Step | Hyp | Ref
| Expression |
1 | | fourierdlem89.q |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
2 | | fourierdlem89.m |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | fourierdlem89.p |
. . . . . . . . . . . . . 14
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
4 | 3 | fourierdlem2 43540 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
5 | 2, 4 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
6 | 1, 5 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
7 | 6 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
8 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
10 | | fzossfz 13334 |
. . . . . . . . . 10
⊢
(0..^𝑀) ⊆
(0...𝑀) |
11 | | fourierdlem89.t |
. . . . . . . . . . . . 13
⊢ 𝑇 = (𝐵 − 𝐴) |
12 | | fourierdlem89.e |
. . . . . . . . . . . . 13
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
13 | | fourierdlem89.z |
. . . . . . . . . . . . 13
⊢ 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) |
14 | | fourierdlem89.20 |
. . . . . . . . . . . . 13
⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}, ℝ, < )) |
15 | 3, 2, 1, 11, 12, 13, 14 | fourierdlem37 43575 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}))) |
16 | 15 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼:ℝ⟶(0..^𝑀)) |
17 | | fourierdlem89.c |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐶 ∈ ℝ) |
18 | | fourierdlem89.d |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) |
19 | | elioore 13038 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐷 ∈ ℝ) |
21 | | elioo4g 13068 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷 ∧ 𝐷 < +∞))) |
22 | 18, 21 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷 ∧ 𝐷 < +∞))) |
23 | 22 | simprd 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐶 < 𝐷 ∧ 𝐷 < +∞)) |
24 | 23 | simpld 494 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐶 < 𝐷) |
25 | | fourierdlem89.o |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
26 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇))) |
27 | 26 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
28 | 27 | rexbidv 3225 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
29 | 28 | cbvrabv 3416 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} |
30 | 29 | uneq2i 4090 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
31 | | fourierdlem89.n |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑁 = ((♯‘𝐻) − 1) |
32 | | fourierdlem89.12 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
33 | 32 | fveq2i 6759 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(♯‘𝐻) =
(♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) |
34 | 33 | oveq1i 7265 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝐻)
− 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) |
35 | 31, 34 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) |
36 | | fourierdlem89.s |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) |
37 | | isoeq5 7172 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
38 | 32, 37 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) |
39 | 38 | iotabii 6403 |
. . . . . . . . . . . . . . . . . . 19
⊢
(℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) |
40 | 36, 39 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) |
41 | 11, 3, 2, 1, 17, 20, 24, 25, 30, 35, 40 | fourierdlem54 43591 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
42 | 41 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁))) |
43 | 42 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ∈ (𝑂‘𝑁)) |
44 | 42 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℕ) |
45 | 25 | fourierdlem2 43540 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
47 | 43, 46 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))))) |
48 | 47 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ (ℝ ↑m
(0...𝑁))) |
49 | | elmapi 8595 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ (ℝ
↑m (0...𝑁))
→ 𝑆:(0...𝑁)⟶ℝ) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆:(0...𝑁)⟶ℝ) |
51 | | fourierdlem89.j |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) |
52 | | elfzofz 13331 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁)) |
53 | 51, 52 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ (0...𝑁)) |
54 | 50, 53 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆‘𝐽) ∈ ℝ) |
55 | 16, 54 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) |
56 | 10, 55 | sselid 3915 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼‘(𝑆‘𝐽)) ∈ (0...𝑀)) |
57 | 9, 56 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘(𝐼‘(𝑆‘𝐽))) ∈ ℝ) |
58 | 57 | rexrd 10956 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘(𝐼‘(𝑆‘𝐽))) ∈
ℝ*) |
59 | 58 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) → (𝑄‘(𝐼‘(𝑆‘𝐽))) ∈
ℝ*) |
60 | | fzofzp1 13412 |
. . . . . . . . . 10
⊢ ((𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀) → ((𝐼‘(𝑆‘𝐽)) + 1) ∈ (0...𝑀)) |
61 | 55, 60 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐼‘(𝑆‘𝐽)) + 1) ∈ (0...𝑀)) |
62 | 9, 61 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)) ∈ ℝ) |
63 | 62 | rexrd 10956 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)) ∈
ℝ*) |
64 | 63 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) → (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)) ∈
ℝ*) |
65 | 3, 2, 1 | fourierdlem11 43549 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |
66 | 65 | simp1d 1140 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
67 | 65 | simp2d 1141 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
68 | 66, 67 | iccssred 13095 |
. . . . . . . 8
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
69 | 65 | simp3d 1142 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 < 𝐵) |
70 | 66, 67, 69, 13 | fourierdlem17 43555 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
71 | 66, 67, 69, 11, 12 | fourierdlem4 43542 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸:ℝ⟶(𝐴(,]𝐵)) |
72 | 71, 54 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸‘(𝑆‘𝐽)) ∈ (𝐴(,]𝐵)) |
73 | 70, 72 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝑍‘(𝐸‘(𝑆‘𝐽))) ∈ (𝐴[,]𝐵)) |
74 | 68, 73 | sseldd 3918 |
. . . . . . 7
⊢ (𝜑 → (𝑍‘(𝐸‘(𝑆‘𝐽))) ∈ ℝ) |
75 | 74 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) → (𝑍‘(𝐸‘(𝑆‘𝐽))) ∈ ℝ) |
76 | 57 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) → (𝑄‘(𝐼‘(𝑆‘𝐽))) ∈ ℝ) |
77 | 66 | rexrd 10956 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
78 | | iocssre 13088 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝐴(,]𝐵) ⊆
ℝ) |
79 | 77, 67, 78 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴(,]𝐵) ⊆ ℝ) |
80 | | fzofzp1 13412 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁)) |
81 | 51, 80 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐽 + 1) ∈ (0...𝑁)) |
82 | 50, 81 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ) |
83 | 71, 82 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ (𝐴(,]𝐵)) |
84 | 79, 83 | sseldd 3918 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ) |
85 | 47 | simprrd 770 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))) |
86 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐽 → (𝑆‘𝑖) = (𝑆‘𝐽)) |
87 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝐽 → (𝑖 + 1) = (𝐽 + 1)) |
88 | 87 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐽 → (𝑆‘(𝑖 + 1)) = (𝑆‘(𝐽 + 1))) |
89 | 86, 88 | breq12d 5083 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐽 → ((𝑆‘𝑖) < (𝑆‘(𝑖 + 1)) ↔ (𝑆‘𝐽) < (𝑆‘(𝐽 + 1)))) |
90 | 89 | rspccva 3551 |
. . . . . . . . . . . . . 14
⊢
((∀𝑖 ∈
(0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑆‘𝐽) < (𝑆‘(𝐽 + 1))) |
91 | 85, 51, 90 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆‘𝐽) < (𝑆‘(𝐽 + 1))) |
92 | 54, 82 | posdifd 11492 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑆‘𝐽) < (𝑆‘(𝐽 + 1)) ↔ 0 < ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
93 | 91, 92 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) |
94 | 51 | ancli 548 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝜑 ∧ 𝐽 ∈ (0..^𝑁))) |
95 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → (𝑗 ∈ (0..^𝑁) ↔ 𝐽 ∈ (0..^𝑁))) |
96 | 95 | anbi2d 628 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ↔ (𝜑 ∧ 𝐽 ∈ (0..^𝑁)))) |
97 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1)) |
98 | 97 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝐽 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝐽 + 1))) |
99 | 98 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝐽 → (𝐸‘(𝑆‘(𝑗 + 1))) = (𝐸‘(𝑆‘(𝐽 + 1)))) |
100 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝐽 → (𝑆‘𝑗) = (𝑆‘𝐽)) |
101 | 100 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝐽 → (𝐸‘(𝑆‘𝑗)) = (𝐸‘(𝑆‘𝐽))) |
102 | 101 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝐽 → (𝑍‘(𝐸‘(𝑆‘𝑗))) = (𝑍‘(𝐸‘(𝑆‘𝐽)))) |
103 | 99, 102 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝑗)))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽))))) |
104 | 98, 100 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) |
105 | 103, 104 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → (((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
106 | 96, 105 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐽 → (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) ↔ ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))))) |
107 | 11 | oveq2i 7266 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 · 𝑇) = (𝑘 · (𝐵 − 𝐴)) |
108 | 107 | oveq2i 7266 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵 − 𝐴))) |
109 | 108 | eleq1i 2829 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) |
110 | 109 | rexbii 3177 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑘 ∈
ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) |
111 | 110 | rgenw 3075 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∀𝑦 ∈
(𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) |
112 | | rabbi 3309 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑦 ∈
(𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) ↔ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) |
113 | 111, 112 | mpbi 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄} |
114 | 113 | uneq2i 4090 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) |
115 | 114 | fveq2i 6759 |
. . . . . . . . . . . . . . . . 17
⊢
(♯‘({𝐶,
𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) |
116 | 115 | oveq1i 7265 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘({𝐶,
𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) |
117 | 35, 116 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) |
118 | | isoeq5 7172 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})))) |
119 | 114, 118 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) |
120 | 119 | iotabii 6403 |
. . . . . . . . . . . . . . . 16
⊢
(℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) |
121 | 40, 120 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) |
122 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆‘𝑗) + (𝐵 − (𝐸‘(𝑆‘𝑗)))) = ((𝑆‘𝑗) + (𝐵 − (𝐸‘(𝑆‘𝑗)))) |
123 | 3, 11, 2, 1, 17, 18, 25, 117, 121, 12, 13, 122 | fourierdlem65 43602 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) |
124 | 106, 123 | vtoclg 3495 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (0..^𝑁) → ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
125 | 51, 94, 124 | sylc 65 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) |
126 | 93, 125 | breqtrrd 5098 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽))))) |
127 | 74, 84 | posdifd 11492 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))) ↔ 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))))) |
128 | 126, 127 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍‘(𝐸‘(𝑆‘𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1)))) |
129 | | id 22 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝜑) |
130 | 102, 99 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → ((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) |
131 | 100 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝐽 → (𝐼‘(𝑆‘𝑗)) = (𝐼‘(𝑆‘𝐽))) |
132 | 131 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → (𝑄‘(𝐼‘(𝑆‘𝑗))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) |
133 | 131 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝐽 → ((𝐼‘(𝑆‘𝑗)) + 1) = ((𝐼‘(𝑆‘𝐽)) + 1)) |
134 | 133 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) |
135 | 132, 134 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) = ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
136 | 130, 135 | sseq12d 3950 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐽 → (((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) ↔ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))) |
137 | 96, 136 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) ↔ ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))))) |
138 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) |
139 | 11, 3, 2, 1, 17, 20, 24, 25, 30, 35, 40, 12, 13, 138, 14 | fourierdlem79 43616 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) |
140 | 137, 139 | vtoclg 3495 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (0..^𝑁) → ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))) |
141 | 140 | anabsi7 667 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
142 | 129, 51, 141 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
143 | 57, 62, 74, 84, 128, 142 | fourierdlem10 43548 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄‘(𝐼‘(𝑆‘𝐽))) ≤ (𝑍‘(𝐸‘(𝑆‘𝐽))) ∧ (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
144 | 143 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘(𝐼‘(𝑆‘𝐽))) ≤ (𝑍‘(𝐸‘(𝑆‘𝐽)))) |
145 | 144 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) → (𝑄‘(𝐼‘(𝑆‘𝐽))) ≤ (𝑍‘(𝐸‘(𝑆‘𝐽)))) |
146 | | neqne 2950 |
. . . . . . . 8
⊢ (¬
(𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))) → (𝑍‘(𝐸‘(𝑆‘𝐽))) ≠ (𝑄‘(𝐼‘(𝑆‘𝐽)))) |
147 | 146 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) → (𝑍‘(𝐸‘(𝑆‘𝐽))) ≠ (𝑄‘(𝐼‘(𝑆‘𝐽)))) |
148 | 76, 75, 145, 147 | leneltd 11059 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) → (𝑄‘(𝐼‘(𝑆‘𝐽))) < (𝑍‘(𝐸‘(𝑆‘𝐽)))) |
149 | 143 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) |
150 | 74, 84, 62, 128, 149 | ltletrd 11065 |
. . . . . . 7
⊢ (𝜑 → (𝑍‘(𝐸‘(𝑆‘𝐽))) < (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) |
151 | 150 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) → (𝑍‘(𝐸‘(𝑆‘𝐽))) < (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) |
152 | 59, 64, 75, 148, 151 | eliood 42926 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) → (𝑍‘(𝐸‘(𝑆‘𝐽))) ∈ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
153 | | fvres 6775 |
. . . . 5
⊢ ((𝑍‘(𝐸‘(𝑆‘𝐽))) ∈ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆‘𝐽)))) = (𝐹‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) |
154 | 152, 153 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆‘𝐽)))) = (𝐹‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) |
155 | 154 | eqcomd 2744 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) → (𝐹‘(𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) |
156 | 155 | ifeq2da 4488 |
. 2
⊢ (𝜑 → if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), (𝐹‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) = if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆‘𝐽)))))) |
157 | | fourierdlem89.f |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
158 | | fdm 6593 |
. . . . . . . 8
⊢ (𝐹:ℝ⟶ℂ →
dom 𝐹 =
ℝ) |
159 | 157, 158 | syl 17 |
. . . . . . 7
⊢ (𝜑 → dom 𝐹 = ℝ) |
160 | 159 | feq2d 6570 |
. . . . . 6
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:ℝ⟶ℂ)) |
161 | 157, 160 | mpbird 256 |
. . . . 5
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
162 | | ioosscn 13070 |
. . . . . 6
⊢ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ |
163 | 162 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ) |
164 | | ioossre 13069 |
. . . . . 6
⊢ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℝ |
165 | 164, 159 | sseqtrrid 3970 |
. . . . 5
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ dom 𝐹) |
166 | | fourierdlem89.u |
. . . . . . 7
⊢ 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) |
167 | 82, 84 | resubcld 11333 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ) |
168 | 166, 167 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℝ) |
169 | 168 | recnd 10934 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ ℂ) |
170 | | eqid 2738 |
. . . . 5
⊢ {𝑥 ∈ ℂ ∣
∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} |
171 | 74, 84, 168 | iooshift 42950 |
. . . . . 6
⊢ (𝜑 → (((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) |
172 | | ioossre 13069 |
. . . . . . 7
⊢ (((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ ℝ |
173 | 172, 159 | sseqtrrid 3970 |
. . . . . 6
⊢ (𝜑 → (((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ dom 𝐹) |
174 | 171, 173 | eqsstrrd 3956 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} ⊆ dom 𝐹) |
175 | | elioore 13038 |
. . . . . 6
⊢ (𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑦 ∈ ℝ) |
176 | 67, 66 | resubcld 11333 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
177 | 11, 176 | eqeltrid 2843 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ ℝ) |
178 | 177 | recnd 10934 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ ℂ) |
179 | 66, 67 | posdifd 11492 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
180 | 69, 179 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
181 | 180, 11 | breqtrrdi 5112 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < 𝑇) |
182 | 181 | gt0ne0d 11469 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ≠ 0) |
183 | 169, 178,
182 | divcan1d 11682 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑈 / 𝑇) · 𝑇) = 𝑈) |
184 | 183 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 = ((𝑈 / 𝑇) · 𝑇)) |
185 | 184 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇))) |
186 | 185 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇))) |
187 | 186 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇)))) |
188 | 157 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ) |
189 | 177 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑇 ∈ ℝ) |
190 | 84 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ) |
191 | 82 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ) |
192 | 190, 191 | negsubdi2d 11278 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) |
193 | 192 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) = -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) |
194 | 193 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇)) |
195 | 166 | oveq1i 7265 |
. . . . . . . . . . . 12
⊢ (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇) |
196 | 195 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇)) |
197 | 12 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)))) |
198 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1))) |
199 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵 − 𝑥) = (𝐵 − (𝑆‘(𝐽 + 1)))) |
200 | 199 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵 − 𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) |
201 | 200 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵 − 𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))) |
202 | 201 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) |
203 | 198, 202 | oveq12d 7273 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))) |
204 | 203 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))) |
205 | 67, 82 | resubcld 11333 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ) |
206 | 205, 177,
182 | redivcld 11733 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ) |
207 | 206 | flcld 13446 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ) |
208 | 207 | zred 12355 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ) |
209 | 208, 177 | remulcld 10936 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ) |
210 | 82, 209 | readdcld 10935 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ) |
211 | 197, 204,
82, 210 | fvmptd 6864 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))) |
212 | 211 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1)))) |
213 | 208 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℂ) |
214 | 213, 178 | mulcld 10926 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℂ) |
215 | 191, 214 | pncan2d 11264 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) |
216 | 212, 215 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) |
217 | 216, 214 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℂ) |
218 | 217, 178,
182 | divnegd 11694 |
. . . . . . . . . . 11
⊢ (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇)) |
219 | 194, 196,
218 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈 / 𝑇) = -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇)) |
220 | 216 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇)) |
221 | 213, 178,
182 | divcan4d 11687 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))) |
222 | 220, 221 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))) |
223 | 222, 207 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ) |
224 | 223 | znegcld 12357 |
. . . . . . . . . 10
⊢ (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ) |
225 | 219, 224 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈 / 𝑇) ∈ ℤ) |
226 | 225 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑈 / 𝑇) ∈ ℤ) |
227 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) |
228 | | fourierdlem89.per |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
229 | 228 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
230 | 188, 189,
226, 227, 229 | fperiodmul 42733 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))) = (𝐹‘𝑦)) |
231 | 187, 230 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹‘𝑦)) |
232 | 175, 231 | sylan2 592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) → (𝐹‘(𝑦 + 𝑈)) = (𝐹‘𝑦)) |
233 | 6 | simprrd 770 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
234 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑄‘𝑖) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) |
235 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑖 + 1) = ((𝐼‘(𝑆‘𝐽)) + 1)) |
236 | 235 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) |
237 | 234, 236 | breq12d 5083 |
. . . . . . . . 9
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝐼‘(𝑆‘𝐽))) < (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
238 | 237 | rspccva 3551 |
. . . . . . . 8
⊢
((∀𝑖 ∈
(0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑄‘(𝐼‘(𝑆‘𝐽))) < (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) |
239 | 233, 55, 238 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘(𝐼‘(𝑆‘𝐽))) < (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) |
240 | 55 | ancli 548 |
. . . . . . . 8
⊢ (𝜑 → (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) |
241 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑖 ∈ (0..^𝑀) ↔ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) |
242 | 241 | anbi2d 628 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)))) |
243 | 234, 236 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
244 | 243 | reseq2d 5880 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))) |
245 | 243 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ)) |
246 | 244, 245 | eleq12d 2833 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ))) |
247 | 242, 246 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ)))) |
248 | | fourierdlem89.fcn |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
249 | 247, 248 | vtoclg 3495 |
. . . . . . . 8
⊢ ((𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ))) |
250 | 55, 240, 249 | sylc 65 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ)) |
251 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) |
252 | | fourierdlem89.21 |
. . . . . . . . . . . . 13
⊢ 𝑉 = (𝑖 ∈ (0..^𝑀) ↦ 𝑅) |
253 | | nfmpt1 5178 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝑖 ∈ (0..^𝑀) ↦ 𝑅) |
254 | 252, 253 | nfcxfr 2904 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖𝑉 |
255 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝐼‘(𝑆‘𝐽)) |
256 | 254, 255 | nffv 6766 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝑉‘(𝐼‘(𝑆‘𝐽))) |
257 | 256 | nfel1 2922 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝑉‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘(𝐼‘(𝑆‘𝐽)))) |
258 | 251, 257 | nfim 1900 |
. . . . . . . . 9
⊢
Ⅎ𝑖((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘(𝐼‘(𝑆‘𝐽))))) |
259 | 242 | biimpar 477 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝜑 ∧ 𝑖 ∈ (0..^𝑀))) |
260 | 259 | 3adant2 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝜑 ∧ 𝑖 ∈ (0..^𝑀))) |
261 | | fourierdlem89.limc |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
262 | 260, 261 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
263 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑉‘𝑖) = (𝑉‘(𝐼‘(𝑆‘𝐽)))) |
264 | 263 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑉‘(𝐼‘(𝑆‘𝐽))) = (𝑉‘𝑖)) |
265 | 264 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆‘𝐽))) = (𝑉‘𝑖)) |
266 | 259 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → 𝑖 ∈ (0..^𝑀)) |
267 | | elex 3440 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) → 𝑅 ∈ V) |
268 | 259, 261,
267 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → 𝑅 ∈ V) |
269 | 252 | fvmpt2 6868 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑅 ∈ V) → (𝑉‘𝑖) = 𝑅) |
270 | 266, 268,
269 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝑉‘𝑖) = 𝑅) |
271 | 265, 270 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆‘𝐽))) = 𝑅) |
272 | 271 | 3adant2 1129 |
. . . . . . . . . . . 12
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆‘𝐽))) = 𝑅) |
273 | 244, 234 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘(𝐼‘(𝑆‘𝐽))))) |
274 | 273 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘(𝐼‘(𝑆‘𝐽)))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
275 | 274 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘(𝐼‘(𝑆‘𝐽)))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
276 | 262, 272,
275 | 3eltr4d 2854 |
. . . . . . . . . . 11
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘(𝐼‘(𝑆‘𝐽))))) |
277 | 276 | 3exp 1117 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) → ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘(𝐼‘(𝑆‘𝐽))))))) |
278 | 261 | 2a1i 12 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘(𝐼‘(𝑆‘𝐽))))) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))))) |
279 | 277, 278 | impbid 211 |
. . . . . . . . 9
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) ↔ ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘(𝐼‘(𝑆‘𝐽))))))) |
280 | 258, 279,
261 | vtoclg1f 3494 |
. . . . . . . 8
⊢ ((𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘(𝐼‘(𝑆‘𝐽)))))) |
281 | 55, 240, 280 | sylc 65 |
. . . . . . 7
⊢ (𝜑 → (𝑉‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘(𝐼‘(𝑆‘𝐽))))) |
282 | | eqid 2738 |
. . . . . . 7
⊢ if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) = if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) |
283 | | eqid 2738 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ↾t ((𝑄‘(𝐼‘(𝑆‘𝐽)))[,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) =
((TopOpen‘ℂfld) ↾t ((𝑄‘(𝐼‘(𝑆‘𝐽)))[,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) |
284 | 57, 62, 239, 250, 281, 74, 84, 128, 142, 282, 283 | fourierdlem32 43570 |
. . . . . 6
⊢ (𝜑 → if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) ∈ (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) limℂ (𝑍‘(𝐸‘(𝑆‘𝐽))))) |
285 | 142 | resabs1d 5911 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))) |
286 | 285 | oveq1d 7270 |
. . . . . 6
⊢ (𝜑 → (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) limℂ (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) limℂ (𝑍‘(𝐸‘(𝑆‘𝐽))))) |
287 | 284, 286 | eleqtrd 2841 |
. . . . 5
⊢ (𝜑 → if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) ∈ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) limℂ (𝑍‘(𝐸‘(𝑆‘𝐽))))) |
288 | 161, 163,
165, 169, 170, 174, 232, 287 | limcperiod 43059 |
. . . 4
⊢ (𝜑 → if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) limℂ ((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈))) |
289 | 166 | oveq2i 7266 |
. . . . . . 7
⊢ ((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) |
290 | 289 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))) |
291 | 17, 20 | iccssred 13095 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℝ) |
292 | | ax-resscn 10859 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
293 | 291, 292 | sstrdi 3929 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℂ) |
294 | 25, 44, 43 | fourierdlem15 43553 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆:(0...𝑁)⟶(𝐶[,]𝐷)) |
295 | 294, 53 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆‘𝐽) ∈ (𝐶[,]𝐷)) |
296 | 293, 295 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆‘𝐽) ∈ ℂ) |
297 | 191, 296 | subcld 11262 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)) ∈ ℂ) |
298 | 74 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍‘(𝐸‘(𝑆‘𝐽))) ∈ ℂ) |
299 | 190, 297,
298 | subsub23d 42715 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = (𝑍‘(𝐸‘(𝑆‘𝐽))) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
300 | 125, 299 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = (𝑍‘(𝐸‘(𝑆‘𝐽)))) |
301 | 300 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → (𝑍‘(𝐸‘(𝑆‘𝐽))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
302 | 301 | oveq1d 7270 |
. . . . . 6
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))) |
303 | 190, 297 | subcld 11262 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) ∈ ℂ) |
304 | 303, 191,
190 | addsub12d 11285 |
. . . . . . 7
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))))) |
305 | 190, 297,
190 | sub32d 11294 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
306 | 190 | subidd 11250 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = 0) |
307 | 306 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) |
308 | | df-neg 11138 |
. . . . . . . . . 10
⊢ -((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) |
309 | 191, 296 | negsubdi2d 11278 |
. . . . . . . . . 10
⊢ (𝜑 → -((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)) = ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) |
310 | 308, 309 | eqtr3id 2793 |
. . . . . . . . 9
⊢ (𝜑 → (0 − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) |
311 | 305, 307,
310 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) |
312 | 311 | oveq2d 7271 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1))))) |
313 | 191, 296 | pncan3d 11265 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) + ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) = (𝑆‘𝐽)) |
314 | 304, 312,
313 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆‘𝐽)) |
315 | 290, 302,
314 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈) = (𝑆‘𝐽)) |
316 | 315 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) limℂ ((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈)) = ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) limℂ (𝑆‘𝐽))) |
317 | 288, 316 | eleqtrd 2841 |
. . 3
⊢ (𝜑 → if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) limℂ (𝑆‘𝐽))) |
318 | 166 | oveq2i 7266 |
. . . . . . . 8
⊢ ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) |
319 | 190, 191 | pncan3d 11265 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆‘(𝐽 + 1))) |
320 | 318, 319 | syl5eq 2791 |
. . . . . . 7
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = (𝑆‘(𝐽 + 1))) |
321 | 315, 320 | oveq12d 7273 |
. . . . . 6
⊢ (𝜑 → (((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) |
322 | 171, 321 | eqtr3d 2780 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) |
323 | 322 | reseq2d 5880 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) = (𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))))) |
324 | 323 | oveq1d 7270 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) limℂ (𝑆‘𝐽)) = ((𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) limℂ (𝑆‘𝐽))) |
325 | 317, 324 | eleqtrd 2841 |
. 2
⊢ (𝜑 → if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) ∈ ((𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) limℂ (𝑆‘𝐽))) |
326 | 156, 325 | eqeltrd 2839 |
1
⊢ (𝜑 → if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), (𝐹‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) ∈ ((𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) limℂ (𝑆‘𝐽))) |