| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovtpos | Structured version Visualization version GIF version | ||
| Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to ℝ or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| ovtpos | ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtpos 8234 | . . . . 5 ⊢ (𝑦 ∈ V → (〈𝐴, 𝐵〉tpos 𝐹𝑦 ↔ 〈𝐵, 𝐴〉𝐹𝑦)) | |
| 2 | 1 | elv 3464 | . . . 4 ⊢ (〈𝐴, 𝐵〉tpos 𝐹𝑦 ↔ 〈𝐵, 𝐴〉𝐹𝑦) |
| 3 | 2 | iotabii 6516 | . . 3 ⊢ (℩𝑦〈𝐴, 𝐵〉tpos 𝐹𝑦) = (℩𝑦〈𝐵, 𝐴〉𝐹𝑦) |
| 4 | df-fv 6539 | . . 3 ⊢ (tpos 𝐹‘〈𝐴, 𝐵〉) = (℩𝑦〈𝐴, 𝐵〉tpos 𝐹𝑦) | |
| 5 | df-fv 6539 | . . 3 ⊢ (𝐹‘〈𝐵, 𝐴〉) = (℩𝑦〈𝐵, 𝐴〉𝐹𝑦) | |
| 6 | 3, 4, 5 | 3eqtr4i 2768 | . 2 ⊢ (tpos 𝐹‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐵, 𝐴〉) |
| 7 | df-ov 7408 | . 2 ⊢ (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘〈𝐴, 𝐵〉) | |
| 8 | df-ov 7408 | . 2 ⊢ (𝐵𝐹𝐴) = (𝐹‘〈𝐵, 𝐴〉) | |
| 9 | 6, 7, 8 | 3eqtr4i 2768 | 1 ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Vcvv 3459 〈cop 4607 class class class wbr 5119 ℩cio 6482 ‘cfv 6531 (class class class)co 7405 tpos ctpos 8224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-ov 7408 df-tpos 8225 |
| This theorem is referenced by: tpossym 8257 oppchom 17727 oppcco 17729 oppcmon 17751 funcoppc 17888 fulloppc 17937 fthoppc 17938 fthepi 17943 yonedalem22 18290 oppgplus 19332 oppglsm 19623 opprmul 20300 mamutpos 22396 mdettpos 22549 madutpos 22580 mdetpmtr2 33855 tposid 48860 tposidres 48861 tposideq 48863 oppcup 49140 |
| Copyright terms: Public domain | W3C validator |