Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem112 Structured version   Visualization version   GIF version

Theorem fourierdlem112 43766
Description: Here abbreviations (local definitions) are introduced to prove the fourier 43773 theorem. (𝑍𝑚) is the mth partial sum of the fourier series. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem112.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem112.d 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
fourierdlem112.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem112.m (𝜑𝑀 ∈ ℕ)
fourierdlem112.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem112.n 𝑁 = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
fourierdlem112.v 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
fourierdlem112.x (𝜑𝑋 ∈ ℝ)
fourierdlem112.xran (𝜑𝑋 ∈ ran 𝑉)
fourierdlem112.t 𝑇 = (2 · π)
fourierdlem112.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem112.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem112.c ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem112.u ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem112.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem112.e (𝜑𝐸 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem112.i (𝜑𝐼 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem112.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem112.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem112.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem112.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem112.z 𝑍 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
fourierdlem112.23 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
fourierdlem112.fbd (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem112.fdvbd (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem112.25 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
fourierdlem112 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛   𝐵,𝑘,𝑚,𝑛   𝑡,𝐶,𝑚   𝑥,𝐶,𝑚   𝐷,𝑖,𝑘,𝑚,𝑛,𝑥,𝑦   𝑖,𝐹,𝑡,𝑧   𝑦,𝐹,𝑡,𝑘,𝑚   𝑧,𝑘,𝑚   𝑛,𝐹   𝑤,𝐹,𝑖,𝑡,𝑧   𝑥,𝐹   𝑖,𝐿,𝑡,𝑧,𝑘,𝑚   𝑛,𝐿   𝑤,𝐿   𝑓,𝑀,𝑖,𝑡,𝑦,𝑚   𝑛,𝑀,𝑥   𝑀,𝑝,𝑖,𝑛,𝑦   𝑖,𝑁,𝑡,𝑤,𝑧   𝑓,𝑁,𝑦,𝑚   𝑛,𝑁,𝑝   𝑥,𝑁,𝑓   𝑄,𝑓,𝑖,𝑡,𝑦,𝑘,𝑚   𝑄,𝑛,𝑥   𝑄,𝑝,𝑘   𝑅,𝑖,𝑡,𝑧,𝑘,𝑚   𝑅,𝑛   𝑤,𝑅   𝑇,𝑓,𝑡,𝑦,𝑖,𝑘,𝑚   𝑇,𝑛,𝑥   𝑇,𝑝   𝑡,𝑈,𝑚   𝑥,𝑈   𝑖,𝑉,𝑡,𝑤,𝑧   𝑓,𝑉,𝑘,𝑚   𝑛,𝑉,𝑝   𝑥,𝑉   𝑖,𝑋,𝑡,𝑧   𝑓,𝑋,𝑦,𝑘,𝑚   𝑛,𝑋,𝑝   𝑤,𝑋   𝑥,𝑋   𝑚,𝑍   𝜑,𝑖,𝑡,𝑤,𝑧   𝜑,𝑓,𝑘,𝑚,𝑦   𝜑,𝑛   𝑤,𝑚   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑝)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑝)   𝐶(𝑦,𝑧,𝑤,𝑓,𝑖,𝑘,𝑛,𝑝)   𝐷(𝑧,𝑤,𝑡,𝑓,𝑝)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝑄(𝑧,𝑤)   𝑅(𝑥,𝑦,𝑓,𝑝)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝑇(𝑧,𝑤)   𝑈(𝑦,𝑧,𝑤,𝑓,𝑖,𝑘,𝑛,𝑝)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝐹(𝑓,𝑝)   𝐼(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑝)   𝑀(𝑧,𝑤,𝑘)   𝑁(𝑘)   𝑉(𝑦)   𝑍(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑛,𝑝)

Proof of Theorem fourierdlem112
Dummy variables 𝑗 𝑙 𝑎 𝑠 𝑏 𝑒 𝑔 𝑐 𝑢 𝑞 𝑟 𝑣 𝑑 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem112.23 . . . . 5 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
2 fveq2 6783 . . . . . . . 8 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
3 oveq1 7291 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 · 𝑋) = (𝑗 · 𝑋))
43fveq2d 6787 . . . . . . . 8 (𝑛 = 𝑗 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑗 · 𝑋)))
52, 4oveq12d 7302 . . . . . . 7 (𝑛 = 𝑗 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))))
6 fveq2 6783 . . . . . . . 8 (𝑛 = 𝑗 → (𝐵𝑛) = (𝐵𝑗))
73fveq2d 6787 . . . . . . . 8 (𝑛 = 𝑗 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑗 · 𝑋)))
86, 7oveq12d 7302 . . . . . . 7 (𝑛 = 𝑗 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))
95, 8oveq12d 7302 . . . . . 6 (𝑛 = 𝑗 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
109cbvmptv 5188 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
111, 10eqtri 2767 . . . 4 𝑆 = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
12 seqeq3 13735 . . . 4 (𝑆 = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) → seq1( + , 𝑆) = seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))))
1311, 12mp1i 13 . . 3 (𝜑 → seq1( + , 𝑆) = seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))))
14 nnuz 12630 . . . . 5 ℕ = (ℤ‘1)
15 1zzd 12360 . . . . 5 (𝜑 → 1 ∈ ℤ)
16 nfv 1918 . . . . . . 7 𝑛𝜑
17 nfcv 2908 . . . . . . . 8 𝑛
18 nfcv 2908 . . . . . . . . 9 𝑛(-π(,)0)
19 nfcv 2908 . . . . . . . . . 10 𝑛(𝐹‘(𝑋 + 𝑠))
20 nfcv 2908 . . . . . . . . . 10 𝑛 ·
21 nfcv 2908 . . . . . . . . . 10 𝑛((𝐷𝑚)‘𝑠)
2219, 20, 21nfov 7314 . . . . . . . . 9 𝑛((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠))
2318, 22nfitg 24948 . . . . . . . 8 𝑛∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠
2417, 23nfmpt 5182 . . . . . . 7 𝑛(𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
25 nfcv 2908 . . . . . . . . 9 𝑛(0(,)π)
2625, 22nfitg 24948 . . . . . . . 8 𝑛∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠
2717, 26nfmpt 5182 . . . . . . 7 𝑛(𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
28 fourierdlem112.z . . . . . . . 8 𝑍 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
29 fourierdlem112.a . . . . . . . . . . . . 13 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
30 nfmpt1 5183 . . . . . . . . . . . . 13 𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
3129, 30nfcxfr 2906 . . . . . . . . . . . 12 𝑛𝐴
32 nfcv 2908 . . . . . . . . . . . 12 𝑛0
3331, 32nffv 6793 . . . . . . . . . . 11 𝑛(𝐴‘0)
34 nfcv 2908 . . . . . . . . . . 11 𝑛 /
35 nfcv 2908 . . . . . . . . . . 11 𝑛2
3633, 34, 35nfov 7314 . . . . . . . . . 10 𝑛((𝐴‘0) / 2)
37 nfcv 2908 . . . . . . . . . 10 𝑛 +
38 nfcv 2908 . . . . . . . . . . 11 𝑛(1...𝑚)
3938nfsum1 15410 . . . . . . . . . 10 𝑛Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
4036, 37, 39nfov 7314 . . . . . . . . 9 𝑛(((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
4117, 40nfmpt 5182 . . . . . . . 8 𝑛(𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
4228, 41nfcxfr 2906 . . . . . . 7 𝑛𝑍
43 fourierdlem112.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
44 fourierdlem112.25 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
45 eqid 2739 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
46 picn 25625 . . . . . . . . . . . . 13 π ∈ ℂ
47462timesi 12120 . . . . . . . . . . . 12 (2 · π) = (π + π)
48 fourierdlem112.t . . . . . . . . . . . 12 𝑇 = (2 · π)
4946, 46subnegi 11309 . . . . . . . . . . . 12 (π − -π) = (π + π)
5047, 48, 493eqtr4i 2777 . . . . . . . . . . 11 𝑇 = (π − -π)
51 fourierdlem112.p . . . . . . . . . . 11 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
52 fourierdlem112.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
53 fourierdlem112.q . . . . . . . . . . 11 (𝜑𝑄 ∈ (𝑃𝑀))
54 pire 25624 . . . . . . . . . . . . . 14 π ∈ ℝ
5554a1i 11 . . . . . . . . . . . . 13 (𝜑 → π ∈ ℝ)
5655renegcld 11411 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
5756, 44readdcld 11013 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) ∈ ℝ)
5855, 44readdcld 11013 . . . . . . . . . . 11 (𝜑 → (π + 𝑋) ∈ ℝ)
59 negpilt0 42826 . . . . . . . . . . . . . 14 -π < 0
60 pipos 25626 . . . . . . . . . . . . . 14 0 < π
6154renegcli 11291 . . . . . . . . . . . . . . 15 -π ∈ ℝ
62 0re 10986 . . . . . . . . . . . . . . 15 0 ∈ ℝ
6361, 62, 54lttri 11110 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
6459, 60, 63mp2an 689 . . . . . . . . . . . . 13 -π < π
6564a1i 11 . . . . . . . . . . . 12 (𝜑 → -π < π)
6656, 55, 44, 65ltadd1dd 11595 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) < (π + 𝑋))
67 oveq1 7291 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
6867eleq1d 2824 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
6968rexbidv 3227 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
7069cbvrabv 3427 . . . . . . . . . . . 12 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
7170uneq2i 4095 . . . . . . . . . . 11 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑥 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
72 fourierdlem112.n . . . . . . . . . . 11 𝑁 = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
73 fourierdlem112.v . . . . . . . . . . 11 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
7450, 51, 52, 53, 57, 58, 66, 45, 71, 72, 73fourierdlem54 43708 . . . . . . . . . 10 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁)) ∧ 𝑉 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
7574simpld 495 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁)))
7675simpld 495 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
7775simprd 496 . . . . . . . 8 (𝜑𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁))
78 fourierdlem112.xran . . . . . . . 8 (𝜑𝑋 ∈ ran 𝑉)
7943adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
80 fveq2 6783 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
81 oveq1 7291 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
8281fveq2d 6787 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
8380, 82breq12d 5088 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
8483cbvralvw 3384 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
8584anbi2i 623 . . . . . . . . . . . . 13 ((((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
8685a1i 11 . . . . . . . . . . . 12 (𝑝 ∈ (ℝ ↑m (0...𝑛)) → ((((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
8786rabbiia 3408 . . . . . . . . . . 11 {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}
8887mpteq2i 5180 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
8951, 88eqtri 2767 . . . . . . . . 9 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
9052adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
9153adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
92 fourierdlem112.fper . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
9392adantlr 712 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
94 eleq1w 2822 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
9594anbi2d 629 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑗 ∈ (0..^𝑀))))
96 fveq2 6783 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
9781fveq2d 6787 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
9896, 97oveq12d 7302 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
9998reseq2d 5894 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))))
10098oveq1d 7299 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
10199, 100eleq12d 2834 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ)))
10295, 101imbi12d 345 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))))
103 fourierdlem112.fcn . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
104102, 103chvarvv 2003 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
105104adantlr 712 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
10657adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (-π + 𝑋) ∈ ℝ)
10757rexrd 11034 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) ∈ ℝ*)
108 pnfxr 11038 . . . . . . . . . . . 12 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . 11 (𝜑 → +∞ ∈ ℝ*)
11058ltpnfd 12866 . . . . . . . . . . 11 (𝜑 → (π + 𝑋) < +∞)
111107, 109, 58, 66, 110eliood 43043 . . . . . . . . . 10 (𝜑 → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
112111adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
113 id 22 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^𝑁))
11472oveq2i 7295 . . . . . . . . . . 11 (0..^𝑁) = (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))
115113, 114eleqtrdi 2850 . . . . . . . . . 10 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
116115adantl 482 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
11772oveq2i 7295 . . . . . . . . . . . 12 (0...𝑁) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))
118 isoeq4 7200 . . . . . . . . . . . 12 ((0...𝑁) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) → (𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
119117, 118ax-mp 5 . . . . . . . . . . 11 (𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
120119iotabii 6422 . . . . . . . . . 10 (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
12173, 120eqtri 2767 . . . . . . . . 9 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
12279, 89, 50, 90, 91, 93, 105, 106, 112, 116, 121fourierdlem98 43752 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
123 fourierdlem112.fbd . . . . . . . . . 10 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
124123adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
125 nfra1 3145 . . . . . . . . . . 11 𝑡𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤
126 elioore 13118 . . . . . . . . . . . . 13 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → 𝑡 ∈ ℝ)
127 rspa 3133 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ≤ 𝑤)
128126, 127sylan2 593 . . . . . . . . . . . 12 ((∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
129128ex 413 . . . . . . . . . . 11 (∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
130125, 129ralrimi 3142 . . . . . . . . . 10 (∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
131130reximi 3179 . . . . . . . . 9 (∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
132124, 131syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
133 ssid 3944 . . . . . . . . . . . 12 ℝ ⊆ ℝ
134 dvfre 25124 . . . . . . . . . . . 12 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
13543, 133, 134sylancl 586 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
136135adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
137 eqid 2739 . . . . . . . . . . . . 13 (ℝ D 𝐹) = (ℝ D 𝐹)
13854a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → π ∈ ℝ)
13961a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → -π ∈ ℝ)
14098reseq2d 5894 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))))
141140, 100eleq12d 2834 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ)))
14295, 141imbi12d 345 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))))
143 fourierdlem112.fdvcn . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
144142, 143chvarvv 2003 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
145144adantlr 712 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
146 fourierdlem112.x . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
14756, 146readdcld 11013 . . . . . . . . . . . . . 14 (𝜑 → (-π + 𝑋) ∈ ℝ)
148147adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (-π + 𝑋) ∈ ℝ)
149147rexrd 11034 . . . . . . . . . . . . . . 15 (𝜑 → (-π + 𝑋) ∈ ℝ*)
15055, 146readdcld 11013 . . . . . . . . . . . . . . 15 (𝜑 → (π + 𝑋) ∈ ℝ)
15156, 55, 146, 65ltadd1dd 11595 . . . . . . . . . . . . . . 15 (𝜑 → (-π + 𝑋) < (π + 𝑋))
152150ltpnfd 12866 . . . . . . . . . . . . . . 15 (𝜑 → (π + 𝑋) < +∞)
153149, 109, 150, 151, 152eliood 43043 . . . . . . . . . . . . . 14 (𝜑 → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
154153adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
155 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = → (𝑘 · 𝑇) = ( · 𝑇))
156155oveq2d 7300 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + ( · 𝑇)))
157156eleq1d 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
158157cbvrexvw 3385 . . . . . . . . . . . . . . . . . . 19 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
159158rgenw 3077 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋))(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
160 rabbi 3317 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋))(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄) ↔ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
161159, 160mpbi 229 . . . . . . . . . . . . . . . . 17 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}
162161uneq2i 4095 . . . . . . . . . . . . . . . 16 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
163 isoeq5 7201 . . . . . . . . . . . . . . . 16 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))))
164162, 163ax-mp 5 . . . . . . . . . . . . . . 15 (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
165164iotabii 6422 . . . . . . . . . . . . . 14 (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
166121, 165eqtri 2767 . . . . . . . . . . . . 13 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
167 eleq1w 2822 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (𝑣 ∈ dom (ℝ D 𝐹) ↔ 𝑢 ∈ dom (ℝ D 𝐹)))
168 fveq2 6783 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → ((ℝ D 𝐹)‘𝑣) = ((ℝ D 𝐹)‘𝑢))
169167, 168ifbieq1d 4484 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → if(𝑣 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑣), 0) = if(𝑢 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑢), 0))
170169cbvmptv 5188 . . . . . . . . . . . . 13 (𝑣 ∈ ℝ ↦ if(𝑣 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑣), 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑢), 0))
17179, 137, 89, 138, 139, 50, 90, 91, 93, 145, 148, 154, 116, 166, 170fourierdlem97 43751 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
172 cncff 24065 . . . . . . . . . . . 12 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
173 fdm 6618 . . . . . . . . . . . 12 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
174171, 172, 1733syl 18 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑁)) → dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
175 ssdmres 5917 . . . . . . . . . . 11 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
176174, 175sylibr 233 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
177136, 176fssresd 6650 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
178 ax-resscn 10937 . . . . . . . . . . 11 ℝ ⊆ ℂ
179178a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
180 cncffvrn 24070 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ))
181179, 171, 180syl2anc 584 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ))
182177, 181mpbird 256 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
183 fourierdlem112.fdvbd . . . . . . . . . . 11 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
184183adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
185 nfv 1918 . . . . . . . . . . . . . 14 𝑡(𝜑𝑖 ∈ (0..^𝑁))
186 nfra1 3145 . . . . . . . . . . . . . 14 𝑡𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
187185, 186nfan 1903 . . . . . . . . . . . . 13 𝑡((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
188 fvres 6802 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
189188adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
190189fveq2d 6787 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
191190adantlr 712 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
192 simplr 766 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
193176sselda 3922 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
194193adantlr 712 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
195 rspa 3133 . . . . . . . . . . . . . . . 16 ((∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
196192, 194, 195syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
197191, 196eqbrtrd 5097 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
198197ex 413 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
199187, 198ralrimi 3142 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
200199ex 413 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑁)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
201200reximdv 3203 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
202184, 201mpd 15 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
203 nfra1 3145 . . . . . . . . . . . 12 𝑡𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧
204188eqcomd 2745 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → ((ℝ D 𝐹)‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡))
205204fveq2d 6787 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘((ℝ D 𝐹)‘𝑡)) = (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)))
206205adantl 482 . . . . . . . . . . . . . 14 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) = (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)))
207 rspa 3133 . . . . . . . . . . . . . 14 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
208206, 207eqbrtrd 5097 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
209208ex 413 . . . . . . . . . . . 12 (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
210203, 209ralrimi 3142 . . . . . . . . . . 11 (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
211210a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
212211reximdv 3203 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
213202, 212mpd 15 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
214 nfv 1918 . . . . . . . . . . . 12 𝑖(𝜑𝑗 ∈ (0..^𝑀))
215 nfcsb1v 3858 . . . . . . . . . . . . 13 𝑖𝑗 / 𝑖𝐶
216215nfel1 2924 . . . . . . . . . . . 12 𝑖𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗))
217214, 216nfim 1900 . . . . . . . . . . 11 𝑖((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
218 csbeq1a 3847 . . . . . . . . . . . . 13 (𝑖 = 𝑗𝐶 = 𝑗 / 𝑖𝐶)
21999, 96oveq12d 7302 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
220218, 219eleq12d 2834 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ↔ 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗))))
22195, 220imbi12d 345 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))))
222 fourierdlem112.c . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
223217, 221, 222chvarfv 2234 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
224223adantlr 712 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
22579, 89, 50, 90, 91, 93, 105, 224, 106, 112, 116, 121fourierdlem96 43750 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → if(((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))) = (𝑄‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝐶)‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
226 nfcsb1v 3858 . . . . . . . . . . . . 13 𝑖𝑗 / 𝑖𝑈
227226nfel1 2924 . . . . . . . . . . . 12 𝑖𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1)))
228214, 227nfim 1900 . . . . . . . . . . 11 𝑖((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
229 csbeq1a 3847 . . . . . . . . . . . . 13 (𝑖 = 𝑗𝑈 = 𝑗 / 𝑖𝑈)
23099, 97oveq12d 7302 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
231229, 230eleq12d 2834 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ↔ 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1)))))
23295, 231imbi12d 345 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))))
233 fourierdlem112.u . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
234228, 232, 233chvarfv 2234 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
235234adantlr 712 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
23679, 89, 50, 90, 91, 93, 105, 235, 148, 154, 116, 121fourierdlem99 43753 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → if(((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))) = (𝑄‘(((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖)) + 1)), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝑈)‘((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
237 eqeq1 2743 . . . . . . . . . 10 (𝑔 = 𝑠 → (𝑔 = 0 ↔ 𝑠 = 0))
238 oveq2 7292 . . . . . . . . . . . . 13 (𝑔 = 𝑠 → (𝑋 + 𝑔) = (𝑋 + 𝑠))
239238fveq2d 6787 . . . . . . . . . . . 12 (𝑔 = 𝑠 → (𝐹‘(𝑋 + 𝑔)) = (𝐹‘(𝑋 + 𝑠)))
240 breq2 5079 . . . . . . . . . . . . 13 (𝑔 = 𝑠 → (0 < 𝑔 ↔ 0 < 𝑠))
241240ifbid 4483 . . . . . . . . . . . 12 (𝑔 = 𝑠 → if(0 < 𝑔, 𝑅, 𝐿) = if(0 < 𝑠, 𝑅, 𝐿))
242239, 241oveq12d 7302 . . . . . . . . . . 11 (𝑔 = 𝑠 → ((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)))
243 id 22 . . . . . . . . . . 11 (𝑔 = 𝑠𝑔 = 𝑠)
244242, 243oveq12d 7302 . . . . . . . . . 10 (𝑔 = 𝑠 → (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠))
245237, 244ifbieq2d 4486 . . . . . . . . 9 (𝑔 = 𝑠 → if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠)))
246245cbvmptv 5188 . . . . . . . 8 (𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠)))
247 eqeq1 2743 . . . . . . . . . 10 (𝑜 = 𝑠 → (𝑜 = 0 ↔ 𝑠 = 0))
248 id 22 . . . . . . . . . . 11 (𝑜 = 𝑠𝑜 = 𝑠)
249 oveq1 7291 . . . . . . . . . . . . 13 (𝑜 = 𝑠 → (𝑜 / 2) = (𝑠 / 2))
250249fveq2d 6787 . . . . . . . . . . . 12 (𝑜 = 𝑠 → (sin‘(𝑜 / 2)) = (sin‘(𝑠 / 2)))
251250oveq2d 7300 . . . . . . . . . . 11 (𝑜 = 𝑠 → (2 · (sin‘(𝑜 / 2))) = (2 · (sin‘(𝑠 / 2))))
252248, 251oveq12d 7302 . . . . . . . . . 10 (𝑜 = 𝑠 → (𝑜 / (2 · (sin‘(𝑜 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
253247, 252ifbieq2d 4486 . . . . . . . . 9 (𝑜 = 𝑠 → if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
254253cbvmptv 5188 . . . . . . . 8 (𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2)))))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
255 fveq2 6783 . . . . . . . . . 10 (𝑟 = 𝑠 → ((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) = ((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠))
256 fveq2 6783 . . . . . . . . . 10 (𝑟 = 𝑠 → ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟) = ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠))
257255, 256oveq12d 7302 . . . . . . . . 9 (𝑟 = 𝑠 → (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)) = (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠)))
258257cbvmptv 5188 . . . . . . . 8 (𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) = (𝑠 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠)))
259 oveq2 7292 . . . . . . . . . 10 (𝑑 = 𝑠 → ((𝑘 + (1 / 2)) · 𝑑) = ((𝑘 + (1 / 2)) · 𝑠))
260259fveq2d 6787 . . . . . . . . 9 (𝑑 = 𝑠 → (sin‘((𝑘 + (1 / 2)) · 𝑑)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
261260cbvmptv 5188 . . . . . . . 8 (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑠)))
262 fveq2 6783 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠))
263 fveq2 6783 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧) = ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠))
264262, 263oveq12d 7302 . . . . . . . . 9 (𝑧 = 𝑠 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠)))
265264cbvmptv 5188 . . . . . . . 8 (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))) = (𝑠 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠)))
266 fveq2 6783 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
267266fveq1d 6785 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
268267oveq2d 7300 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
269268adantr 481 . . . . . . . . . 10 ((𝑚 = 𝑛𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
270269itgeq2dv 24955 . . . . . . . . 9 (𝑚 = 𝑛 → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
271270cbvmptv 5188 . . . . . . . 8 (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
272 oveq1 7291 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑘 → (𝑐 + (1 / 2)) = (𝑘 + (1 / 2)))
273272oveq1d 7299 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑘 → ((𝑐 + (1 / 2)) · 𝑑) = ((𝑘 + (1 / 2)) · 𝑑))
274273fveq2d 6787 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑘 → (sin‘((𝑐 + (1 / 2)) · 𝑑)) = (sin‘((𝑘 + (1 / 2)) · 𝑑)))
275274mpteq2dv 5177 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑘 → (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑))) = (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑))))
276275fveq1d 6785 . . . . . . . . . . . . . . 15 (𝑐 = 𝑘 → ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧) = ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))
277276oveq2d 7300 . . . . . . . . . . . . . 14 (𝑐 = 𝑘 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))
278277mpteq2dv 5177 . . . . . . . . . . . . 13 (𝑐 = 𝑘 → (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧))) = (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))))
279278fveq1d 6785 . . . . . . . . . . . 12 (𝑐 = 𝑘 → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
280279adantr 481 . . . . . . . . . . 11 ((𝑐 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
281280itgeq2dv 24955 . . . . . . . . . 10 (𝑐 = 𝑘 → ∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 = ∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠)
282281oveq1d 7299 . . . . . . . . 9 (𝑐 = 𝑘 → (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π) = (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
283282cbvmptv 5188 . . . . . . . 8 (𝑐 ∈ ℕ ↦ (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π)) = (𝑘 ∈ ℕ ↦ (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
284 fourierdlem112.r . . . . . . . 8 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
285 fourierdlem112.l . . . . . . . 8 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
286 fourierdlem112.e . . . . . . . 8 (𝜑𝐸 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
287 fourierdlem112.i . . . . . . . 8 (𝜑𝐼 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
288 fourierdlem112.d . . . . . . . . 9 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
289 oveq1 7291 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → (𝑦 mod (2 · π)) = (𝑠 mod (2 · π)))
290289eqeq1d 2741 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → ((𝑦 mod (2 · π)) = 0 ↔ (𝑠 mod (2 · π)) = 0))
291 oveq2 7292 . . . . . . . . . . . . . . 15 (𝑦 = 𝑠 → ((𝑚 + (1 / 2)) · 𝑦) = ((𝑚 + (1 / 2)) · 𝑠))
292291fveq2d 6787 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → (sin‘((𝑚 + (1 / 2)) · 𝑦)) = (sin‘((𝑚 + (1 / 2)) · 𝑠)))
293 oveq1 7291 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑠 → (𝑦 / 2) = (𝑠 / 2))
294293fveq2d 6787 . . . . . . . . . . . . . . 15 (𝑦 = 𝑠 → (sin‘(𝑦 / 2)) = (sin‘(𝑠 / 2)))
295294oveq2d 7300 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
296292, 295oveq12d 7302 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
297290, 296ifbieq2d 4486 . . . . . . . . . . . 12 (𝑦 = 𝑠 → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
298297cbvmptv 5188 . . . . . . . . . . 11 (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
299 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑘𝑠 ∈ ℝ) → 𝑚 = 𝑘)
300299oveq2d 7300 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (2 · 𝑚) = (2 · 𝑘))
301300oveq1d 7299 . . . . . . . . . . . . . 14 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((2 · 𝑚) + 1) = ((2 · 𝑘) + 1))
302301oveq1d 7299 . . . . . . . . . . . . 13 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (((2 · 𝑚) + 1) / (2 · π)) = (((2 · 𝑘) + 1) / (2 · π)))
303299oveq1d 7299 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (𝑚 + (1 / 2)) = (𝑘 + (1 / 2)))
304303oveq1d 7299 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((𝑚 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
305304fveq2d 6787 . . . . . . . . . . . . . 14 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (sin‘((𝑚 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
306305oveq1d 7299 . . . . . . . . . . . . 13 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
307302, 306ifeq12d 4481 . . . . . . . . . . . 12 ((𝑚 = 𝑘𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
308307mpteq2dva 5175 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
309298, 308eqtrid 2791 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
310309cbvmptv 5188 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) = (𝑘 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
311288, 310eqtri 2767 . . . . . . . 8 𝐷 = (𝑘 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
312 eqid 2739 . . . . . . . 8 ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (-π[,]𝑙)) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (-π[,]𝑙))
313 eqid 2739 . . . . . . . 8 ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))) = ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))
314 eqid 2739 . . . . . . . 8 ((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1) = ((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)
315 isoeq1 7197 . . . . . . . . 9 (𝑢 = 𝑤 → (𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) ↔ 𝑤 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))))))
316315cbviotavw 6403 . . . . . . . 8 (℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))))) = (℩𝑤𝑤 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))
317 fveq2 6783 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
318317oveq1d 7299 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
319318cbvmptv 5188 . . . . . . . 8 (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑁) ↦ ((𝑉𝑖) − 𝑋))
320 eqid 2739 . . . . . . . 8 (𝑚 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑚)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑚 + 1)))) = (𝑚 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑚)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑚 + 1))))
321 fveq2 6783 . . . . . . . . . . . . . 14 (𝑎 = 𝑠 → ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠))
322 oveq2 7292 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → ((𝑏 + (1 / 2)) · 𝑎) = ((𝑏 + (1 / 2)) · 𝑠))
323322fveq2d 6787 . . . . . . . . . . . . . 14 (𝑎 = 𝑠 → (sin‘((𝑏 + (1 / 2)) · 𝑎)) = (sin‘((𝑏 + (1 / 2)) · 𝑠)))
324321, 323oveq12d 7302 . . . . . . . . . . . . 13 (𝑎 = 𝑠 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))))
325324cbvitgv 24950 . . . . . . . . . . . 12 ∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
326325fveq2i 6786 . . . . . . . . . . 11 (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
327326breq1i 5082 . . . . . . . . . 10 ((abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2) ↔ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2))
328327anbi2i 623 . . . . . . . . 9 (((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ↔ ((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)))
329324cbvitgv 24950 . . . . . . . . . . 11 ∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
330329fveq2i 6786 . . . . . . . . . 10 (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
331330breq1i 5082 . . . . . . . . 9 ((abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2) ↔ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2))
332328, 331anbi12i 627 . . . . . . . 8 ((((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ∧ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ↔ (((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)) ∧ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)))
33343, 44, 45, 76, 77, 78, 122, 132, 182, 213, 225, 236, 246, 254, 258, 261, 265, 271, 283, 284, 285, 286, 287, 311, 312, 313, 314, 316, 319, 320, 332fourierdlem103 43757 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ⇝ (𝐿 / 2))
334 nnex 11988 . . . . . . . . . 10 ℕ ∈ V
335334mptex 7108 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))) ∈ V
33628, 335eqeltri 2836 . . . . . . . 8 𝑍 ∈ V
337336a1i 11 . . . . . . 7 (𝜑𝑍 ∈ V)
338268adantr 481 . . . . . . . . . 10 ((𝑚 = 𝑛𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
339338itgeq2dv 24955 . . . . . . . . 9 (𝑚 = 𝑛 → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
340339cbvmptv 5188 . . . . . . . 8 (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
341279adantr 481 . . . . . . . . . . 11 ((𝑐 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
342341itgeq2dv 24955 . . . . . . . . . 10 (𝑐 = 𝑘 → ∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 = ∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠)
343342oveq1d 7299 . . . . . . . . 9 (𝑐 = 𝑘 → (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π) = (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
344343cbvmptv 5188 . . . . . . . 8 (𝑐 ∈ ℕ ↦ (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π)) = (𝑘 ∈ ℕ ↦ (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
345 eqid 2739 . . . . . . . 8 ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (𝑒[,]π)) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (𝑒[,]π))
346 eqid 2739 . . . . . . . 8 ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))) = ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))
347 eqid 2739 . . . . . . . 8 ((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1) = ((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)
348 isoeq1 7197 . . . . . . . . 9 (𝑢 = 𝑣 → (𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) ↔ 𝑣 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))))))
349348cbviotavw 6403 . . . . . . . 8 (℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))))) = (℩𝑣𝑣 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))
350 eqid 2739 . . . . . . . 8 (𝑎 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑎)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑎 + 1)))) = (𝑎 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑎)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑎 + 1))))
351324cbvitgv 24950 . . . . . . . . . . . 12 ∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
352351fveq2i 6786 . . . . . . . . . . 11 (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
353352breq1i 5082 . . . . . . . . . 10 ((abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2) ↔ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2))
354353anbi2i 623 . . . . . . . . 9 (((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ↔ ((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)))
355324cbvitgv 24950 . . . . . . . . . . 11 ∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
356355fveq2i 6786 . . . . . . . . . 10 (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
357356breq1i 5082 . . . . . . . . 9 ((abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2) ↔ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2))
358354, 357anbi12i 627 . . . . . . . 8 ((((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ∧ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ↔ (((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)) ∧ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)))
35943, 44, 45, 76, 77, 78, 122, 132, 182, 213, 225, 236, 246, 254, 258, 261, 265, 340, 344, 284, 285, 286, 287, 311, 345, 346, 347, 349, 319, 350, 358fourierdlem104 43758 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ⇝ (𝑅 / 2))
360 eqidd 2740 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
361270adantl 482 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
362 simpr 485 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
363 elioore 13118 . . . . . . . . . . 11 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ℝ)
36443adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
36544adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ ℝ) → 𝑋 ∈ ℝ)
366 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
367365, 366readdcld 11013 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ℝ) → (𝑋 + 𝑠) ∈ ℝ)
368364, 367ffvelrnd 6971 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ ℝ) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
369368adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
370288dirkerre 43643 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
371370adantll 711 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
372369, 371remulcld 11014 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
373363, 372sylan2 593 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
374 ioossicc 13174 . . . . . . . . . . . . 13 (-π(,)0) ⊆ (-π[,]0)
37561leidi 11518 . . . . . . . . . . . . . 14 -π ≤ -π
37662, 54, 60ltleii 11107 . . . . . . . . . . . . . 14 0 ≤ π
377 iccss 13156 . . . . . . . . . . . . . 14 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -π ∧ 0 ≤ π)) → (-π[,]0) ⊆ (-π[,]π))
37861, 54, 375, 376, 377mp4an 690 . . . . . . . . . . . . 13 (-π[,]0) ⊆ (-π[,]π)
379374, 378sstri 3931 . . . . . . . . . . . 12 (-π(,)0) ⊆ (-π[,]π)
380379a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ⊆ (-π[,]π))
381 ioombl 24738 . . . . . . . . . . . 12 (-π(,)0) ∈ dom vol
382381a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ∈ dom vol)
38343adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
38444adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
38556, 55iccssred 13175 . . . . . . . . . . . . . . . 16 (𝜑 → (-π[,]π) ⊆ ℝ)
386385sselda 3922 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
387384, 386readdcld 11013 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
388383, 387ffvelrnd 6971 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
389388adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
390 iccssre 13170 . . . . . . . . . . . . . . . 16 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
39161, 54, 390mp2an 689 . . . . . . . . . . . . . . 15 (-π[,]π) ⊆ ℝ
392391sseli 3918 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
393392, 370sylan2 593 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
394393adantll 711 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
395389, 394remulcld 11014 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
39661a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
39754a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
39843adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
39944adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
40076adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑁 ∈ ℕ)
40177adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁))
402122adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
403225adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → if(((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))) = (𝑄‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝐶)‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
404236adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → if(((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))) = (𝑄‘(((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖)) + 1)), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝑈)‘((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
405288dirkercncf 43655 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
406405adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
407 eqid 2739 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
408396, 397, 398, 399, 45, 400, 401, 402, 403, 404, 319, 51, 406, 407fourierdlem84 43738 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
409380, 382, 395, 408iblss 24978 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
410373, 409itgcl 24957 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
411360, 361, 362, 410fvmptd 6891 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
412411, 410eqeltrd 2840 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) ∈ ℂ)
413 eqidd 2740 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
414339adantl 482 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
41543adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
41644adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
417 elioore 13118 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ℝ)
418417adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
419416, 418readdcld 11013 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0(,)π)) → (𝑋 + 𝑠) ∈ ℝ)
420415, 419ffvelrnd 6971 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
421420adantlr 712 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
422417, 370sylan2 593 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
423422adantll 711 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
424421, 423remulcld 11014 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
425 ioossicc 13174 . . . . . . . . . . . . 13 (0(,)π) ⊆ (0[,]π)
42661, 62, 59ltleii 11107 . . . . . . . . . . . . . 14 -π ≤ 0
42754leidi 11518 . . . . . . . . . . . . . 14 π ≤ π
428 iccss 13156 . . . . . . . . . . . . . 14 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 0 ∧ π ≤ π)) → (0[,]π) ⊆ (-π[,]π))
42961, 54, 426, 427, 428mp4an 690 . . . . . . . . . . . . 13 (0[,]π) ⊆ (-π[,]π)
430425, 429sstri 3931 . . . . . . . . . . . 12 (0(,)π) ⊆ (-π[,]π)
431430a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ⊆ (-π[,]π))
432 ioombl 24738 . . . . . . . . . . . 12 (0(,)π) ∈ dom vol
433432a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ∈ dom vol)
434431, 433, 395, 408iblss 24978 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
435424, 434itgcl 24957 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
436413, 414, 362, 435fvmptd 6891 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
437436, 435eqeltrd 2840 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) ∈ ℂ)
438 eleq1w 2822 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 ∈ ℕ ↔ 𝑛 ∈ ℕ))
439438anbi2d 629 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝜑𝑚 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
440 fveq2 6783 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑍𝑚) = (𝑍𝑛))
441270, 339oveq12d 7302 . . . . . . . . . . 11 (𝑚 = 𝑛 → (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
442440, 441eqeq12d 2755 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ↔ (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)))
443439, 442imbi12d 345 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)) ↔ ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))))
444 oveq1 7291 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑛 · 𝑥) = (𝑚 · 𝑥))
445444fveq2d 6787 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑚 · 𝑥)))
446445oveq2d 7300 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑚 · 𝑥))))
447446adantr 481 . . . . . . . . . . . . . 14 ((𝑛 = 𝑚𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑚 · 𝑥))))
448447itgeq2dv 24955 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥)
449448oveq1d 7299 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
450449cbvmptv 5188 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑚 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
45129, 450eqtri 2767 . . . . . . . . . 10 𝐴 = (𝑚 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
452 fourierdlem112.b . . . . . . . . . . 11 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
453444fveq2d 6787 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑚 · 𝑥)))
454453oveq2d 7300 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑚 · 𝑥))))
455454adantr 481 . . . . . . . . . . . . . 14 ((𝑛 = 𝑚𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑚 · 𝑥))))
456455itgeq2dv 24955 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥)
457456oveq1d 7299 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
458457cbvmptv 5188 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑚 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
459452, 458eqtri 2767 . . . . . . . . . 10 𝐵 = (𝑚 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
460 fveq2 6783 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
461 oveq1 7291 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
462461fveq2d 6787 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
463460, 462oveq12d 7302 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
464 fveq2 6783 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
465461fveq2d 6787 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
466464, 465oveq12d 7302 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
467463, 466oveq12d 7302 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
468467cbvsumv 15417 . . . . . . . . . . . . 13 Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
469468oveq2i 7295 . . . . . . . . . . . 12 (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
470469mpteq2i 5180 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))) = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
471 oveq2 7292 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
472471sumeq1d 15422 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
473472oveq2d 7300 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
474473cbvmptv 5188 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
475 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
476 oveq1 7291 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝑘 · 𝑋) = (𝑚 · 𝑋))
477476fveq2d 6787 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (cos‘(𝑘 · 𝑋)) = (cos‘(𝑚 · 𝑋)))
478475, 477oveq12d 7302 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) = ((𝐴𝑚) · (cos‘(𝑚 · 𝑋))))
479 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
480476fveq2d 6787 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (sin‘(𝑘 · 𝑋)) = (sin‘(𝑚 · 𝑋)))
481479, 480oveq12d 7302 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) = ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))
482478, 481oveq12d 7302 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋)))))
483482cbvsumv 15417 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))
484483oveq2i 7295 . . . . . . . . . . . . 13 (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋)))))
485484mpteq2i 5180 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
486474, 485eqtri 2767 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
48728, 470, 4863eqtri 2771 . . . . . . . . . 10 𝑍 = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
488 oveq2 7292 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑋 + 𝑦) = (𝑋 + 𝑥))
489488fveq2d 6787 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑥)))
490 fveq2 6783 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐷𝑚)‘𝑦) = ((𝐷𝑚)‘𝑥))
491489, 490oveq12d 7302 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹‘(𝑋 + 𝑦)) · ((𝐷𝑚)‘𝑦)) = ((𝐹‘(𝑋 + 𝑥)) · ((𝐷𝑚)‘𝑥)))
492491cbvmptv 5188 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑦)) · ((𝐷𝑚)‘𝑦))) = (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷𝑚)‘𝑥)))
493 eqid 2739 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝𝑛) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝𝑛) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
494 fveq2 6783 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
495494oveq1d 7299 . . . . . . . . . . 11 (𝑗 = 𝑖 → ((𝑄𝑗) − 𝑋) = ((𝑄𝑖) − 𝑋))
496495cbvmptv 5188 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋))
497451, 459, 487, 288, 51, 52, 53, 146, 43, 92, 492, 103, 222, 233, 48, 493, 496fourierdlem111 43765 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
498443, 497chvarvv 2003 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
499411, 436oveq12d 7302 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) + ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛)) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
500498, 499eqtr4d 2782 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) + ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛)))
50116, 24, 27, 42, 14, 15, 333, 337, 359, 412, 437, 500climaddf 43163 . . . . . 6 (𝜑𝑍 ⇝ ((𝐿 / 2) + (𝑅 / 2)))
502 limccl 25048 . . . . . . . 8 ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ ℂ
503502, 285sselid 3920 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
504 limccl 25048 . . . . . . . 8 ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ⊆ ℂ
505504, 284sselid 3920 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
506 2cnd 12060 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
507 2pos 12085 . . . . . . . . 9 0 < 2
508507a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
509508gt0ne0d 11548 . . . . . . 7 (𝜑 → 2 ≠ 0)
510503, 505, 506, 509divdird 11798 . . . . . 6 (𝜑 → ((𝐿 + 𝑅) / 2) = ((𝐿 / 2) + (𝑅 / 2)))
511501, 510breqtrrd 5103 . . . . 5 (𝜑𝑍 ⇝ ((𝐿 + 𝑅) / 2))
512 0nn0 12257 . . . . . . . 8 0 ∈ ℕ0
51343adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
514 eqid 2739 . . . . . . . . . 10 (-π(,)π) = (-π(,)π)
515 ioossre 13149 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ ℝ
516515a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ⊆ ℝ)
51743, 516feqresmpt 6847 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (-π(,)π)) = (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)))
518 ioossicc 13174 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ (-π[,]π)
519518a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ⊆ (-π[,]π))
520 ioombl 24738 . . . . . . . . . . . . . 14 (-π(,)π) ∈ dom vol
521520a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ∈ dom vol)
52243adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
523385sselda 3922 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
524522, 523ffvelrnd 6971 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (-π[,]π)) → (𝐹𝑥) ∈ ℝ)
52543, 385feqresmpt 6847 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (-π[,]π)) = (𝑥 ∈ (-π[,]π) ↦ (𝐹𝑥)))
526178a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ⊆ ℂ)
52743, 526fssd 6627 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℝ⟶ℂ)
528527, 385fssresd 6650 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 ↾ (-π[,]π)):(-π[,]π)⟶ℂ)
529 ioossicc 13174 . . . . . . . . . . . . . . . . . 18 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
53061rexri 11042 . . . . . . . . . . . . . . . . . . . 20 -π ∈ ℝ*
531530a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
53254rexri 11042 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ*
533532a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
53451, 52, 53fourierdlem15 43670 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
535534adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
536 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
537531, 533, 535, 536fourierdlem8 43663 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
538529, 537sstrid 3933 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
539538resabs1d 5925 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
540539, 103eqeltrd 2840 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
541539eqcomd 2745 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
542541oveq1d 7299 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
543222, 542eleqtrd 2842 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
544541oveq1d 7299 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
545233, 544eleqtrd 2842 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
54651, 52, 53, 528, 540, 543, 545fourierdlem69 43723 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (-π[,]π)) ∈ 𝐿1)
547525, 546eqeltrrd 2841 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ (𝐹𝑥)) ∈ 𝐿1)
548519, 521, 524, 547iblss 24978 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1)
549517, 548eqeltrd 2840 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
550549adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
551 simpr 485 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → 0 ∈ ℕ0)
552513, 514, 550, 29, 551fourierdlem16 43671 . . . . . . . . 9 ((𝜑 ∧ 0 ∈ ℕ0) → (((𝐴‘0) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ))
553552simplld 765 . . . . . . . 8 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)
554512, 553mpan2 688 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℝ)
555554rehalfcld 12229 . . . . . 6 (𝜑 → ((𝐴‘0) / 2) ∈ ℝ)
556555recnd 11012 . . . . 5 (𝜑 → ((𝐴‘0) / 2) ∈ ℂ)
557334mptex 7108 . . . . . 6 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ∈ V
558557a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ∈ V)
559 simpr 485 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
560555adantr 481 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝐴‘0) / 2) ∈ ℝ)
561 fzfid 13702 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (1...𝑚) ∈ Fin)
562 simpll 764 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → 𝜑)
563 elfznn 13294 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑚) → 𝑛 ∈ ℕ)
564563adantl 482 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → 𝑛 ∈ ℕ)
565 simpl 483 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝜑)
566362nnnn0d 12302 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
567 eleq1w 2822 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘 ∈ ℕ0𝑛 ∈ ℕ0))
568567anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ0) ↔ (𝜑𝑛 ∈ ℕ0)))
569 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
570569eleq1d 2824 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝐴𝑘) ∈ ℝ ↔ (𝐴𝑛) ∈ ℝ))
571568, 570imbi12d 345 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)))
57243adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
573549adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
574 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
575572, 514, 573, 29, 574fourierdlem16 43671 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
576575simplld 765 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
577571, 576chvarvv 2003 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)
578565, 566, 577syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℝ)
579362nnred 11997 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
580579, 399remulcld 11014 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑛 · 𝑋) ∈ ℝ)
581580recoscld 15862 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
582578, 581remulcld 11014 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
583 eleq1w 2822 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ))
584583anbi2d 629 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
585 fveq2 6783 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
586585eleq1d 2824 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝐵𝑘) ∈ ℝ ↔ (𝐵𝑛) ∈ ℝ))
587584, 586imbi12d 345 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)))
58843adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
589549adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
590 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
591588, 514, 589, 452, 590fourierdlem21 43676 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((𝐵𝑘) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ ((𝐹𝑥) · (sin‘(𝑘 · 𝑥)))) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
592591simplld 765 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
593587, 592chvarvv 2003 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
594580resincld 15861 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
595593, 594remulcld 11014 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
596582, 595readdcld 11013 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
597562, 564, 596syl2anc 584 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
598561, 597fsumrecl 15455 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
599560, 598readdcld 11013 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ)
60028fvmpt2 6895 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
601559, 599, 600syl2anc 584 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
602601, 599eqeltrd 2840 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) ∈ ℝ)
603602recnd 11012 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) ∈ ℂ)
604 eqidd 2740 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
605 oveq2 7292 . . . . . . . . 9 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
606605sumeq1d 15422 . . . . . . . 8 (𝑛 = 𝑚 → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
607606adantl 482 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 = 𝑚) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
608 sumex 15408 . . . . . . . 8 Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ V
609608a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ V)
610604, 607, 559, 609fvmptd 6891 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑚) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
611560recnd 11012 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐴‘0) / 2) ∈ ℂ)
612598recnd 11012 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℂ)
613611, 612pncan2d 11343 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)) = Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
614613, 468eqtr2di 2796 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)))
615 ovex 7317 . . . . . . . . 9 (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ V
61628fvmpt2 6895 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ V) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
617559, 615, 616sylancl 586 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
618617eqcomd 2745 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑍𝑚))
619618oveq1d 7299 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)) = ((𝑍𝑚) − ((𝐴‘0) / 2)))
620610, 614, 6193eqtrd 2783 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑚) = ((𝑍𝑚) − ((𝐴‘0) / 2)))
62114, 15, 511, 556, 558, 603, 620climsubc1 15356 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
622 seqex 13732 . . . . . 6 seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ∈ V
623622a1i 11 . . . . 5 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ∈ V)
624 eqidd 2740 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
625 oveq2 7292 . . . . . . . . 9 (𝑛 = 𝑙 → (1...𝑛) = (1...𝑙))
626625sumeq1d 15422 . . . . . . . 8 (𝑛 = 𝑙 → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
627626adantl 482 . . . . . . 7 (((𝜑𝑙 ∈ ℕ) ∧ 𝑛 = 𝑙) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
628 simpr 485 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
629 fzfid 13702 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → (1...𝑙) ∈ Fin)
630 elfznn 13294 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ)
631630nnnn0d 12302 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ0)
632631, 576sylan2 593 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (𝐴𝑘) ∈ ℝ)
633630nnred 11997 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℝ)
634633adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝑙)) → 𝑘 ∈ ℝ)
635146adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝑙)) → 𝑋 ∈ ℝ)
636634, 635remulcld 11014 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝑙)) → (𝑘 · 𝑋) ∈ ℝ)
637636recoscld 15862 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (cos‘(𝑘 · 𝑋)) ∈ ℝ)
638632, 637remulcld 11014 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑙)) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
639630, 592sylan2 593 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (𝐵𝑘) ∈ ℝ)
640636resincld 15861 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (sin‘(𝑘 · 𝑋)) ∈ ℝ)
641639, 640remulcld 11014 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑙)) → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) ∈ ℝ)
642638, 641readdcld 11013 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑙)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
643642adantlr 712 . . . . . . . 8 (((𝜑𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
644629, 643fsumrecl 15455 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
645624, 627, 628, 644fvmptd 6891 . . . . . 6 ((𝜑𝑙 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑙) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
646 eleq1w 2822 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑛 ∈ ℕ ↔ 𝑙 ∈ ℕ))
647646anbi2d 629 . . . . . . . 8 (𝑛 = 𝑙 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑙 ∈ ℕ)))
648 fveq2 6783 . . . . . . . . 9 (𝑛 = 𝑙 → (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
649626, 648eqeq12d 2755 . . . . . . . 8 (𝑛 = 𝑙 → (Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛) ↔ Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙)))
650647, 649imbi12d 345 . . . . . . 7 (𝑛 = 𝑙 → (((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛)) ↔ ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))))
651 eqidd 2740 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))
652 fveq2 6783 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
653 oveq1 7291 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑗 · 𝑋) = (𝑘 · 𝑋))
654653fveq2d 6787 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (cos‘(𝑗 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
655652, 654oveq12d 7302 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
656 fveq2 6783 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
657653fveq2d 6787 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (sin‘(𝑗 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
658656, 657oveq12d 7302 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
659655, 658oveq12d 7302 . . . . . . . . . 10 (𝑗 = 𝑘 → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
660659adantl 482 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑗 = 𝑘) → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
661 elfznn 13294 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
662661adantl 482 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
663 simpll 764 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
664 nnnn0 12249 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
665 nn0re 12251 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
666665adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
667146adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝑋 ∈ ℝ)
668666, 667remulcld 11014 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · 𝑋) ∈ ℝ)
669668recoscld 15862 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (cos‘(𝑘 · 𝑋)) ∈ ℝ)
670576, 669remulcld 11014 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
671664, 670sylan2 593 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
672664, 668sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 · 𝑋) ∈ ℝ)
673672resincld 15861 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (sin‘(𝑘 · 𝑋)) ∈ ℝ)
674592, 673remulcld 11014 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) ∈ ℝ)
675671, 674readdcld 11013 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
676663, 662, 675syl2anc 584 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
677651, 660, 662, 676fvmptd 6891 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))‘𝑘) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
678362, 14eleqtrdi 2850 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
679676recnd 11012 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℂ)
680677, 678, 679fsumser 15451 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛))
681650, 680chvarvv 2003 . . . . . 6 ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
682645, 681eqtrd 2779 . . . . 5 ((𝜑𝑙 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑙) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
68314, 558, 623, 15, 682climeq 15285 . . . 4 (𝜑 → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ↔ seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))))
684621, 683mpbid 231 . . 3 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
68513, 684eqbrtrd 5097 . 2 (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
686 eqidd 2740 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))
687 fveq2 6783 . . . . . . . . 9 (𝑗 = 𝑛 → (𝐴𝑗) = (𝐴𝑛))
688 oveq1 7291 . . . . . . . . . 10 (𝑗 = 𝑛 → (𝑗 · 𝑋) = (𝑛 · 𝑋))
689688fveq2d 6787 . . . . . . . . 9 (𝑗 = 𝑛 → (cos‘(𝑗 · 𝑋)) = (cos‘(𝑛 · 𝑋)))
690687, 689oveq12d 7302 . . . . . . . 8 (𝑗 = 𝑛 → ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) = ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))))
691 fveq2 6783 . . . . . . . . 9 (𝑗 = 𝑛 → (𝐵𝑗) = (𝐵𝑛))
692688fveq2d 6787 . . . . . . . . 9 (𝑗 = 𝑛 → (sin‘(𝑗 · 𝑋)) = (sin‘(𝑛 · 𝑋)))
693691, 692oveq12d 7302 . . . . . . . 8 (𝑗 = 𝑛 → ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))) = ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
694690, 693oveq12d 7302 . . . . . . 7 (𝑗 = 𝑛 → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
695694adantl 482 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
696686, 695, 362, 596fvmptd 6891 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))‘𝑛) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
697596recnd 11012 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℂ)
69814, 15, 696, 697, 684isumclim 15478 . . . 4 (𝜑 → Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
699698oveq2d 7300 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))))
700503, 505addcld 11003 . . . . 5 (𝜑 → (𝐿 + 𝑅) ∈ ℂ)
701700halfcld 12227 . . . 4 (𝜑 → ((𝐿 + 𝑅) / 2) ∈ ℂ)
702556, 701pncan3d 11344 . . 3 (𝜑 → (((𝐴‘0) / 2) + (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) = ((𝐿 + 𝑅) / 2))
703699, 702eqtrd 2779 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
704685, 703jca 512 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wral 3065  wrex 3066  {crab 3069  Vcvv 3433  csb 3833  cun 3886  cin 3887  wss 3888  ifcif 4460  {cpr 4564   class class class wbr 5075  cmpt 5158  dom cdm 5590  ran crn 5591  cres 5592  cio 6393  wf 6433  cfv 6437   Isom wiso 6438  crio 7240  (class class class)co 7284  m cmap 8624  supcsup 9208  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  +∞cpnf 11015  -∞cmnf 11016  *cxr 11017   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  cn 11982  2c2 12037  0cn0 12242  cz 12328  cuz 12591  +crp 12739  (,)cioo 13088  (,]cioc 13089  [,]cicc 13091  ...cfz 13248  ..^cfzo 13391  cfl 13519   mod cmo 13598  seqcseq 13730  chash 14053  abscabs 14954  cli 15202  Σcsu 15406  sincsin 15782  cosccos 15783  πcpi 15785  cnccncf 24048  volcvol 24636  𝐿1cibl 24790  citg 24791   lim climc 25035   D cdv 25036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cc 10200  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-symdif 4177  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-ofr 7543  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-oadd 8310  df-omul 8311  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-dju 9668  df-card 9706  df-acn 9709  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-xnn0 12315  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-t1 22474  df-haus 22475  df-cmp 22547  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-ovol 24637  df-vol 24638  df-mbf 24792  df-itg1 24793  df-itg2 24794  df-ibl 24795  df-itg 24796  df-0p 24843  df-ditg 25020  df-limc 25039  df-dv 25040
This theorem is referenced by:  fourierdlem113  43767
  Copyright terms: Public domain W3C validator