝑦〈𝐴, 𝐵〉tpos 𝐹𝑦) | |
| 5 | df-fv 6522 | . . 3 ⊢ (𝐹‘〈𝐵, 𝐴〉) = (℩𝑦〈𝐵, 𝐴〉𝐹𝑦) | |
| 6 | 3, 4, 5 | 3eqtr4i 2763 | . 2 ⊢ (tpos 𝐹‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐵, 𝐴〉) |
| 7 | df-ov 7393 | . 2 ⊢ (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘〈𝐴, 𝐵〉) | |
| 8 | df-ov 7393 | . 2 ⊢ (𝐵𝐹𝐴) = (𝐹‘〈𝐵, 𝐴〉) | |
| 9 | 6, 7, 8 | 3eqtr4i 2763 | 1 ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Vcvv 3450 〈cop 4598 class class class wbr 5110 ℩cio 6465 ‘cfv 6514 (class class class)co 7390 tpos ctpos 8207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-ov 7393 df-tpos 8208 |
| This theorem is referenced by: tpossym 8240 oppchom 17683 oppcco 17685 oppcmon 17707 funcoppc 17844 fulloppc 17893 fthoppc 17894 fthepi 17899 yonedalem22 18246 oppgplus 19288 oppglsm 19579 opprmul 20256 mamutpos 22352 mdettpos 22505 madutpos 22536 mdetpmtr2 33821 tposid 48877 tposidres 48878 tposideq 48880 oppf2 49133 cofuoppf 49143 oppcup 49200 natoppf 49222 opf12 49397 |
| Copyright terms: Public domain | W3C validator |