Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovtpos | Structured version Visualization version GIF version |
Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to ℝ or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
ovtpos | ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtpos 8022 | . . . . 5 ⊢ (𝑦 ∈ V → (〈𝐴, 𝐵〉tpos 𝐹𝑦 ↔ 〈𝐵, 𝐴〉𝐹𝑦)) | |
2 | 1 | elv 3428 | . . . 4 ⊢ (〈𝐴, 𝐵〉tpos 𝐹𝑦 ↔ 〈𝐵, 𝐴〉𝐹𝑦) |
3 | 2 | iotabii 6403 | . . 3 ⊢ (℩𝑦〈𝐴, 𝐵〉tpos 𝐹𝑦) = (℩𝑦〈𝐵, 𝐴〉𝐹𝑦) |
4 | df-fv 6426 | . . 3 ⊢ (tpos 𝐹‘〈𝐴, 𝐵〉) = (℩𝑦〈𝐴, 𝐵〉tpos 𝐹𝑦) | |
5 | df-fv 6426 | . . 3 ⊢ (𝐹‘〈𝐵, 𝐴〉) = (℩𝑦〈𝐵, 𝐴〉𝐹𝑦) | |
6 | 3, 4, 5 | 3eqtr4i 2776 | . 2 ⊢ (tpos 𝐹‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐵, 𝐴〉) |
7 | df-ov 7258 | . 2 ⊢ (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘〈𝐴, 𝐵〉) | |
8 | df-ov 7258 | . 2 ⊢ (𝐵𝐹𝐴) = (𝐹‘〈𝐵, 𝐴〉) | |
9 | 6, 7, 8 | 3eqtr4i 2776 | 1 ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Vcvv 3422 〈cop 4564 class class class wbr 5070 ℩cio 6374 ‘cfv 6418 (class class class)co 7255 tpos ctpos 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ov 7258 df-tpos 8013 |
This theorem is referenced by: tpossym 8045 oppchom 17342 oppcco 17344 oppcmon 17367 funcoppc 17506 fulloppc 17554 fthoppc 17555 fthepi 17560 yonedalem22 17912 oppgplus 18868 oppglsm 19162 opprmul 19780 mamutpos 21515 mdettpos 21668 madutpos 21699 mdetpmtr2 31676 |
Copyright terms: Public domain | W3C validator |