MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovtpos Structured version   Visualization version   GIF version

Theorem ovtpos 8240
Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
ovtpos (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴)

Proof of Theorem ovtpos
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 brtpos 8234 . . . . 5 (𝑦 ∈ V → (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴𝐹𝑦))
21elv 3464 . . . 4 (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴𝐹𝑦)
32iotabii 6516 . . 3 (℩𝑦𝐴, 𝐵⟩tpos 𝐹𝑦) = (℩𝑦𝐵, 𝐴𝐹𝑦)
4 df-fv 6539 . . 3 (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (℩𝑦𝐴, 𝐵⟩tpos 𝐹𝑦)
5 df-fv 6539 . . 3 (𝐹‘⟨𝐵, 𝐴⟩) = (℩𝑦𝐵, 𝐴𝐹𝑦)
63, 4, 53eqtr4i 2768 . 2 (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐵, 𝐴⟩)
7 df-ov 7408 . 2 (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘⟨𝐴, 𝐵⟩)
8 df-ov 7408 . 2 (𝐵𝐹𝐴) = (𝐹‘⟨𝐵, 𝐴⟩)
96, 7, 83eqtr4i 2768 1 (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  Vcvv 3459  cop 4607   class class class wbr 5119  cio 6482  cfv 6531  (class class class)co 7405  tpos ctpos 8224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-ov 7408  df-tpos 8225
This theorem is referenced by:  tpossym  8257  oppchom  17727  oppcco  17729  oppcmon  17751  funcoppc  17888  fulloppc  17937  fthoppc  17938  fthepi  17943  yonedalem22  18290  oppgplus  19332  oppglsm  19623  opprmul  20300  mamutpos  22396  mdettpos  22549  madutpos  22580  mdetpmtr2  33855  tposid  48860  tposidres  48861  tposideq  48863  oppcup  49140
  Copyright terms: Public domain W3C validator