MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovtpos Structured version   Visualization version   GIF version

Theorem ovtpos 8226
Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
ovtpos (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴)

Proof of Theorem ovtpos
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 brtpos 8220 . . . . 5 (𝑦 ∈ V → (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴𝐹𝑦))
21elv 3481 . . . 4 (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴𝐹𝑦)
32iotabii 6529 . . 3 (℩𝑦𝐴, 𝐵⟩tpos 𝐹𝑦) = (℩𝑦𝐵, 𝐴𝐹𝑦)
4 df-fv 6552 . . 3 (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (℩𝑦𝐴, 𝐵⟩tpos 𝐹𝑦)
5 df-fv 6552 . . 3 (𝐹‘⟨𝐵, 𝐴⟩) = (℩𝑦𝐵, 𝐴𝐹𝑦)
63, 4, 53eqtr4i 2771 . 2 (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐵, 𝐴⟩)
7 df-ov 7412 . 2 (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘⟨𝐴, 𝐵⟩)
8 df-ov 7412 . 2 (𝐵𝐹𝐴) = (𝐹‘⟨𝐵, 𝐴⟩)
96, 7, 83eqtr4i 2771 1 (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  Vcvv 3475  cop 4635   class class class wbr 5149  cio 6494  cfv 6544  (class class class)co 7409  tpos ctpos 8210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-ov 7412  df-tpos 8211
This theorem is referenced by:  tpossym  8243  oppchom  17660  oppcco  17662  oppcmon  17685  funcoppc  17825  fulloppc  17873  fthoppc  17874  fthepi  17879  yonedalem22  18231  oppgplus  19213  oppglsm  19510  opprmul  20153  mamutpos  21960  mdettpos  22113  madutpos  22144  mdetpmtr2  32804
  Copyright terms: Public domain W3C validator