Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem100 Structured version   Visualization version   GIF version

Theorem fourierdlem100 43637
Description: A piecewise continuous function is integrable on any closed interval. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierlemiblglemlem.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem100.t 𝑇 = (𝐵𝐴)
fourierdlem100.m (𝜑𝑀 ∈ ℕ)
fourierdlem100.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem100.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem100.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem100.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem100.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem100.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem100.c (𝜑𝐶 ∈ ℝ)
fourierdlem100.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem100.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem100.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem100.h 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem100.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem100.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem100.j 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem100.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem100 (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)) ∈ 𝐿1)
Distinct variable groups:   𝐴,𝑓,𝑘,𝑦   𝐴,𝑖,𝑥,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖   𝐵,𝑓,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝐶,𝑓,𝑦   𝐶,𝑖,𝑚,𝑝   𝑥,𝐶   𝐷,𝑓,𝑦   𝐷,𝑖,𝑚,𝑝   𝑥,𝐷   𝑓,𝐸,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑥,𝑦   𝑓,𝐻,𝑦   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥,𝑦   𝑥,𝐿,𝑦   𝑖,𝑀,𝑚,𝑝   𝑥,𝑀,𝑦   𝑓,𝑁,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑝   𝑥,𝑅,𝑦   𝑆,𝑓,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑓,𝑘,𝑦   𝑇,𝑖,𝑥   𝜑,𝑓,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐶(𝑘)   𝐷(𝑘)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑆(𝑚)   𝑇(𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝐽(𝑓,𝑘,𝑚,𝑝)   𝐿(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑀(𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem100
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem100.f . . 3 (𝜑𝐹:ℝ⟶ℂ)
2 fourierdlem100.c . . . 4 (𝜑𝐶 ∈ ℝ)
3 fourierdlem100.d . . . . 5 (𝜑𝐷 ∈ (𝐶(,)+∞))
4 elioore 13038 . . . . 5 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
53, 4syl 17 . . . 4 (𝜑𝐷 ∈ ℝ)
62, 5iccssred 13095 . . 3 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
71, 6feqresmpt 6820 . 2 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)))
8 fourierdlem100.o . . . 4 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9 fveq2 6756 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
10 oveq1 7262 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
1110fveq2d 6760 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
129, 11breq12d 5083 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
1312cbvralvw 3372 . . . . . . . 8 (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
1413anbi2i 622 . . . . . . 7 ((((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
1514a1i 11 . . . . . 6 (𝑝 ∈ (ℝ ↑m (0...𝑚)) → ((((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
1615rabbiia 3396 . . . . 5 {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}
1716mpteq2i 5175 . . . 4 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
188, 17eqtri 2766 . . 3 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
19 fourierdlem100.t . . . . . 6 𝑇 = (𝐵𝐴)
20 fourierlemiblglemlem.p . . . . . 6 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
21 fourierdlem100.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
22 fourierdlem100.q . . . . . 6 (𝜑𝑄 ∈ (𝑃𝑀))
23 elioo4g 13068 . . . . . . . . 9 (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
243, 23sylib 217 . . . . . . . 8 (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2524simprd 495 . . . . . . 7 (𝜑 → (𝐶 < 𝐷𝐷 < +∞))
2625simpld 494 . . . . . 6 (𝜑𝐶 < 𝐷)
27 id 22 . . . . . . . . . . 11 (𝑦 = 𝑥𝑦 = 𝑥)
2819eqcomi 2747 . . . . . . . . . . . . 13 (𝐵𝐴) = 𝑇
2928oveq2i 7266 . . . . . . . . . . . 12 (𝑘 · (𝐵𝐴)) = (𝑘 · 𝑇)
3029a1i 11 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑘 · (𝐵𝐴)) = (𝑘 · 𝑇))
3127, 30oveq12d 7273 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 + (𝑘 · (𝐵𝐴))) = (𝑥 + (𝑘 · 𝑇)))
3231eleq1d 2823 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
3332rexbidv 3225 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
3433cbvrabv 3416 . . . . . . 7 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
3534uneq2i 4090 . . . . . 6 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
36 fourierdlem100.n . . . . . . 7 𝑁 = ((♯‘𝐻) − 1)
37 fourierdlem100.h . . . . . . . . . 10 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
3829eqcomi 2747 . . . . . . . . . . . . . . . 16 (𝑘 · 𝑇) = (𝑘 · (𝐵𝐴))
3938oveq2i 7266 . . . . . . . . . . . . . . 15 (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵𝐴)))
4039eleq1i 2829 . . . . . . . . . . . . . 14 ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
4140rexbii 3177 . . . . . . . . . . . . 13 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
4241rgenw 3075 . . . . . . . . . . . 12 𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
43 rabbi 3309 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄) ↔ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
4442, 43mpbi 229 . . . . . . . . . . 11 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}
4544uneq2i 4090 . . . . . . . . . 10 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
4637, 45eqtri 2766 . . . . . . . . 9 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
4746fveq2i 6759 . . . . . . . 8 (♯‘𝐻) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))
4847oveq1i 7265 . . . . . . 7 ((♯‘𝐻) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
4936, 48eqtri 2766 . . . . . 6 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
50 fourierdlem100.s . . . . . . 7 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
51 isoeq5 7172 . . . . . . . . 9 (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))))
5246, 51ax-mp 5 . . . . . . . 8 (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
5352iotabii 6403 . . . . . . 7 (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
5450, 53eqtri 2766 . . . . . 6 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
5519, 20, 21, 22, 2, 5, 26, 8, 35, 49, 54fourierdlem54 43591 . . . . 5 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))))
5655simpld 494 . . . 4 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
5756simpld 494 . . 3 (𝜑𝑁 ∈ ℕ)
5856simprd 495 . . 3 (𝜑𝑆 ∈ (𝑂𝑁))
591, 6fssresd 6625 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)):(𝐶[,]𝐷)⟶ℂ)
60 ioossicc 13094 . . . . . 6 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1)))
612adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ)
6261rexrd 10956 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ*)
633adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ (𝐶(,)+∞))
6463, 4syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ ℝ)
6564rexrd 10956 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ ℝ*)
668, 57, 58fourierdlem15 43553 . . . . . . . 8 (𝜑𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
6766adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
68 simpr 484 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
6962, 65, 67, 68fourierdlem8 43546 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐶[,]𝐷))
7060, 69sstrid 3928 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐶[,]𝐷))
7170resabs1d 5911 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
7221adantr 480 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
7322adantr 480 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
741adantr 480 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
75 fourierdlem100.per . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
7675adantlr 711 . . . . 5 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
77 fourierdlem100.fcn . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
7877adantlr 711 . . . . 5 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
79 fourierdlem100.e . . . . 5 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
80 fourierdlem100.j . . . . 5 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
81 eqid 2738 . . . . 5 ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))
82 eqid 2738 . . . . 5 (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))
83 eqid 2738 . . . . 5 (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))))
84 fourierdlem100.i . . . . 5 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
8520, 19, 72, 73, 74, 76, 78, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 82, 83, 84fourierdlem90 43627 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
8671, 85eqeltrd 2839 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
87 fourierdlem100.r . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
8887adantlr 711 . . . . 5 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
89 eqid 2738 . . . . 5 (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
9020, 19, 72, 73, 74, 76, 78, 88, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 84, 89fourierdlem89 43626 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
9171eqcomd 2744 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
9291oveq1d 7270 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)) = (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
9390, 92eleqtrd 2841 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
94 fourierdlem100.l . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
9594adantlr 711 . . . . 5 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
96 eqid 2738 . . . . 5 (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
9720, 19, 72, 73, 74, 76, 78, 95, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 84, 96fourierdlem91 43628 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
9891oveq1d 7270 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) = (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
9997, 98eleqtrd 2841 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
10018, 57, 58, 59, 86, 93, 99fourierdlem69 43606 . 2 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) ∈ 𝐿1)
1017, 100eqeltrrd 2840 1 (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cun 3881  ifcif 4456  {cpr 4560   class class class wbr 5070  cmpt 5153  ran crn 5581  cres 5582  cio 6374  wf 6414  cfv 6418   Isom wiso 6419  (class class class)co 7255  m cmap 8573  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  cz 12249  (,)cioo 13008  (,]cioc 13009  [,]cicc 13011  ...cfz 13168  ..^cfzo 13311  cfl 13438  chash 13972  cnccncf 23945  𝐿1cibl 24686   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-cn 22286  df-cnp 22287  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-limc 24935
This theorem is referenced by:  fourierdlem105  43642
  Copyright terms: Public domain W3C validator