Step | Hyp | Ref
| Expression |
1 | | fourierdlem90.p |
. . . . . . 7
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
2 | | fourierdlem90.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | fourierdlem90.q |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
4 | 1, 2, 3 | fourierdlem11 43161 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |
5 | 4 | simp1d 1139 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
6 | 4 | simp2d 1140 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℝ) |
7 | 5, 6 | iccssred 12879 |
. . . 4
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
8 | 4 | simp3d 1141 |
. . . . . 6
⊢ (𝜑 → 𝐴 < 𝐵) |
9 | | fourierdlem90.J |
. . . . . 6
⊢ 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) |
10 | 5, 6, 8, 9 | fourierdlem17 43167 |
. . . . 5
⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
11 | | fourierdlem90.t |
. . . . . . 7
⊢ 𝑇 = (𝐵 − 𝐴) |
12 | | fourierdlem90.e |
. . . . . . 7
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
13 | 5, 6, 8, 11, 12 | fourierdlem4 43154 |
. . . . . 6
⊢ (𝜑 → 𝐸:ℝ⟶(𝐴(,]𝐵)) |
14 | | fourierdlem90.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ ℝ) |
15 | | fourierdlem90.d |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) |
16 | | elioore 12822 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ ℝ) |
18 | | elioo4g 12852 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷 ∧ 𝐷 < +∞))) |
19 | 15, 18 | sylib 221 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷 ∧ 𝐷 < +∞))) |
20 | 19 | simprd 499 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐶 < 𝐷 ∧ 𝐷 < +∞)) |
21 | 20 | simpld 498 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 < 𝐷) |
22 | | fourierdlem90.o |
. . . . . . . . . . . . 13
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
23 | | fourierdlem90.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
24 | | fourierdlem90.n |
. . . . . . . . . . . . 13
⊢ 𝑁 = ((♯‘𝐻) − 1) |
25 | | fourierdlem90.s |
. . . . . . . . . . . . 13
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) |
26 | 11, 1, 2, 3, 14, 17, 21, 22, 23, 24, 25 | fourierdlem54 43203 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻))) |
27 | 26 | simpld 498 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁))) |
28 | 27 | simprd 499 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ (𝑂‘𝑁)) |
29 | 27 | simpld 498 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
30 | 22 | fourierdlem2 43152 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
31 | 29, 30 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
32 | 28, 31 | mpbid 235 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))))) |
33 | 32 | simpld 498 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (ℝ ↑m
(0...𝑁))) |
34 | | elmapi 8444 |
. . . . . . . 8
⊢ (𝑆 ∈ (ℝ
↑m (0...𝑁))
→ 𝑆:(0...𝑁)⟶ℝ) |
35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆:(0...𝑁)⟶ℝ) |
36 | | fourierdlem90.17 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) |
37 | | elfzofz 13115 |
. . . . . . . 8
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁)) |
38 | 36, 37 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (0...𝑁)) |
39 | 35, 38 | ffvelrnd 6849 |
. . . . . 6
⊢ (𝜑 → (𝑆‘𝐽) ∈ ℝ) |
40 | 13, 39 | ffvelrnd 6849 |
. . . . 5
⊢ (𝜑 → (𝐸‘(𝑆‘𝐽)) ∈ (𝐴(,]𝐵)) |
41 | 10, 40 | ffvelrnd 6849 |
. . . 4
⊢ (𝜑 → (𝐿‘(𝐸‘(𝑆‘𝐽))) ∈ (𝐴[,]𝐵)) |
42 | 7, 41 | sseldd 3895 |
. . 3
⊢ (𝜑 → (𝐿‘(𝐸‘(𝑆‘𝐽))) ∈ ℝ) |
43 | 5 | rexrd 10742 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
44 | | iocssre 12872 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝐴(,]𝐵) ⊆
ℝ) |
45 | 43, 6, 44 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (𝐴(,]𝐵) ⊆ ℝ) |
46 | | fzofzp1 13196 |
. . . . . . 7
⊢ (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁)) |
47 | 36, 46 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐽 + 1) ∈ (0...𝑁)) |
48 | 35, 47 | ffvelrnd 6849 |
. . . . 5
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ) |
49 | 13, 48 | ffvelrnd 6849 |
. . . 4
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ (𝐴(,]𝐵)) |
50 | 45, 49 | sseldd 3895 |
. . 3
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ) |
51 | | eqid 2758 |
. . 3
⊢ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) |
52 | | fourierdlem90.u |
. . . 4
⊢ 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) |
53 | 48, 50 | resubcld 11119 |
. . . 4
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ) |
54 | 52, 53 | eqeltrid 2856 |
. . 3
⊢ (𝜑 → 𝑈 ∈ ℝ) |
55 | | eqid 2758 |
. . 3
⊢ (((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = (((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) |
56 | | fourierdlem90.g |
. . . 4
⊢ 𝐺 = (𝐹 ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) |
57 | | eleq1 2839 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → (𝑗 ∈ (0..^𝑁) ↔ 𝐽 ∈ (0..^𝑁))) |
58 | 57 | anbi2d 631 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ↔ (𝜑 ∧ 𝐽 ∈ (0..^𝑁)))) |
59 | | fveq2 6663 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → (𝑆‘𝑗) = (𝑆‘𝐽)) |
60 | 59 | fveq2d 6667 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐽 → (𝐸‘(𝑆‘𝑗)) = (𝐸‘(𝑆‘𝐽))) |
61 | 60 | fveq2d 6667 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → (𝐿‘(𝐸‘(𝑆‘𝑗))) = (𝐿‘(𝐸‘(𝑆‘𝐽)))) |
62 | | oveq1 7163 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1)) |
63 | 62 | fveq2d 6667 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐽 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝐽 + 1))) |
64 | 63 | fveq2d 6667 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → (𝐸‘(𝑆‘(𝑗 + 1))) = (𝐸‘(𝑆‘(𝐽 + 1)))) |
65 | 61, 64 | oveq12d 7174 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → ((𝐿‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) |
66 | 59 | fveq2d 6667 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐽 → (𝐼‘(𝑆‘𝑗)) = (𝐼‘(𝑆‘𝐽))) |
67 | 66 | fveq2d 6667 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → (𝑄‘(𝐼‘(𝑆‘𝑗))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) |
68 | 66 | oveq1d 7171 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐽 → ((𝐼‘(𝑆‘𝑗)) + 1) = ((𝐼‘(𝑆‘𝐽)) + 1)) |
69 | 68 | fveq2d 6667 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) |
70 | 67, 69 | oveq12d 7174 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) = ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
71 | 65, 70 | sseq12d 3927 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → (((𝐿‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) ↔ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))) |
72 | 58, 71 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐿‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) ↔ ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))))) |
73 | 11 | oveq2i 7167 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 · 𝑇) = (𝑘 · (𝐵 − 𝐴)) |
74 | 73 | oveq2i 7167 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵 − 𝐴))) |
75 | 74 | eleq1i 2842 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) |
76 | 75 | rexbii 3175 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑘 ∈
ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) |
77 | 76 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝐶[,]𝐷) → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄)) |
78 | 77 | rabbiia 3384 |
. . . . . . . . . . . . . 14
⊢ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄} |
79 | 78 | uneq2i 4067 |
. . . . . . . . . . . . 13
⊢ ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) |
80 | 23, 79 | eqtri 2781 |
. . . . . . . . . . . 12
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) |
81 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) |
82 | 11 | eqcomi 2767 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 − 𝐴) = 𝑇 |
83 | 82 | oveq2i 7167 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 · (𝐵 − 𝐴)) = (𝑘 · 𝑇) |
84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → (𝑘 · (𝐵 − 𝐴)) = (𝑘 · 𝑇)) |
85 | 81, 84 | oveq12d 7174 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (𝑦 + (𝑘 · (𝐵 − 𝐴))) = (𝑥 + (𝑘 · 𝑇))) |
86 | 85 | eleq1d 2836 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → ((𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
87 | 86 | rexbidv 3221 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
88 | 87 | cbvrabv 3404 |
. . . . . . . . . . . . 13
⊢ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} |
89 | 88 | uneq2i 4067 |
. . . . . . . . . . . 12
⊢ ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
90 | 80, 89 | eqtri 2781 |
. . . . . . . . . . 11
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
91 | | eqid 2758 |
. . . . . . . . . . 11
⊢ ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) |
92 | | fourierdlem90.i |
. . . . . . . . . . 11
⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < )) |
93 | 11, 1, 2, 3, 14, 17, 21, 22, 90, 24, 25, 12, 9, 91, 92 | fourierdlem79 43228 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐿‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) |
94 | 72, 93 | vtoclg 3487 |
. . . . . . . . 9
⊢ (𝐽 ∈ (0..^𝑁) → ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))) |
95 | 94 | anabsi7 670 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
96 | 36, 95 | mpdan 686 |
. . . . . . 7
⊢ (𝜑 → ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
97 | 96 | resabs1d 5859 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) = (𝐹 ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))) |
98 | 97 | eqcomd 2764 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))) |
99 | 1, 2, 3, 11, 12, 9, 92 | fourierdlem37 43187 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}))) |
100 | 99 | simpld 498 |
. . . . . . . 8
⊢ (𝜑 → 𝐼:ℝ⟶(0..^𝑀)) |
101 | 100, 39 | ffvelrnd 6849 |
. . . . . . 7
⊢ (𝜑 → (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) |
102 | 101 | ancli 552 |
. . . . . . 7
⊢ (𝜑 → (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) |
103 | | eleq1 2839 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑖 ∈ (0..^𝑀) ↔ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) |
104 | 103 | anbi2d 631 |
. . . . . . . . 9
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)))) |
105 | | fveq2 6663 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑄‘𝑖) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) |
106 | | oveq1 7163 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑖 + 1) = ((𝐼‘(𝑆‘𝐽)) + 1)) |
107 | 106 | fveq2d 6667 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) |
108 | 105, 107 | oveq12d 7174 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
109 | 108 | reseq2d 5828 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))) |
110 | 108 | oveq1d 7171 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ)) |
111 | 109, 110 | eleq12d 2846 |
. . . . . . . . 9
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ))) |
112 | 104, 111 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ)))) |
113 | | fourierdlem90.fcn |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
114 | 112, 113 | vtoclg 3487 |
. . . . . . 7
⊢ ((𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ))) |
115 | 101, 102,
114 | sylc 65 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ)) |
116 | | rescncf 23611 |
. . . . . 6
⊢ (((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ (((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))–cn→ℂ))) |
117 | 96, 115, 116 | sylc 65 |
. . . . 5
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ (((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))–cn→ℂ)) |
118 | 98, 117 | eqeltrd 2852 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ (((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))–cn→ℂ)) |
119 | 56, 118 | eqeltrid 2856 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))–cn→ℂ)) |
120 | | fourierdlem90.r |
. . 3
⊢ 𝑅 = (𝑦 ∈ (((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ↦ (𝐺‘(𝑦 − 𝑈))) |
121 | 42, 50, 51, 54, 55, 119, 120 | cncfshiftioo 42935 |
. 2
⊢ (𝜑 → 𝑅 ∈ ((((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈))–cn→ℂ)) |
122 | 120 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑅 = (𝑦 ∈ (((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ↦ (𝐺‘(𝑦 − 𝑈)))) |
123 | 52 | oveq2i 7167 |
. . . . . . 7
⊢ ((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈) = ((𝐿‘(𝐸‘(𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) |
124 | 123 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈) = ((𝐿‘(𝐸‘(𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))) |
125 | 64, 61 | oveq12d 7174 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐽 → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝑗)))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝐽))))) |
126 | 63, 59 | oveq12d 7174 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐽 → ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) |
127 | 125, 126 | eqeq12d 2774 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → (((𝐸‘(𝑆‘(𝑗 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
128 | 58, 127 | imbi12d 348 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) ↔ ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))))) |
129 | 80 | fveq2i 6666 |
. . . . . . . . . . . . . . 15
⊢
(♯‘𝐻) =
(♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) |
130 | 129 | oveq1i 7166 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐻)
− 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) |
131 | 24, 130 | eqtri 2781 |
. . . . . . . . . . . . 13
⊢ 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) |
132 | | isoeq5 7074 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})))) |
133 | 80, 132 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) |
134 | 133 | iotabii 6325 |
. . . . . . . . . . . . . 14
⊢
(℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) |
135 | 25, 134 | eqtri 2781 |
. . . . . . . . . . . . 13
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) |
136 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢ ((𝑆‘𝑗) + (𝐵 − (𝐸‘(𝑆‘𝑗)))) = ((𝑆‘𝑗) + (𝐵 − (𝐸‘(𝑆‘𝑗)))) |
137 | 1, 11, 2, 3, 14, 15, 22, 131, 135, 12, 9, 136 | fourierdlem65 43214 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) |
138 | 128, 137 | vtoclg 3487 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (0..^𝑁) → ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
139 | 138 | anabsi7 670 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) |
140 | 36, 139 | mpdan 686 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) |
141 | 50 | recnd 10720 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ) |
142 | 48 | recnd 10720 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ) |
143 | 14, 17 | iccssred 12879 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℝ) |
144 | | ax-resscn 10645 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
145 | 143, 144 | sstrdi 3906 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℂ) |
146 | 22, 29, 28 | fourierdlem15 43165 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆:(0...𝑁)⟶(𝐶[,]𝐷)) |
147 | 146, 38 | ffvelrnd 6849 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆‘𝐽) ∈ (𝐶[,]𝐷)) |
148 | 145, 147 | sseldd 3895 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆‘𝐽) ∈ ℂ) |
149 | 142, 148 | subcld 11048 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)) ∈ ℂ) |
150 | 42 | recnd 10720 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿‘(𝐸‘(𝑆‘𝐽))) ∈ ℂ) |
151 | 141, 149,
150 | subsub23d 42321 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = (𝐿‘(𝐸‘(𝑆‘𝐽))) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
152 | 140, 151 | mpbird 260 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = (𝐿‘(𝐸‘(𝑆‘𝐽)))) |
153 | 152 | eqcomd 2764 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘(𝐸‘(𝑆‘𝐽))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
154 | 153 | oveq1d 7171 |
. . . . . 6
⊢ (𝜑 → ((𝐿‘(𝐸‘(𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))) |
155 | 141, 149 | subcld 11048 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) ∈ ℂ) |
156 | 155, 142,
141 | addsub12d 11071 |
. . . . . . 7
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))))) |
157 | 141, 149,
141 | sub32d 11080 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
158 | 141 | subidd 11036 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = 0) |
159 | 158 | oveq1d 7171 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
160 | | df-neg 10924 |
. . . . . . . . . 10
⊢ -((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) |
161 | 142, 148 | negsubdi2d 11064 |
. . . . . . . . . 10
⊢ (𝜑 → -((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)) = ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) |
162 | 160, 161 | eqtr3id 2807 |
. . . . . . . . 9
⊢ (𝜑 → (0 − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) |
163 | 157, 159,
162 | 3eqtrd 2797 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) |
164 | 163 | oveq2d 7172 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1))))) |
165 | 142, 148 | pncan3d 11051 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) + ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) = (𝑆‘𝐽)) |
166 | 156, 164,
165 | 3eqtrd 2797 |
. . . . . 6
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆‘𝐽)) |
167 | 124, 154,
166 | 3eqtrd 2797 |
. . . . 5
⊢ (𝜑 → ((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈) = (𝑆‘𝐽)) |
168 | 52 | oveq2i 7167 |
. . . . . 6
⊢ ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) |
169 | 141, 142 | pncan3d 11051 |
. . . . . 6
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆‘(𝐽 + 1))) |
170 | 168, 169 | syl5eq 2805 |
. . . . 5
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = (𝑆‘(𝐽 + 1))) |
171 | 167, 170 | oveq12d 7174 |
. . . 4
⊢ (𝜑 → (((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) |
172 | 171 | mpteq1d 5125 |
. . 3
⊢ (𝜑 → (𝑦 ∈ (((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ↦ (𝐺‘(𝑦 − 𝑈))) = (𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ↦ (𝐺‘(𝑦 − 𝑈)))) |
173 | | fourierdlem90.f |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
174 | 173 | feqmptd 6726 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
175 | 174 | reseq1d 5827 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) = ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))))) |
176 | | ioossre 12853 |
. . . . . 6
⊢ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ℝ |
177 | 176 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ℝ) |
178 | 177 | resmptd 5885 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) = (𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ↦ (𝐹‘𝑦))) |
179 | 56 | fveq1i 6664 |
. . . . . . 7
⊢ (𝐺‘(𝑦 − 𝑈)) = ((𝐹 ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))‘(𝑦 − 𝑈)) |
180 | 179 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝐺‘(𝑦 − 𝑈)) = ((𝐹 ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))‘(𝑦 − 𝑈))) |
181 | 42 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝐿‘(𝐸‘(𝑆‘𝐽))) ∈ ℝ) |
182 | 181 | rexrd 10742 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝐿‘(𝐸‘(𝑆‘𝐽))) ∈
ℝ*) |
183 | 50 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ) |
184 | 183 | rexrd 10742 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈
ℝ*) |
185 | 177 | sselda 3894 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → 𝑦 ∈ ℝ) |
186 | 54 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → 𝑈 ∈ ℝ) |
187 | 185, 186 | resubcld 11119 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑦 − 𝑈) ∈ ℝ) |
188 | 39 | rexrd 10742 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆‘𝐽) ∈
ℝ*) |
189 | 188 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑆‘𝐽) ∈
ℝ*) |
190 | 48 | rexrd 10742 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈
ℝ*) |
191 | 190 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ∈
ℝ*) |
192 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) |
193 | | ioogtlb 42533 |
. . . . . . . . . . 11
⊢ (((𝑆‘𝐽) ∈ ℝ* ∧ (𝑆‘(𝐽 + 1)) ∈ ℝ* ∧
𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑆‘𝐽) < 𝑦) |
194 | 189, 191,
192, 193 | syl3anc 1368 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑆‘𝐽) < 𝑦) |
195 | 167 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → ((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈) = (𝑆‘𝐽)) |
196 | 185 | recnd 10720 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → 𝑦 ∈ ℂ) |
197 | 186 | recnd 10720 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → 𝑈 ∈ ℂ) |
198 | 196, 197 | npcand 11052 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → ((𝑦 − 𝑈) + 𝑈) = 𝑦) |
199 | 194, 195,
198 | 3brtr4d 5068 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → ((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈) < ((𝑦 − 𝑈) + 𝑈)) |
200 | 181, 187,
186 | ltadd1d 11284 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → ((𝐿‘(𝐸‘(𝑆‘𝐽))) < (𝑦 − 𝑈) ↔ ((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈) < ((𝑦 − 𝑈) + 𝑈))) |
201 | 199, 200 | mpbird 260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝐿‘(𝐸‘(𝑆‘𝐽))) < (𝑦 − 𝑈)) |
202 | | iooltub 42548 |
. . . . . . . . . . 11
⊢ (((𝑆‘𝐽) ∈ ℝ* ∧ (𝑆‘(𝐽 + 1)) ∈ ℝ* ∧
𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → 𝑦 < (𝑆‘(𝐽 + 1))) |
203 | 189, 191,
192, 202 | syl3anc 1368 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → 𝑦 < (𝑆‘(𝐽 + 1))) |
204 | 170 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = (𝑆‘(𝐽 + 1))) |
205 | 203, 198,
204 | 3brtr4d 5068 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → ((𝑦 − 𝑈) + 𝑈) < ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) |
206 | 187, 183,
186 | ltadd1d 11284 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → ((𝑦 − 𝑈) < (𝐸‘(𝑆‘(𝐽 + 1))) ↔ ((𝑦 − 𝑈) + 𝑈) < ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈))) |
207 | 205, 206 | mpbird 260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑦 − 𝑈) < (𝐸‘(𝑆‘(𝐽 + 1)))) |
208 | 182, 184,
187, 201, 207 | eliood 42536 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑦 − 𝑈) ∈ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) |
209 | | fvres 6682 |
. . . . . . 7
⊢ ((𝑦 − 𝑈) ∈ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝐹 ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))‘(𝑦 − 𝑈)) = (𝐹‘(𝑦 − 𝑈))) |
210 | 208, 209 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → ((𝐹 ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))‘(𝑦 − 𝑈)) = (𝐹‘(𝑦 − 𝑈))) |
211 | 52 | oveq2i 7167 |
. . . . . . . . . 10
⊢ (𝑦 − 𝑈) = (𝑦 − ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) |
212 | 211 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑦 − 𝑈) = (𝑦 − ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))) |
213 | 142 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ∈ ℂ) |
214 | 141 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ) |
215 | 196, 213,
214 | subsub2d 11077 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑦 − ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑦 + ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))))) |
216 | 214, 213 | subcld 11048 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℂ) |
217 | 6, 5 | resubcld 11119 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
218 | 11, 217 | eqeltrid 2856 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇 ∈ ℝ) |
219 | 218 | recnd 10720 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ ℂ) |
220 | 219 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → 𝑇 ∈ ℂ) |
221 | 5, 6 | posdifd 11278 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
222 | 8, 221 | mpbid 235 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
223 | 222, 11 | breqtrrdi 5078 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝑇) |
224 | 223 | gt0ne0d 11255 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ≠ 0) |
225 | 224 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → 𝑇 ≠ 0) |
226 | 216, 220,
225 | divcan1d 11468 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → ((((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) · 𝑇) = ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) |
227 | 226 | eqcomd 2764 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) · 𝑇)) |
228 | 227 | oveq2d 7172 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑦 + ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) = (𝑦 + ((((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) · 𝑇))) |
229 | 212, 215,
228 | 3eqtrd 2797 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝑦 − 𝑈) = (𝑦 + ((((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) · 𝑇))) |
230 | 229 | fveq2d 6667 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝐹‘(𝑦 − 𝑈)) = (𝐹‘(𝑦 + ((((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) · 𝑇)))) |
231 | 173 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → 𝐹:ℝ⟶ℂ) |
232 | 218 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → 𝑇 ∈ ℝ) |
233 | 12 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)))) |
234 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1))) |
235 | | oveq2 7164 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵 − 𝑥) = (𝐵 − (𝑆‘(𝐽 + 1)))) |
236 | 235 | oveq1d 7171 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵 − 𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) |
237 | 236 | fveq2d 6667 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵 − 𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))) |
238 | 237 | oveq1d 7171 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) |
239 | 234, 238 | oveq12d 7174 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))) |
240 | 239 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))) |
241 | 6, 48 | resubcld 11119 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ) |
242 | 241, 218,
224 | redivcld 11519 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ) |
243 | 242 | flcld 13230 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ) |
244 | 243 | zred 12139 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ) |
245 | 244, 218 | remulcld 10722 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ) |
246 | 48, 245 | readdcld 10721 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ) |
247 | 233, 240,
48, 246 | fvmptd 6771 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))) |
248 | 247 | oveq1d 7171 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1)))) |
249 | 244 | recnd 10720 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℂ) |
250 | 249, 219 | mulcld 10712 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℂ) |
251 | 142, 250 | pncan2d 11050 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) |
252 | 248, 251 | eqtrd 2793 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) |
253 | 252 | oveq1d 7171 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇)) |
254 | 249, 219,
224 | divcan4d 11473 |
. . . . . . . . . . 11
⊢ (𝜑 → (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))) |
255 | 253, 254 | eqtrd 2793 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))) |
256 | 255, 243 | eqeltrd 2852 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ) |
257 | 256 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ) |
258 | | fourierdlem90.6 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
259 | 258 | adantlr 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
260 | 231, 232,
257, 185, 259 | fperiodmul 42339 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝐹‘(𝑦 + ((((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) · 𝑇))) = (𝐹‘𝑦)) |
261 | 230, 260 | eqtrd 2793 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝐹‘(𝑦 − 𝑈)) = (𝐹‘𝑦)) |
262 | 180, 210,
261 | 3eqtrrd 2798 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) → (𝐹‘𝑦) = (𝐺‘(𝑦 − 𝑈))) |
263 | 262 | mpteq2dva 5131 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ↦ (𝐹‘𝑦)) = (𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ↦ (𝐺‘(𝑦 − 𝑈)))) |
264 | 175, 178,
263 | 3eqtrrd 2798 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ↦ (𝐺‘(𝑦 − 𝑈))) = (𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))))) |
265 | 122, 172,
264 | 3eqtrd 2797 |
. 2
⊢ (𝜑 → 𝑅 = (𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))))) |
266 | 171 | oveq1d 7171 |
. 2
⊢ (𝜑 → ((((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈))–cn→ℂ) = (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))–cn→ℂ)) |
267 | 121, 265,
266 | 3eltr3d 2866 |
1
⊢ (𝜑 → (𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) ∈ (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))–cn→ℂ)) |