![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovtpos | Structured version Visualization version GIF version |
Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to ℝ or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
ovtpos | ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtpos 8222 | . . . . 5 ⊢ (𝑦 ∈ V → (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴⟩𝐹𝑦)) | |
2 | 1 | elv 3478 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴⟩𝐹𝑦) |
3 | 2 | iotabii 6527 | . . 3 ⊢ (℩𝑦⟨𝐴, 𝐵⟩tpos 𝐹𝑦) = (℩𝑦⟨𝐵, 𝐴⟩𝐹𝑦) |
4 | df-fv 6550 | . . 3 ⊢ (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (℩𝑦⟨𝐴, 𝐵⟩tpos 𝐹𝑦) | |
5 | df-fv 6550 | . . 3 ⊢ (𝐹‘⟨𝐵, 𝐴⟩) = (℩𝑦⟨𝐵, 𝐴⟩𝐹𝑦) | |
6 | 3, 4, 5 | 3eqtr4i 2768 | . 2 ⊢ (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐵, 𝐴⟩) |
7 | df-ov 7414 | . 2 ⊢ (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘⟨𝐴, 𝐵⟩) | |
8 | df-ov 7414 | . 2 ⊢ (𝐵𝐹𝐴) = (𝐹‘⟨𝐵, 𝐴⟩) | |
9 | 6, 7, 8 | 3eqtr4i 2768 | 1 ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Vcvv 3472 ⟨cop 4633 class class class wbr 5147 ℩cio 6492 ‘cfv 6542 (class class class)co 7411 tpos ctpos 8212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 df-ov 7414 df-tpos 8213 |
This theorem is referenced by: tpossym 8245 oppchom 17664 oppcco 17666 oppcmon 17689 funcoppc 17829 fulloppc 17877 fthoppc 17878 fthepi 17883 yonedalem22 18235 oppgplus 19254 oppglsm 19551 opprmul 20228 mamutpos 22180 mdettpos 22333 madutpos 22364 mdetpmtr2 33102 |
Copyright terms: Public domain | W3C validator |