Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovtpos | Structured version Visualization version GIF version |
Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to ℝ or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
ovtpos | ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtpos 8051 | . . . . 5 ⊢ (𝑦 ∈ V → (〈𝐴, 𝐵〉tpos 𝐹𝑦 ↔ 〈𝐵, 𝐴〉𝐹𝑦)) | |
2 | 1 | elv 3438 | . . . 4 ⊢ (〈𝐴, 𝐵〉tpos 𝐹𝑦 ↔ 〈𝐵, 𝐴〉𝐹𝑦) |
3 | 2 | iotabii 6418 | . . 3 ⊢ (℩𝑦〈𝐴, 𝐵〉tpos 𝐹𝑦) = (℩𝑦〈𝐵, 𝐴〉𝐹𝑦) |
4 | df-fv 6441 | . . 3 ⊢ (tpos 𝐹‘〈𝐴, 𝐵〉) = (℩𝑦〈𝐴, 𝐵〉tpos 𝐹𝑦) | |
5 | df-fv 6441 | . . 3 ⊢ (𝐹‘〈𝐵, 𝐴〉) = (℩𝑦〈𝐵, 𝐴〉𝐹𝑦) | |
6 | 3, 4, 5 | 3eqtr4i 2776 | . 2 ⊢ (tpos 𝐹‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐵, 𝐴〉) |
7 | df-ov 7278 | . 2 ⊢ (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘〈𝐴, 𝐵〉) | |
8 | df-ov 7278 | . 2 ⊢ (𝐵𝐹𝐴) = (𝐹‘〈𝐵, 𝐴〉) | |
9 | 6, 7, 8 | 3eqtr4i 2776 | 1 ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Vcvv 3432 〈cop 4567 class class class wbr 5074 ℩cio 6389 ‘cfv 6433 (class class class)co 7275 tpos ctpos 8041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-ov 7278 df-tpos 8042 |
This theorem is referenced by: tpossym 8074 oppchom 17425 oppcco 17427 oppcmon 17450 funcoppc 17590 fulloppc 17638 fthoppc 17639 fthepi 17644 yonedalem22 17996 oppgplus 18953 oppglsm 19247 opprmul 19865 mamutpos 21607 mdettpos 21760 madutpos 21791 mdetpmtr2 31774 |
Copyright terms: Public domain | W3C validator |