Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem89 Structured version   Visualization version   GIF version

Theorem fourierdlem89 41049
Description: Given a piecewise continuous function and changing the interval and the partition, the limit at the lower bound of each interval of the moved partition is still finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem89.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem89.t 𝑇 = (𝐵𝐴)
fourierdlem89.m (𝜑𝑀 ∈ ℕ)
fourierdlem89.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem89.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem89.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem89.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem89.limc ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem89.c (𝜑𝐶 ∈ ℝ)
fourierdlem89.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem89.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem89.12 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem89.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem89.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem89.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem89.z 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem89.j (𝜑𝐽 ∈ (0..^𝑁))
fourierdlem89.u 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))
fourierdlem89.20 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
fourierdlem89.21 𝑉 = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
Assertion
Ref Expression
fourierdlem89 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆𝐽)))
Distinct variable groups:   𝐴,𝑓,𝑘,𝑦   𝐴,𝑖,𝑥,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖   𝐵,𝑓,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝐶,𝑓,𝑦   𝐶,𝑖,𝑚,𝑝   𝑥,𝐶   𝐷,𝑓,𝑦   𝐷,𝑖,𝑚,𝑝   𝑥,𝐷   𝑓,𝐸,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑥,𝑦   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥,𝑦   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑓,𝑁,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑝   𝑆,𝑓,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑓,𝑘,𝑦   𝑇,𝑖,𝑥   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝑖,𝑍,𝑥,𝑦   𝜑,𝑓,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐶(𝑘)   𝐷(𝑘)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑆(𝑚)   𝑇(𝑚,𝑝)   𝑈(𝑓,𝑖,𝑘,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝐽(𝑓,𝑘,𝑚,𝑝)   𝑀(𝑦,𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑉(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑍(𝑓,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem89
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem89.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem89.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
3 fourierdlem89.p . . . . . . . . . . . . . 14 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 40963 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 223 . . . . . . . . . . 11 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 488 . . . . . . . . . 10 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
8 elmapi 8082 . . . . . . . . . 10 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
97, 8syl 17 . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶ℝ)
10 fzossfz 12696 . . . . . . . . . 10 (0..^𝑀) ⊆ (0...𝑀)
11 fourierdlem89.t . . . . . . . . . . . . 13 𝑇 = (𝐵𝐴)
12 fourierdlem89.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
13 fourierdlem89.z . . . . . . . . . . . . 13 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
14 fourierdlem89.20 . . . . . . . . . . . . 13 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
153, 2, 1, 11, 12, 13, 14fourierdlem37 40998 . . . . . . . . . . . 12 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))})))
1615simpld 488 . . . . . . . . . . 11 (𝜑𝐼:ℝ⟶(0..^𝑀))
17 fourierdlem89.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℝ)
18 fourierdlem89.d . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ (𝐶(,)+∞))
19 elioore 12407 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
2018, 19syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℝ)
21 elioo4g 12436 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2218, 21sylib 209 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2322simprd 489 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐶 < 𝐷𝐷 < +∞))
2423simpld 488 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 < 𝐷)
25 fourierdlem89.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
26 oveq1 6849 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
2726eleq1d 2829 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2827rexbidv 3199 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2928cbvrabv 3348 . . . . . . . . . . . . . . . . . . 19 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
3029uneq2i 3926 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
31 fourierdlem89.n . . . . . . . . . . . . . . . . . . 19 𝑁 = ((♯‘𝐻) − 1)
32 fourierdlem89.12 . . . . . . . . . . . . . . . . . . . . 21 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
3332fveq2i 6378 . . . . . . . . . . . . . . . . . . . 20 (♯‘𝐻) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
3433oveq1i 6852 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐻) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
3531, 34eqtri 2787 . . . . . . . . . . . . . . . . . 18 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
36 fourierdlem89.s . . . . . . . . . . . . . . . . . . 19 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
37 isoeq5 6763 . . . . . . . . . . . . . . . . . . . . 21 (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3832, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
3938iotabii 6053 . . . . . . . . . . . . . . . . . . 19 (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
4036, 39eqtri 2787 . . . . . . . . . . . . . . . . . 18 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
4111, 3, 2, 1, 17, 20, 24, 25, 30, 35, 40fourierdlem54 41014 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
4241simpld 488 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
4342simprd 489 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ (𝑂𝑁))
4442simpld 488 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
4525fourierdlem2 40963 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
4644, 45syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
4743, 46mpbid 223 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
4847simpld 488 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)))
49 elmapi 8082 . . . . . . . . . . . . 13 (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) → 𝑆:(0...𝑁)⟶ℝ)
5048, 49syl 17 . . . . . . . . . . . 12 (𝜑𝑆:(0...𝑁)⟶ℝ)
51 fourierdlem89.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (0..^𝑁))
52 elfzofz 12693 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁))
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑁))
5450, 53ffvelrnd 6550 . . . . . . . . . . 11 (𝜑 → (𝑆𝐽) ∈ ℝ)
5516, 54ffvelrnd 6550 . . . . . . . . . 10 (𝜑 → (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))
5610, 55sseldi 3759 . . . . . . . . 9 (𝜑 → (𝐼‘(𝑆𝐽)) ∈ (0...𝑀))
579, 56ffvelrnd 6550 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ)
5857rexrd 10343 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ*)
5958adantr 472 . . . . . 6 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ*)
60 fzofzp1 12773 . . . . . . . . . 10 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝐼‘(𝑆𝐽)) + 1) ∈ (0...𝑀))
6155, 60syl 17 . . . . . . . . 9 (𝜑 → ((𝐼‘(𝑆𝐽)) + 1) ∈ (0...𝑀))
629, 61ffvelrnd 6550 . . . . . . . 8 (𝜑 → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ)
6362rexrd 10343 . . . . . . 7 (𝜑 → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ*)
6463adantr 472 . . . . . 6 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ*)
653, 2, 1fourierdlem11 40972 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
6665simp1d 1172 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
6765simp2d 1173 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
6866, 67iccssred 40369 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
6965simp3d 1174 . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
7066, 67, 69, 13fourierdlem17 40978 . . . . . . . . 9 (𝜑𝑍:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
7166, 67, 69, 11, 12fourierdlem4 40965 . . . . . . . . . 10 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
7271, 54ffvelrnd 6550 . . . . . . . . 9 (𝜑 → (𝐸‘(𝑆𝐽)) ∈ (𝐴(,]𝐵))
7370, 72ffvelrnd 6550 . . . . . . . 8 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ (𝐴[,]𝐵))
7468, 73sseldd 3762 . . . . . . 7 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℝ)
7574adantr 472 . . . . . 6 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℝ)
7657adantr 472 . . . . . . 7 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ)
7766rexrd 10343 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
78 iocssre 12455 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
7977, 67, 78syl2anc 579 . . . . . . . . . . 11 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
80 fzofzp1 12773 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁))
8151, 80syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐽 + 1) ∈ (0...𝑁))
8250, 81ffvelrnd 6550 . . . . . . . . . . . 12 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ)
8371, 82ffvelrnd 6550 . . . . . . . . . . 11 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ (𝐴(,]𝐵))
8479, 83sseldd 3762 . . . . . . . . . 10 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
8547simprrd 790 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))
86 fveq2 6375 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐽 → (𝑆𝑖) = (𝑆𝐽))
87 oveq1 6849 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐽 → (𝑖 + 1) = (𝐽 + 1))
8887fveq2d 6379 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐽 → (𝑆‘(𝑖 + 1)) = (𝑆‘(𝐽 + 1)))
8986, 88breq12d 4822 . . . . . . . . . . . . . . 15 (𝑖 = 𝐽 → ((𝑆𝑖) < (𝑆‘(𝑖 + 1)) ↔ (𝑆𝐽) < (𝑆‘(𝐽 + 1))))
9089rspccva 3460 . . . . . . . . . . . . . 14 ((∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
9185, 51, 90syl2anc 579 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
9254, 82posdifd 10868 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐽) < (𝑆‘(𝐽 + 1)) ↔ 0 < ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
9391, 92mpbid 223 . . . . . . . . . . . 12 (𝜑 → 0 < ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
9451ancli 544 . . . . . . . . . . . . 13 (𝜑 → (𝜑𝐽 ∈ (0..^𝑁)))
95 eleq1 2832 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑗 ∈ (0..^𝑁) ↔ 𝐽 ∈ (0..^𝑁)))
9695anbi2d 622 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝜑𝑗 ∈ (0..^𝑁)) ↔ (𝜑𝐽 ∈ (0..^𝑁))))
97 oveq1 6849 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1))
9897fveq2d 6379 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝐽 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝐽 + 1)))
9998fveq2d 6379 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝐸‘(𝑆‘(𝑗 + 1))) = (𝐸‘(𝑆‘(𝐽 + 1))))
100 fveq2 6375 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝐽 → (𝑆𝑗) = (𝑆𝐽))
101100fveq2d 6379 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝐽 → (𝐸‘(𝑆𝑗)) = (𝐸‘(𝑆𝐽)))
102101fveq2d 6379 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝑍‘(𝐸‘(𝑆𝑗))) = (𝑍‘(𝐸‘(𝑆𝐽))))
10399, 102oveq12d 6860 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))))
10498, 100oveq12d 6860 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
105103, 104eqeq12d 2780 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → (((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
10696, 105imbi12d 335 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗))) ↔ ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))))
10711oveq2i 6853 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 · 𝑇) = (𝑘 · (𝐵𝐴))
108107oveq2i 6853 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵𝐴)))
109108eleq1i 2835 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
110109rexbii 3188 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
111110rgenw 3071 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
112 rabbi 3268 . . . . . . . . . . . . . . . . . . . 20 (∀𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄) ↔ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
113111, 112mpbi 221 . . . . . . . . . . . . . . . . . . 19 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}
114113uneq2i 3926 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
115114fveq2i 6378 . . . . . . . . . . . . . . . . 17 (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))
116115oveq1i 6852 . . . . . . . . . . . . . . . 16 ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
11735, 116eqtri 2787 . . . . . . . . . . . . . . 15 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
118 isoeq5 6763 . . . . . . . . . . . . . . . . . 18 (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))))
119114, 118ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
120119iotabii 6053 . . . . . . . . . . . . . . . 16 (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
12140, 120eqtri 2787 . . . . . . . . . . . . . . 15 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
122 eqid 2765 . . . . . . . . . . . . . . 15 ((𝑆𝑗) + (𝐵 − (𝐸‘(𝑆𝑗)))) = ((𝑆𝑗) + (𝐵 − (𝐸‘(𝑆𝑗))))
1233, 11, 2, 1, 17, 18, 25, 117, 121, 12, 13, 122fourierdlem65 41025 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)))
124106, 123vtoclg 3418 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
12551, 94, 124sylc 65 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
12693, 125breqtrrd 4837 . . . . . . . . . . 11 (𝜑 → 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))))
12774, 84posdifd 10868 . . . . . . . . . . 11 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))) ↔ 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽))))))
128126, 127mpbird 248 . . . . . . . . . 10 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))))
129 id 22 . . . . . . . . . . 11 (𝜑𝜑)
130102, 99oveq12d 6860 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))
131100fveq2d 6379 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝐼‘(𝑆𝑗)) = (𝐼‘(𝑆𝐽)))
132131fveq2d 6379 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑄‘(𝐼‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝐽))))
133131oveq1d 6857 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → ((𝐼‘(𝑆𝑗)) + 1) = ((𝐼‘(𝑆𝐽)) + 1))
134133fveq2d 6379 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑄‘((𝐼‘(𝑆𝑗)) + 1)) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
135132, 134oveq12d 6860 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))) = ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
136130, 135sseq12d 3794 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))) ↔ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
13796, 136imbi12d 335 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → (((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1)))) ↔ ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))))
138 eqid 2765 . . . . . . . . . . . . . 14 ((𝑆𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = ((𝑆𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))
13911, 3, 2, 1, 17, 20, 24, 25, 30, 35, 40, 12, 13, 138, 14fourierdlem79 41039 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))))
140137, 139vtoclg 3418 . . . . . . . . . . . 12 (𝐽 ∈ (0..^𝑁) → ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
141140anabsi7 661 . . . . . . . . . . 11 ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
142129, 51, 141syl2anc 579 . . . . . . . . . 10 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
14357, 62, 74, 84, 128, 142fourierdlem10 40971 . . . . . . . . 9 (𝜑 → ((𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))) ∧ (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
144143simpld 488 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))))
145144adantr 472 . . . . . . 7 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))))
146 neqne 2945 . . . . . . . 8 (¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))) → (𝑍‘(𝐸‘(𝑆𝐽))) ≠ (𝑄‘(𝐼‘(𝑆𝐽))))
147146adantl 473 . . . . . . 7 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑍‘(𝐸‘(𝑆𝐽))) ≠ (𝑄‘(𝐼‘(𝑆𝐽))))
14876, 75, 145, 147leneltd 10445 . . . . . 6 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑍‘(𝐸‘(𝑆𝐽))))
149143simprd 489 . . . . . . . 8 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
15074, 84, 62, 128, 149ltletrd 10451 . . . . . . 7 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
151150adantr 472 . . . . . 6 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑍‘(𝐸‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
15259, 64, 75, 148, 151eliood 40362 . . . . 5 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
153 fvres 6394 . . . . 5 ((𝑍‘(𝐸‘(𝑆𝐽))) ∈ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽)))) = (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽)))))
154152, 153syl 17 . . . 4 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽)))) = (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽)))))
155154eqcomd 2771 . . 3 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽)))))
156155ifeq2da 4274 . 2 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽))))) = if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))))
157 fourierdlem89.f . . . . . 6 (𝜑𝐹:ℝ⟶ℂ)
158 fdm 6231 . . . . . . . 8 (𝐹:ℝ⟶ℂ → dom 𝐹 = ℝ)
159157, 158syl 17 . . . . . . 7 (𝜑 → dom 𝐹 = ℝ)
160159feq2d 6209 . . . . . 6 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:ℝ⟶ℂ))
161157, 160mpbird 248 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℂ)
162 ioosscn 40358 . . . . . 6 ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ
163162a1i 11 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ)
164 ioossre 12437 . . . . . 6 ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℝ
165164, 159syl5sseqr 3814 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ dom 𝐹)
166 fourierdlem89.u . . . . . . 7 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))
16782, 84resubcld 10712 . . . . . . 7 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ)
168166, 167syl5eqel 2848 . . . . . 6 (𝜑𝑈 ∈ ℝ)
169168recnd 10322 . . . . 5 (𝜑𝑈 ∈ ℂ)
170 eqid 2765 . . . . 5 {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}
17174, 84, 168iooshift 40387 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)})
172 ioossre 12437 . . . . . . 7 (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ ℝ
173172, 159syl5sseqr 3814 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ dom 𝐹)
174171, 173eqsstr3d 3800 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} ⊆ dom 𝐹)
175 elioore 12407 . . . . . 6 (𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑦 ∈ ℝ)
17667, 66resubcld 10712 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴) ∈ ℝ)
17711, 176syl5eqel 2848 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ)
178177recnd 10322 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
17966, 67posdifd 10868 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
18069, 179mpbid 223 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝐵𝐴))
181180, 11syl6breqr 4851 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑇)
182181gt0ne0d 10846 . . . . . . . . . . . 12 (𝜑𝑇 ≠ 0)
183169, 178, 182divcan1d 11056 . . . . . . . . . . 11 (𝜑 → ((𝑈 / 𝑇) · 𝑇) = 𝑈)
184183eqcomd 2771 . . . . . . . . . 10 (𝜑𝑈 = ((𝑈 / 𝑇) · 𝑇))
185184oveq2d 6858 . . . . . . . . 9 (𝜑 → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇)))
186185adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇)))
187186fveq2d 6379 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))))
188157adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
189177adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℝ)
19084recnd 10322 . . . . . . . . . . . . . 14 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
19182recnd 10322 . . . . . . . . . . . . . 14 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ)
192190, 191negsubdi2d 10662 . . . . . . . . . . . . 13 (𝜑 → -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
193192eqcomd 2771 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) = -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))))
194193oveq1d 6857 . . . . . . . . . . 11 (𝜑 → (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
195166oveq1i 6852 . . . . . . . . . . . 12 (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇)
196195a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇))
19712a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
198 id 22 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1)))
199 oveq2 6850 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵𝑥) = (𝐵 − (𝑆‘(𝐽 + 1))))
200199oveq1d 6857 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))
201200fveq2d 6379 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
202201oveq1d 6857 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
203198, 202oveq12d 6860 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
204203adantl 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
20567, 82resubcld 10712 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ)
206205, 177, 182redivcld 11107 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ)
207206flcld 12807 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ)
208207zred 11729 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ)
209208, 177remulcld 10324 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ)
21082, 209readdcld 10323 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ)
211197, 204, 82, 210fvmptd 6477 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
212211oveq1d 6857 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))))
213208recnd 10322 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℂ)
214213, 178mulcld 10314 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℂ)
215191, 214pncan2d 10648 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
216212, 215eqtrd 2799 . . . . . . . . . . . . 13 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
217216, 214eqeltrd 2844 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℂ)
218217, 178, 182divnegd 11068 . . . . . . . . . . 11 (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
219194, 196, 2183eqtr4d 2809 . . . . . . . . . 10 (𝜑 → (𝑈 / 𝑇) = -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
220216oveq1d 6857 . . . . . . . . . . . . 13 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇))
221213, 178, 182divcan4d 11061 . . . . . . . . . . . . 13 (𝜑 → (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
222220, 221eqtrd 2799 . . . . . . . . . . . 12 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
223222, 207eqeltrd 2844 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ)
224223znegcld 11731 . . . . . . . . . 10 (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ)
225219, 224eqeltrd 2844 . . . . . . . . 9 (𝜑 → (𝑈 / 𝑇) ∈ ℤ)
226225adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑈 / 𝑇) ∈ ℤ)
227 simpr 477 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
228 fourierdlem89.per . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
229228adantlr 706 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
230188, 189, 226, 227, 229fperiodmul 40157 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))) = (𝐹𝑦))
231187, 230eqtrd 2799 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹𝑦))
232175, 231sylan2 586 . . . . 5 ((𝜑𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) → (𝐹‘(𝑦 + 𝑈)) = (𝐹𝑦))
2336simprrd 790 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
234 fveq2 6375 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑄𝑖) = (𝑄‘(𝐼‘(𝑆𝐽))))
235 oveq1 6849 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑖 + 1) = ((𝐼‘(𝑆𝐽)) + 1))
236235fveq2d 6379 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
237234, 236breq12d 4822 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
238237rspccva 3460 . . . . . . . 8 ((∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)) ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
239233, 55, 238syl2anc 579 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
24055ancli 544 . . . . . . . 8 (𝜑 → (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)))
241 eleq1 2832 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑖 ∈ (0..^𝑀) ↔ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)))
242241anbi2d 622 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))))
243234, 236oveq12d 6860 . . . . . . . . . . . 12 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
244243reseq2d 5565 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
245243oveq1d 6857 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))
246244, 245eleq12d 2838 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ)))
247242, 246imbi12d 335 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))))
248 fourierdlem89.fcn . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
249247, 248vtoclg 3418 . . . . . . . 8 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ)))
25055, 240, 249sylc 65 . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))
251 nfv 2009 . . . . . . . . . 10 𝑖(𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))
252 fourierdlem89.21 . . . . . . . . . . . . 13 𝑉 = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
253 nfmpt1 4906 . . . . . . . . . . . . 13 𝑖(𝑖 ∈ (0..^𝑀) ↦ 𝑅)
254252, 253nfcxfr 2905 . . . . . . . . . . . 12 𝑖𝑉
255 nfcv 2907 . . . . . . . . . . . 12 𝑖(𝐼‘(𝑆𝐽))
256254, 255nffv 6385 . . . . . . . . . . 11 𝑖(𝑉‘(𝐼‘(𝑆𝐽)))
257256nfel1 2922 . . . . . . . . . 10 𝑖(𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽))))
258251, 257nfim 1995 . . . . . . . . 9 𝑖((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))
259242biimpar 469 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝜑𝑖 ∈ (0..^𝑀)))
2602593adant2 1161 . . . . . . . . . . . . 13 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝜑𝑖 ∈ (0..^𝑀)))
261 fourierdlem89.limc . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
262260, 261syl 17 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
263 fveq2 6375 . . . . . . . . . . . . . . . 16 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑉𝑖) = (𝑉‘(𝐼‘(𝑆𝐽))))
264263eqcomd 2771 . . . . . . . . . . . . . . 15 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑉‘(𝐼‘(𝑆𝐽))) = (𝑉𝑖))
265264adantr 472 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆𝐽))) = (𝑉𝑖))
266259simprd 489 . . . . . . . . . . . . . . 15 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝑖 ∈ (0..^𝑀))
267 elex 3365 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) → 𝑅 ∈ V)
268259, 261, 2673syl 18 . . . . . . . . . . . . . . 15 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝑅 ∈ V)
269252fvmpt2 6480 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ 𝑅 ∈ V) → (𝑉𝑖) = 𝑅)
270266, 268, 269syl2anc 579 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑉𝑖) = 𝑅)
271265, 270eqtrd 2799 . . . . . . . . . . . . 13 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆𝐽))) = 𝑅)
2722713adant2 1161 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆𝐽))) = 𝑅)
273244, 234oveq12d 6860 . . . . . . . . . . . . . 14 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))
274273eqcomd 2771 . . . . . . . . . . . . 13 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
2752743ad2ant1 1163 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
276262, 272, 2753eltr4d 2859 . . . . . . . . . . 11 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))
2772763exp 1148 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))))
2782612a1i 12 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽))))) → ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))))
279277, 278impbid 203 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ↔ ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))))
280258, 279, 261vtoclg1f 3417 . . . . . . . 8 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽))))))
28155, 240, 280sylc 65 . . . . . . 7 (𝜑 → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))
282 eqid 2765 . . . . . . 7 if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) = if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽)))))
283 eqid 2765 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((𝑄‘(𝐼‘(𝑆𝐽)))[,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) = ((TopOpen‘ℂfld) ↾t ((𝑄‘(𝐼‘(𝑆𝐽)))[,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
28457, 62, 239, 250, 281, 74, 84, 128, 142, 282, 283fourierdlem32 40993 . . . . . 6 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝑍‘(𝐸‘(𝑆𝐽)))))
285142resabs1d 5603 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))))
286285oveq1d 6857 . . . . . 6 (𝜑 → (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝑍‘(𝐸‘(𝑆𝐽)))))
287284, 286eleqtrd 2846 . . . . 5 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝑍‘(𝐸‘(𝑆𝐽)))))
288161, 163, 165, 169, 170, 174, 232, 287limcperiod 40498 . . . 4 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)))
289166oveq2i 6853 . . . . . . 7 ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
290289a1i 11 . . . . . 6 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))))
29117, 20iccssred 40369 . . . . . . . . . . . . 13 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
292 ax-resscn 10246 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
293291, 292syl6ss 3773 . . . . . . . . . . . 12 (𝜑 → (𝐶[,]𝐷) ⊆ ℂ)
29425, 44, 43fourierdlem15 40976 . . . . . . . . . . . . 13 (𝜑𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
295294, 53ffvelrnd 6550 . . . . . . . . . . . 12 (𝜑 → (𝑆𝐽) ∈ (𝐶[,]𝐷))
296293, 295sseldd 3762 . . . . . . . . . . 11 (𝜑 → (𝑆𝐽) ∈ ℂ)
297191, 296subcld 10646 . . . . . . . . . 10 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) ∈ ℂ)
29874recnd 10322 . . . . . . . . . 10 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℂ)
299190, 297, 298subsub23d 40139 . . . . . . . . 9 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (𝑍‘(𝐸‘(𝑆𝐽))) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
300125, 299mpbird 248 . . . . . . . 8 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (𝑍‘(𝐸‘(𝑆𝐽))))
301300eqcomd 2771 . . . . . . 7 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
302301oveq1d 6857 . . . . . 6 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))))
303190, 297subcld 10646 . . . . . . . 8 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) ∈ ℂ)
304303, 191, 190addsub12d 10669 . . . . . . 7 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))))
305190, 297, 190sub32d 10678 . . . . . . . . 9 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
306190subidd 10634 . . . . . . . . . 10 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = 0)
307306oveq1d 6857 . . . . . . . . 9 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
308 df-neg 10523 . . . . . . . . . 10 -((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
309191, 296negsubdi2d 10662 . . . . . . . . . 10 (𝜑 → -((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
310308, 309syl5eqr 2813 . . . . . . . . 9 (𝜑 → (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
311305, 307, 3103eqtrd 2803 . . . . . . . 8 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
312311oveq2d 6858 . . . . . . 7 (𝜑 → ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + ((𝑆𝐽) − (𝑆‘(𝐽 + 1)))))
313191, 296pncan3d 10649 . . . . . . 7 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((𝑆𝐽) − (𝑆‘(𝐽 + 1)))) = (𝑆𝐽))
314304, 312, 3133eqtrd 2803 . . . . . 6 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆𝐽))
315290, 302, 3143eqtrd 2803 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = (𝑆𝐽))
316315oveq2d 6858 . . . 4 (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)) = ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆𝐽)))
317288, 316eleqtrd 2846 . . 3 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆𝐽)))
318166oveq2i 6853 . . . . . . . 8 ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
319190, 191pncan3d 10649 . . . . . . . 8 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆‘(𝐽 + 1)))
320318, 319syl5eq 2811 . . . . . . 7 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = (𝑆‘(𝐽 + 1)))
321315, 320oveq12d 6860 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))))
322171, 321eqtr3d 2801 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))))
323322reseq2d 5565 . . . 4 (𝜑 → (𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) = (𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))))
324323oveq1d 6857 . . 3 (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆𝐽)) = ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆𝐽)))
325317, 324eleqtrd 2846 . 2 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆𝐽)))
326156, 325eqeltrd 2844 1 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  cun 3730  wss 3732  ifcif 4243  {cpr 4336   class class class wbr 4809  cmpt 4888  dom cdm 5277  ran crn 5278  cres 5279  cio 6029  wf 6064  cfv 6068   Isom wiso 6069  (class class class)co 6842  𝑚 cmap 8060  supcsup 8553  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  +∞cpnf 10325  *cxr 10327   < clt 10328  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  cn 11274  2c2 11327  cz 11624  (,)cioo 12377  (,]cioc 12378  [,)cico 12379  [,]cicc 12380  ...cfz 12533  ..^cfzo 12673  cfl 12799  chash 13321  t crest 16347  TopOpenctopn 16348  fldccnfld 20019  cnccncf 22958   lim climc 23917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-xnn0 11611  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-plusg 16227  df-mulr 16228  df-starv 16229  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-rest 16349  df-topn 16350  df-topgen 16370  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-cn 21311  df-cnp 21312  df-cmp 21470  df-xms 22404  df-ms 22405  df-cncf 22960  df-limc 23921
This theorem is referenced by:  fourierdlem96  41056  fourierdlem100  41060  fourierdlem107  41067  fourierdlem109  41069
  Copyright terms: Public domain W3C validator