Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem100 Structured version   Visualization version   GIF version

Theorem fourierdlem100 46226
Description: A piecewise continuous function is integrable on any closed interval. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierlemiblglemlem.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem100.t 𝑇 = (𝐵𝐴)
fourierdlem100.m (𝜑𝑀 ∈ ℕ)
fourierdlem100.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem100.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem100.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem100.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem100.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem100.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem100.c (𝜑𝐶 ∈ ℝ)
fourierdlem100.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem100.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem100.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem100.h 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem100.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem100.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem100.j 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem100.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem100 (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)) ∈ 𝐿1)
Distinct variable groups:   𝐴,𝑓,𝑘,𝑦   𝐴,𝑖,𝑥,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖   𝐵,𝑓,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝐶,𝑓,𝑦   𝐶,𝑖,𝑚,𝑝   𝑥,𝐶   𝐷,𝑓,𝑦   𝐷,𝑖,𝑚,𝑝   𝑥,𝐷   𝑓,𝐸,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑥,𝑦   𝑓,𝐻,𝑦   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥,𝑦   𝑥,𝐿,𝑦   𝑖,𝑀,𝑚,𝑝   𝑥,𝑀,𝑦   𝑓,𝑁,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑝   𝑥,𝑅,𝑦   𝑆,𝑓,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑓,𝑘,𝑦   𝑇,𝑖,𝑥   𝜑,𝑓,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐶(𝑘)   𝐷(𝑘)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑆(𝑚)   𝑇(𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝐽(𝑓,𝑘,𝑚,𝑝)   𝐿(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑀(𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem100
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem100.f . . 3 (𝜑𝐹:ℝ⟶ℂ)
2 fourierdlem100.c . . . 4 (𝜑𝐶 ∈ ℝ)
3 fourierdlem100.d . . . . 5 (𝜑𝐷 ∈ (𝐶(,)+∞))
4 elioore 13418 . . . . 5 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
53, 4syl 17 . . . 4 (𝜑𝐷 ∈ ℝ)
62, 5iccssred 13475 . . 3 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
71, 6feqresmpt 6977 . 2 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)))
8 fourierdlem100.o . . . 4 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9 fveq2 6905 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
10 oveq1 7439 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
1110fveq2d 6909 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
129, 11breq12d 5155 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
1312cbvralvw 3236 . . . . . . . 8 (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
1413anbi2i 623 . . . . . . 7 ((((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
1514a1i 11 . . . . . 6 (𝑝 ∈ (ℝ ↑m (0...𝑚)) → ((((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
1615rabbiia 3439 . . . . 5 {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}
1716mpteq2i 5246 . . . 4 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
188, 17eqtri 2764 . . 3 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
19 fourierdlem100.t . . . . . 6 𝑇 = (𝐵𝐴)
20 fourierlemiblglemlem.p . . . . . 6 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
21 fourierdlem100.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
22 fourierdlem100.q . . . . . 6 (𝜑𝑄 ∈ (𝑃𝑀))
23 elioo4g 13448 . . . . . . . . 9 (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
243, 23sylib 218 . . . . . . . 8 (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2524simprd 495 . . . . . . 7 (𝜑 → (𝐶 < 𝐷𝐷 < +∞))
2625simpld 494 . . . . . 6 (𝜑𝐶 < 𝐷)
27 id 22 . . . . . . . . . . 11 (𝑦 = 𝑥𝑦 = 𝑥)
2819eqcomi 2745 . . . . . . . . . . . . 13 (𝐵𝐴) = 𝑇
2928oveq2i 7443 . . . . . . . . . . . 12 (𝑘 · (𝐵𝐴)) = (𝑘 · 𝑇)
3029a1i 11 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑘 · (𝐵𝐴)) = (𝑘 · 𝑇))
3127, 30oveq12d 7450 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 + (𝑘 · (𝐵𝐴))) = (𝑥 + (𝑘 · 𝑇)))
3231eleq1d 2825 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
3332rexbidv 3178 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
3433cbvrabv 3446 . . . . . . 7 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
3534uneq2i 4164 . . . . . 6 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
36 fourierdlem100.n . . . . . . 7 𝑁 = ((♯‘𝐻) − 1)
37 fourierdlem100.h . . . . . . . . . 10 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
3829eqcomi 2745 . . . . . . . . . . . . . . . 16 (𝑘 · 𝑇) = (𝑘 · (𝐵𝐴))
3938oveq2i 7443 . . . . . . . . . . . . . . 15 (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵𝐴)))
4039eleq1i 2831 . . . . . . . . . . . . . 14 ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
4140rexbii 3093 . . . . . . . . . . . . 13 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
4241rgenw 3064 . . . . . . . . . . . 12 𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
43 rabbi 3466 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄) ↔ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
4442, 43mpbi 230 . . . . . . . . . . 11 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}
4544uneq2i 4164 . . . . . . . . . 10 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
4637, 45eqtri 2764 . . . . . . . . 9 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
4746fveq2i 6908 . . . . . . . 8 (♯‘𝐻) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))
4847oveq1i 7442 . . . . . . 7 ((♯‘𝐻) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
4936, 48eqtri 2764 . . . . . 6 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
50 fourierdlem100.s . . . . . . 7 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
51 isoeq5 7342 . . . . . . . . 9 (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))))
5246, 51ax-mp 5 . . . . . . . 8 (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
5352iotabii 6545 . . . . . . 7 (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
5450, 53eqtri 2764 . . . . . 6 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
5519, 20, 21, 22, 2, 5, 26, 8, 35, 49, 54fourierdlem54 46180 . . . . 5 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))))
5655simpld 494 . . . 4 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
5756simpld 494 . . 3 (𝜑𝑁 ∈ ℕ)
5856simprd 495 . . 3 (𝜑𝑆 ∈ (𝑂𝑁))
591, 6fssresd 6774 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)):(𝐶[,]𝐷)⟶ℂ)
60 ioossicc 13474 . . . . . 6 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1)))
612adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ)
6261rexrd 11312 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ*)
633adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ (𝐶(,)+∞))
6463, 4syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ ℝ)
6564rexrd 11312 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ ℝ*)
668, 57, 58fourierdlem15 46142 . . . . . . . 8 (𝜑𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
6766adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
68 simpr 484 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
6962, 65, 67, 68fourierdlem8 46135 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐶[,]𝐷))
7060, 69sstrid 3994 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐶[,]𝐷))
7170resabs1d 6025 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
7221adantr 480 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
7322adantr 480 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
741adantr 480 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
75 fourierdlem100.per . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
7675adantlr 715 . . . . 5 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
77 fourierdlem100.fcn . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
7877adantlr 715 . . . . 5 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
79 fourierdlem100.e . . . . 5 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
80 fourierdlem100.j . . . . 5 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
81 eqid 2736 . . . . 5 ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))
82 eqid 2736 . . . . 5 (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))
83 eqid 2736 . . . . 5 (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))))
84 fourierdlem100.i . . . . 5 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
8520, 19, 72, 73, 74, 76, 78, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 82, 83, 84fourierdlem90 46216 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
8671, 85eqeltrd 2840 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
87 fourierdlem100.r . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
8887adantlr 715 . . . . 5 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
89 eqid 2736 . . . . 5 (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
9020, 19, 72, 73, 74, 76, 78, 88, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 84, 89fourierdlem89 46215 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
9171eqcomd 2742 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
9291oveq1d 7447 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)) = (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
9390, 92eleqtrd 2842 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
94 fourierdlem100.l . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
9594adantlr 715 . . . . 5 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
96 eqid 2736 . . . . 5 (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
9720, 19, 72, 73, 74, 76, 78, 95, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 84, 96fourierdlem91 46217 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
9891oveq1d 7447 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) = (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
9997, 98eleqtrd 2842 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
10018, 57, 58, 59, 86, 93, 99fourierdlem69 46195 . 2 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) ∈ 𝐿1)
1017, 100eqeltrrd 2841 1 (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wrex 3069  {crab 3435  cun 3948  ifcif 4524  {cpr 4627   class class class wbr 5142  cmpt 5224  ran crn 5685  cres 5686  cio 6511  wf 6556  cfv 6560   Isom wiso 6561  (class class class)co 7432  m cmap 8867  supcsup 9481  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  +∞cpnf 11293  *cxr 11295   < clt 11296  cle 11297  cmin 11493   / cdiv 11921  cn 12267  cz 12615  (,)cioo 13388  (,]cioc 13389  [,]cicc 13391  ...cfz 13548  ..^cfzo 13695  cfl 13831  chash 14370  cnccncf 24903  𝐿1cibl 25653   lim climc 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cc 10476  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-symdif 4252  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-cn 23236  df-cnp 23237  df-cmp 23396  df-tx 23571  df-hmeo 23764  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-ovol 25500  df-vol 25501  df-mbf 25655  df-itg1 25656  df-itg2 25657  df-ibl 25658  df-itg 25659  df-0p 25706  df-limc 25902
This theorem is referenced by:  fourierdlem105  46231
  Copyright terms: Public domain W3C validator