Step | Hyp | Ref
| Expression |
1 | | fourierdlem100.f |
. . 3
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
2 | | fourierdlem100.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℝ) |
3 | | fourierdlem100.d |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) |
4 | | elioore 13109 |
. . . . 5
⊢ (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ ℝ) |
6 | 2, 5 | iccssred 13166 |
. . 3
⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℝ) |
7 | 1, 6 | feqresmpt 6838 |
. 2
⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹‘𝑥))) |
8 | | fourierdlem100.o |
. . . 4
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
9 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑝‘𝑖) = (𝑝‘𝑗)) |
10 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1)) |
11 | 10 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1))) |
12 | 9, 11 | breq12d 5087 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))) |
13 | 12 | cbvralvw 3383 |
. . . . . . . 8
⊢
(∀𝑖 ∈
(0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1))) |
14 | 13 | anbi2i 623 |
. . . . . . 7
⊢ ((((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))) |
15 | 14 | a1i 11 |
. . . . . 6
⊢ (𝑝 ∈ (ℝ
↑m (0...𝑚))
→ ((((𝑝‘0) =
𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1))))) |
16 | 15 | rabbiia 3407 |
. . . . 5
⊢ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))} |
17 | 16 | mpteq2i 5179 |
. . . 4
⊢ (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))}) |
18 | 8, 17 | eqtri 2766 |
. . 3
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))}) |
19 | | fourierdlem100.t |
. . . . . 6
⊢ 𝑇 = (𝐵 − 𝐴) |
20 | | fourierlemiblglemlem.p |
. . . . . 6
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
21 | | fourierdlem100.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
22 | | fourierdlem100.q |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
23 | | elioo4g 13139 |
. . . . . . . . 9
⊢ (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷 ∧ 𝐷 < +∞))) |
24 | 3, 23 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷 ∧ 𝐷 < +∞))) |
25 | 24 | simprd 496 |
. . . . . . 7
⊢ (𝜑 → (𝐶 < 𝐷 ∧ 𝐷 < +∞)) |
26 | 25 | simpld 495 |
. . . . . 6
⊢ (𝜑 → 𝐶 < 𝐷) |
27 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) |
28 | 19 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢ (𝐵 − 𝐴) = 𝑇 |
29 | 28 | oveq2i 7286 |
. . . . . . . . . . . 12
⊢ (𝑘 · (𝐵 − 𝐴)) = (𝑘 · 𝑇) |
30 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑘 · (𝐵 − 𝐴)) = (𝑘 · 𝑇)) |
31 | 27, 30 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦 + (𝑘 · (𝐵 − 𝐴))) = (𝑥 + (𝑘 · 𝑇))) |
32 | 31 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
33 | 32 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
34 | 33 | cbvrabv 3426 |
. . . . . . 7
⊢ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} |
35 | 34 | uneq2i 4094 |
. . . . . 6
⊢ ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
36 | | fourierdlem100.n |
. . . . . . 7
⊢ 𝑁 = ((♯‘𝐻) − 1) |
37 | | fourierdlem100.h |
. . . . . . . . . 10
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
38 | 29 | eqcomi 2747 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 · 𝑇) = (𝑘 · (𝐵 − 𝐴)) |
39 | 38 | oveq2i 7286 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵 − 𝐴))) |
40 | 39 | eleq1i 2829 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) |
41 | 40 | rexbii 3181 |
. . . . . . . . . . . . 13
⊢
(∃𝑘 ∈
ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) |
42 | 41 | rgenw 3076 |
. . . . . . . . . . . 12
⊢
∀𝑦 ∈
(𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) |
43 | | rabbi 3316 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
(𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) ↔ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) |
44 | 42, 43 | mpbi 229 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄} |
45 | 44 | uneq2i 4094 |
. . . . . . . . . 10
⊢ ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) |
46 | 37, 45 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) |
47 | 46 | fveq2i 6777 |
. . . . . . . 8
⊢
(♯‘𝐻) =
(♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) |
48 | 47 | oveq1i 7285 |
. . . . . . 7
⊢
((♯‘𝐻)
− 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) |
49 | 36, 48 | eqtri 2766 |
. . . . . 6
⊢ 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) |
50 | | fourierdlem100.s |
. . . . . . 7
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) |
51 | | isoeq5 7192 |
. . . . . . . . 9
⊢ (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})))) |
52 | 46, 51 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) |
53 | 52 | iotabii 6418 |
. . . . . . 7
⊢
(℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) |
54 | 50, 53 | eqtri 2766 |
. . . . . 6
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) |
55 | 19, 20, 21, 22, 2, 5, 26, 8, 35, 49, 54 | fourierdlem54 43701 |
. . . . 5
⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})))) |
56 | 55 | simpld 495 |
. . . 4
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁))) |
57 | 56 | simpld 495 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
58 | 56 | simprd 496 |
. . 3
⊢ (𝜑 → 𝑆 ∈ (𝑂‘𝑁)) |
59 | 1, 6 | fssresd 6641 |
. . 3
⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)):(𝐶[,]𝐷)⟶ℂ) |
60 | | ioossicc 13165 |
. . . . . 6
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) |
61 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ) |
62 | 61 | rexrd 11025 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐶 ∈
ℝ*) |
63 | 3 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ (𝐶(,)+∞)) |
64 | 63, 4 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ ℝ) |
65 | 64 | rexrd 11025 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐷 ∈
ℝ*) |
66 | 8, 57, 58 | fourierdlem15 43663 |
. . . . . . . 8
⊢ (𝜑 → 𝑆:(0...𝑁)⟶(𝐶[,]𝐷)) |
67 | 66 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐶[,]𝐷)) |
68 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁)) |
69 | 62, 65, 67, 68 | fourierdlem8 43656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐶[,]𝐷)) |
70 | 60, 69 | sstrid 3932 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐶[,]𝐷)) |
71 | 70 | resabs1d 5922 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
72 | 21 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ) |
73 | 22 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃‘𝑀)) |
74 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ) |
75 | | fourierdlem100.per |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
76 | 75 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
77 | | fourierdlem100.fcn |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
78 | 77 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
79 | | fourierdlem100.e |
. . . . 5
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
80 | | fourierdlem100.j |
. . . . 5
⊢ 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) |
81 | | eqid 2738 |
. . . . 5
⊢ ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) |
82 | | eqid 2738 |
. . . . 5
⊢ (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) |
83 | | eqid 2738 |
. . . . 5
⊢ (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆‘𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆‘𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) |
84 | | fourierdlem100.i |
. . . . 5
⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < )) |
85 | 20, 19, 72, 73, 74, 76, 78, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 82, 83, 84 | fourierdlem90 43737 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
86 | 71, 85 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
87 | | fourierdlem100.r |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
88 | 87 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
89 | | eqid 2738 |
. . . . 5
⊢ (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅) |
90 | 20, 19, 72, 73, 74, 76, 78, 88, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 84, 89 | fourierdlem89 43736 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆‘𝑗))) = (𝑄‘(𝐼‘(𝑆‘𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆‘𝑗))))) ∈ ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
91 | 71 | eqcomd 2744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
92 | 91 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗)) = (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
93 | 90, 92 | eleqtrd 2841 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆‘𝑗))) = (𝑄‘(𝐼‘(𝑆‘𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆‘𝑗))))) ∈ (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
94 | | fourierdlem100.l |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
95 | 94 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
96 | | eqid 2738 |
. . . . 5
⊢ (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿) |
97 | 20, 19, 72, 73, 74, 76, 78, 95, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 84, 96 | fourierdlem91 43738 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
98 | 91 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1))) = (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
99 | 97, 98 | eleqtrd 2841 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
100 | 18, 57, 58, 59, 86, 93, 99 | fourierdlem69 43716 |
. 2
⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) ∈
𝐿1) |
101 | 7, 100 | eqeltrrd 2840 |
1
⊢ (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹‘𝑥)) ∈
𝐿1) |