![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovtpos | Structured version Visualization version GIF version |
Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to ℝ or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
ovtpos | ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtpos 8171 | . . . . 5 ⊢ (𝑦 ∈ V → (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴⟩𝐹𝑦)) | |
2 | 1 | elv 3454 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴⟩𝐹𝑦) |
3 | 2 | iotabii 6486 | . . 3 ⊢ (℩𝑦⟨𝐴, 𝐵⟩tpos 𝐹𝑦) = (℩𝑦⟨𝐵, 𝐴⟩𝐹𝑦) |
4 | df-fv 6509 | . . 3 ⊢ (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (℩𝑦⟨𝐴, 𝐵⟩tpos 𝐹𝑦) | |
5 | df-fv 6509 | . . 3 ⊢ (𝐹‘⟨𝐵, 𝐴⟩) = (℩𝑦⟨𝐵, 𝐴⟩𝐹𝑦) | |
6 | 3, 4, 5 | 3eqtr4i 2775 | . 2 ⊢ (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐵, 𝐴⟩) |
7 | df-ov 7365 | . 2 ⊢ (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘⟨𝐴, 𝐵⟩) | |
8 | df-ov 7365 | . 2 ⊢ (𝐵𝐹𝐴) = (𝐹‘⟨𝐵, 𝐴⟩) | |
9 | 6, 7, 8 | 3eqtr4i 2775 | 1 ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 Vcvv 3448 ⟨cop 4597 class class class wbr 5110 ℩cio 6451 ‘cfv 6501 (class class class)co 7362 tpos ctpos 8161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-fv 6509 df-ov 7365 df-tpos 8162 |
This theorem is referenced by: tpossym 8194 oppchom 17603 oppcco 17605 oppcmon 17628 funcoppc 17768 fulloppc 17816 fthoppc 17817 fthepi 17822 yonedalem22 18174 oppgplus 19134 oppglsm 19431 opprmul 20059 mamutpos 21823 mdettpos 21976 madutpos 22007 mdetpmtr2 32445 |
Copyright terms: Public domain | W3C validator |