| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fourierdlem100.f | . . 3
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) | 
| 2 |  | fourierdlem100.c | . . . 4
⊢ (𝜑 → 𝐶 ∈ ℝ) | 
| 3 |  | fourierdlem100.d | . . . . 5
⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) | 
| 4 |  | elioore 13418 | . . . . 5
⊢ (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ) | 
| 5 | 3, 4 | syl 17 | . . . 4
⊢ (𝜑 → 𝐷 ∈ ℝ) | 
| 6 | 2, 5 | iccssred 13475 | . . 3
⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℝ) | 
| 7 | 1, 6 | feqresmpt 6977 | . 2
⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹‘𝑥))) | 
| 8 |  | fourierdlem100.o | . . . 4
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | 
| 9 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑝‘𝑖) = (𝑝‘𝑗)) | 
| 10 |  | oveq1 7439 | . . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1)) | 
| 11 | 10 | fveq2d 6909 | . . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1))) | 
| 12 | 9, 11 | breq12d 5155 | . . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))) | 
| 13 | 12 | cbvralvw 3236 | . . . . . . . 8
⊢
(∀𝑖 ∈
(0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1))) | 
| 14 | 13 | anbi2i 623 | . . . . . . 7
⊢ ((((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))) | 
| 15 | 14 | a1i 11 | . . . . . 6
⊢ (𝑝 ∈ (ℝ
↑m (0...𝑚))
→ ((((𝑝‘0) =
𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1))))) | 
| 16 | 15 | rabbiia 3439 | . . . . 5
⊢ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))} | 
| 17 | 16 | mpteq2i 5246 | . . . 4
⊢ (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))}) | 
| 18 | 8, 17 | eqtri 2764 | . . 3
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))}) | 
| 19 |  | fourierdlem100.t | . . . . . 6
⊢ 𝑇 = (𝐵 − 𝐴) | 
| 20 |  | fourierlemiblglemlem.p | . . . . . 6
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | 
| 21 |  | fourierdlem100.m | . . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 22 |  | fourierdlem100.q | . . . . . 6
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) | 
| 23 |  | elioo4g 13448 | . . . . . . . . 9
⊢ (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷 ∧ 𝐷 < +∞))) | 
| 24 | 3, 23 | sylib 218 | . . . . . . . 8
⊢ (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷 ∧ 𝐷 < +∞))) | 
| 25 | 24 | simprd 495 | . . . . . . 7
⊢ (𝜑 → (𝐶 < 𝐷 ∧ 𝐷 < +∞)) | 
| 26 | 25 | simpld 494 | . . . . . 6
⊢ (𝜑 → 𝐶 < 𝐷) | 
| 27 |  | id 22 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) | 
| 28 | 19 | eqcomi 2745 | . . . . . . . . . . . . 13
⊢ (𝐵 − 𝐴) = 𝑇 | 
| 29 | 28 | oveq2i 7443 | . . . . . . . . . . . 12
⊢ (𝑘 · (𝐵 − 𝐴)) = (𝑘 · 𝑇) | 
| 30 | 29 | a1i 11 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑘 · (𝐵 − 𝐴)) = (𝑘 · 𝑇)) | 
| 31 | 27, 30 | oveq12d 7450 | . . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦 + (𝑘 · (𝐵 − 𝐴))) = (𝑥 + (𝑘 · 𝑇))) | 
| 32 | 31 | eleq1d 2825 | . . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) | 
| 33 | 32 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) | 
| 34 | 33 | cbvrabv 3446 | . . . . . . 7
⊢ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} | 
| 35 | 34 | uneq2i 4164 | . . . . . 6
⊢ ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) | 
| 36 |  | fourierdlem100.n | . . . . . . 7
⊢ 𝑁 = ((♯‘𝐻) − 1) | 
| 37 |  | fourierdlem100.h | . . . . . . . . . 10
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) | 
| 38 | 29 | eqcomi 2745 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 · 𝑇) = (𝑘 · (𝐵 − 𝐴)) | 
| 39 | 38 | oveq2i 7443 | . . . . . . . . . . . . . . 15
⊢ (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵 − 𝐴))) | 
| 40 | 39 | eleq1i 2831 | . . . . . . . . . . . . . 14
⊢ ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) | 
| 41 | 40 | rexbii 3093 | . . . . . . . . . . . . 13
⊢
(∃𝑘 ∈
ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) | 
| 42 | 41 | rgenw 3064 | . . . . . . . . . . . 12
⊢
∀𝑦 ∈
(𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) | 
| 43 |  | rabbi 3466 | . . . . . . . . . . . 12
⊢
(∀𝑦 ∈
(𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) ↔ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) | 
| 44 | 42, 43 | mpbi 230 | . . . . . . . . . . 11
⊢ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄} | 
| 45 | 44 | uneq2i 4164 | . . . . . . . . . 10
⊢ ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) | 
| 46 | 37, 45 | eqtri 2764 | . . . . . . . . 9
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) | 
| 47 | 46 | fveq2i 6908 | . . . . . . . 8
⊢
(♯‘𝐻) =
(♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) | 
| 48 | 47 | oveq1i 7442 | . . . . . . 7
⊢
((♯‘𝐻)
− 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) | 
| 49 | 36, 48 | eqtri 2764 | . . . . . 6
⊢ 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) | 
| 50 |  | fourierdlem100.s | . . . . . . 7
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) | 
| 51 |  | isoeq5 7342 | . . . . . . . . 9
⊢ (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})))) | 
| 52 | 46, 51 | ax-mp 5 | . . . . . . . 8
⊢ (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) | 
| 53 | 52 | iotabii 6545 | . . . . . . 7
⊢
(℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) | 
| 54 | 50, 53 | eqtri 2764 | . . . . . 6
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) | 
| 55 | 19, 20, 21, 22, 2, 5, 26, 8, 35, 49, 54 | fourierdlem54 46180 | . . . . 5
⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})))) | 
| 56 | 55 | simpld 494 | . . . 4
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁))) | 
| 57 | 56 | simpld 494 | . . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 58 | 56 | simprd 495 | . . 3
⊢ (𝜑 → 𝑆 ∈ (𝑂‘𝑁)) | 
| 59 | 1, 6 | fssresd 6774 | . . 3
⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)):(𝐶[,]𝐷)⟶ℂ) | 
| 60 |  | ioossicc 13474 | . . . . . 6
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) | 
| 61 | 2 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ) | 
| 62 | 61 | rexrd 11312 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐶 ∈
ℝ*) | 
| 63 | 3 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ (𝐶(,)+∞)) | 
| 64 | 63, 4 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ ℝ) | 
| 65 | 64 | rexrd 11312 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐷 ∈
ℝ*) | 
| 66 | 8, 57, 58 | fourierdlem15 46142 | . . . . . . . 8
⊢ (𝜑 → 𝑆:(0...𝑁)⟶(𝐶[,]𝐷)) | 
| 67 | 66 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐶[,]𝐷)) | 
| 68 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁)) | 
| 69 | 62, 65, 67, 68 | fourierdlem8 46135 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐶[,]𝐷)) | 
| 70 | 60, 69 | sstrid 3994 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐶[,]𝐷)) | 
| 71 | 70 | resabs1d 6025 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) | 
| 72 | 21 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ) | 
| 73 | 22 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃‘𝑀)) | 
| 74 | 1 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ) | 
| 75 |  | fourierdlem100.per | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | 
| 76 | 75 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | 
| 77 |  | fourierdlem100.fcn | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) | 
| 78 | 77 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) | 
| 79 |  | fourierdlem100.e | . . . . 5
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) | 
| 80 |  | fourierdlem100.j | . . . . 5
⊢ 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) | 
| 81 |  | eqid 2736 | . . . . 5
⊢ ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) | 
| 82 |  | eqid 2736 | . . . . 5
⊢ (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) | 
| 83 |  | eqid 2736 | . . . . 5
⊢ (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆‘𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆‘𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) | 
| 84 |  | fourierdlem100.i | . . . . 5
⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < )) | 
| 85 | 20, 19, 72, 73, 74, 76, 78, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 82, 83, 84 | fourierdlem90 46216 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) | 
| 86 | 71, 85 | eqeltrd 2840 | . . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) | 
| 87 |  | fourierdlem100.r | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) | 
| 88 | 87 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) | 
| 89 |  | eqid 2736 | . . . . 5
⊢ (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅) | 
| 90 | 20, 19, 72, 73, 74, 76, 78, 88, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 84, 89 | fourierdlem89 46215 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆‘𝑗))) = (𝑄‘(𝐼‘(𝑆‘𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆‘𝑗))))) ∈ ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) | 
| 91 | 71 | eqcomd 2742 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) | 
| 92 | 91 | oveq1d 7447 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗)) = (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) | 
| 93 | 90, 92 | eleqtrd 2842 | . . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆‘𝑗))) = (𝑄‘(𝐼‘(𝑆‘𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆‘𝑗))))) ∈ (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) | 
| 94 |  | fourierdlem100.l | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 95 | 94 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 96 |  | eqid 2736 | . . . . 5
⊢ (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿) | 
| 97 | 20, 19, 72, 73, 74, 76, 78, 95, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 84, 96 | fourierdlem91 46217 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) | 
| 98 | 91 | oveq1d 7447 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1))) = (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) | 
| 99 | 97, 98 | eleqtrd 2842 | . . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ (((𝐹 ↾ (𝐶[,]𝐷)) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) | 
| 100 | 18, 57, 58, 59, 86, 93, 99 | fourierdlem69 46195 | . 2
⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) ∈
𝐿1) | 
| 101 | 7, 100 | eqeltrrd 2841 | 1
⊢ (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹‘𝑥)) ∈
𝐿1) |