Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem112 Structured version   Visualization version   GIF version

Theorem fourierdlem112 46233
Description: Here abbreviations (local definitions) are introduced to prove the fourier 46240 theorem. (𝑍𝑚) is the mth partial sum of the fourier series. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem112.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem112.d 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
fourierdlem112.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem112.m (𝜑𝑀 ∈ ℕ)
fourierdlem112.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem112.n 𝑁 = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
fourierdlem112.v 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
fourierdlem112.x (𝜑𝑋 ∈ ℝ)
fourierdlem112.xran (𝜑𝑋 ∈ ran 𝑉)
fourierdlem112.t 𝑇 = (2 · π)
fourierdlem112.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem112.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem112.c ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem112.u ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem112.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem112.e (𝜑𝐸 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem112.i (𝜑𝐼 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem112.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem112.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem112.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem112.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem112.z 𝑍 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
fourierdlem112.23 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
fourierdlem112.fbd (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem112.fdvbd (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem112.25 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
fourierdlem112 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛   𝑡,𝑅,𝑧   𝑧,𝑋   𝑡,𝑁,𝑤,𝑧   𝜑,𝑓,𝑥,𝑦   𝑖,𝑁,𝑚,𝑤   𝐶,𝑚,𝑥   𝑄,𝑓,𝑖,𝑡,𝑦   𝑓,𝑀,𝑚,𝑥   𝑡,𝐿   𝑥,𝑉   𝑤,𝐿,𝑧   𝑚,𝑍   𝑛,𝑉,𝑝   𝑅,𝑘,𝑛   𝑤,𝐹   𝑛,𝑋,𝑝   𝑡,𝑚   𝑥,𝑋   𝐷,𝑖,𝑘,𝑚,𝑛,𝑥,𝑦   𝑈,𝑚,𝑥   𝑘,𝐹,𝑡,𝑧   𝑖,𝑀,𝑛,𝑝,𝑦   𝑛,𝑁,𝑝   𝑖,𝐹,𝑚,𝑛,𝑥,𝑦   𝐵,𝑘,𝑚,𝑛   𝑇,𝑛,𝑝,𝑦,𝑖   𝑖,𝑉,𝑤,𝑧   𝜑,𝑚,𝑛   𝑓,𝑁,𝑦   𝑡,𝐶   𝑓,𝑉,𝑘,𝑚,𝑡   𝑡,𝑀   𝜑,𝑘   𝑇,𝑘,𝑚,𝑥,𝑓   𝑡,𝑇   𝑅,𝑖,𝑚,𝑤   𝑄,𝑚,𝑛,𝑥   𝑥,𝑁   𝑓,𝑋,𝑘,𝑦   𝑄,𝑘,𝑝   𝑡,𝑈   𝑖,𝑋,𝑚,𝑡,𝑤,𝑧   𝜑,𝑖,𝑡,𝑤,𝑧   𝑖,𝐿,𝑘,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑝)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑝)   𝐶(𝑦,𝑧,𝑤,𝑓,𝑖,𝑘,𝑛,𝑝)   𝐷(𝑧,𝑤,𝑡,𝑓,𝑝)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝑄(𝑧,𝑤)   𝑅(𝑥,𝑦,𝑓,𝑝)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝑇(𝑧,𝑤)   𝑈(𝑦,𝑧,𝑤,𝑓,𝑖,𝑘,𝑛,𝑝)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝐹(𝑓,𝑝)   𝐼(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑝)   𝑀(𝑧,𝑤,𝑘)   𝑁(𝑘)   𝑉(𝑦)   𝑍(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑛,𝑝)

Proof of Theorem fourierdlem112
Dummy variables 𝑗 𝑙 𝑎 𝑐 𝑟 𝑠 𝑒 𝑞 𝑏 𝑢 𝑔 𝑣 𝑜 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem112.23 . . . . 5 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
2 fveq2 6906 . . . . . . . 8 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
3 oveq1 7438 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 · 𝑋) = (𝑗 · 𝑋))
43fveq2d 6910 . . . . . . . 8 (𝑛 = 𝑗 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑗 · 𝑋)))
52, 4oveq12d 7449 . . . . . . 7 (𝑛 = 𝑗 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))))
6 fveq2 6906 . . . . . . . 8 (𝑛 = 𝑗 → (𝐵𝑛) = (𝐵𝑗))
73fveq2d 6910 . . . . . . . 8 (𝑛 = 𝑗 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑗 · 𝑋)))
86, 7oveq12d 7449 . . . . . . 7 (𝑛 = 𝑗 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))
95, 8oveq12d 7449 . . . . . 6 (𝑛 = 𝑗 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
109cbvmptv 5255 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
111, 10eqtri 2765 . . . 4 𝑆 = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
12 seqeq3 14047 . . . 4 (𝑆 = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) → seq1( + , 𝑆) = seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))))
1311, 12mp1i 13 . . 3 (𝜑 → seq1( + , 𝑆) = seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))))
14 nnuz 12921 . . . . 5 ℕ = (ℤ‘1)
15 1zzd 12648 . . . . 5 (𝜑 → 1 ∈ ℤ)
16 nfv 1914 . . . . . . 7 𝑛𝜑
17 nfcv 2905 . . . . . . . 8 𝑛
18 nfcv 2905 . . . . . . . . 9 𝑛(-π(,)0)
19 nfcv 2905 . . . . . . . . . 10 𝑛(𝐹‘(𝑋 + 𝑠))
20 nfcv 2905 . . . . . . . . . 10 𝑛 ·
21 nfcv 2905 . . . . . . . . . 10 𝑛((𝐷𝑚)‘𝑠)
2219, 20, 21nfov 7461 . . . . . . . . 9 𝑛((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠))
2318, 22nfitg 25810 . . . . . . . 8 𝑛∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠
2417, 23nfmpt 5249 . . . . . . 7 𝑛(𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
25 nfcv 2905 . . . . . . . . 9 𝑛(0(,)π)
2625, 22nfitg 25810 . . . . . . . 8 𝑛∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠
2717, 26nfmpt 5249 . . . . . . 7 𝑛(𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
28 fourierdlem112.z . . . . . . . 8 𝑍 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
29 fourierdlem112.a . . . . . . . . . . . . 13 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
30 nfmpt1 5250 . . . . . . . . . . . . 13 𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
3129, 30nfcxfr 2903 . . . . . . . . . . . 12 𝑛𝐴
32 nfcv 2905 . . . . . . . . . . . 12 𝑛0
3331, 32nffv 6916 . . . . . . . . . . 11 𝑛(𝐴‘0)
34 nfcv 2905 . . . . . . . . . . 11 𝑛 /
35 nfcv 2905 . . . . . . . . . . 11 𝑛2
3633, 34, 35nfov 7461 . . . . . . . . . 10 𝑛((𝐴‘0) / 2)
37 nfcv 2905 . . . . . . . . . 10 𝑛 +
38 nfcv 2905 . . . . . . . . . . 11 𝑛(1...𝑚)
3938nfsum1 15726 . . . . . . . . . 10 𝑛Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
4036, 37, 39nfov 7461 . . . . . . . . 9 𝑛(((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
4117, 40nfmpt 5249 . . . . . . . 8 𝑛(𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
4228, 41nfcxfr 2903 . . . . . . 7 𝑛𝑍
43 fourierdlem112.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
44 fourierdlem112.25 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
45 eqid 2737 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
46 picn 26501 . . . . . . . . . . . . 13 π ∈ ℂ
47462timesi 12404 . . . . . . . . . . . 12 (2 · π) = (π + π)
48 fourierdlem112.t . . . . . . . . . . . 12 𝑇 = (2 · π)
4946, 46subnegi 11588 . . . . . . . . . . . 12 (π − -π) = (π + π)
5047, 48, 493eqtr4i 2775 . . . . . . . . . . 11 𝑇 = (π − -π)
51 fourierdlem112.p . . . . . . . . . . 11 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
52 fourierdlem112.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
53 fourierdlem112.q . . . . . . . . . . 11 (𝜑𝑄 ∈ (𝑃𝑀))
54 pire 26500 . . . . . . . . . . . . . 14 π ∈ ℝ
5554a1i 11 . . . . . . . . . . . . 13 (𝜑 → π ∈ ℝ)
5655renegcld 11690 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
5756, 44readdcld 11290 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) ∈ ℝ)
5855, 44readdcld 11290 . . . . . . . . . . 11 (𝜑 → (π + 𝑋) ∈ ℝ)
59 negpilt0 45292 . . . . . . . . . . . . . 14 -π < 0
60 pipos 26502 . . . . . . . . . . . . . 14 0 < π
6154renegcli 11570 . . . . . . . . . . . . . . 15 -π ∈ ℝ
62 0re 11263 . . . . . . . . . . . . . . 15 0 ∈ ℝ
6361, 62, 54lttri 11387 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
6459, 60, 63mp2an 692 . . . . . . . . . . . . 13 -π < π
6564a1i 11 . . . . . . . . . . . 12 (𝜑 → -π < π)
6656, 55, 44, 65ltadd1dd 11874 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) < (π + 𝑋))
67 oveq1 7438 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
6867eleq1d 2826 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
6968rexbidv 3179 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
7069cbvrabv 3447 . . . . . . . . . . . 12 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
7170uneq2i 4165 . . . . . . . . . . 11 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑥 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
72 fourierdlem112.n . . . . . . . . . . 11 𝑁 = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
73 fourierdlem112.v . . . . . . . . . . 11 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
7450, 51, 52, 53, 57, 58, 66, 45, 71, 72, 73fourierdlem54 46175 . . . . . . . . . 10 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁)) ∧ 𝑉 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
7574simpld 494 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁)))
7675simpld 494 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
7775simprd 495 . . . . . . . 8 (𝜑𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁))
78 fourierdlem112.xran . . . . . . . 8 (𝜑𝑋 ∈ ran 𝑉)
7943adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
80 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
81 oveq1 7438 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
8281fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
8380, 82breq12d 5156 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
8483cbvralvw 3237 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
8584anbi2i 623 . . . . . . . . . . . . 13 ((((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
8685a1i 11 . . . . . . . . . . . 12 (𝑝 ∈ (ℝ ↑m (0...𝑛)) → ((((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
8786rabbiia 3440 . . . . . . . . . . 11 {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}
8887mpteq2i 5247 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
8951, 88eqtri 2765 . . . . . . . . 9 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
9052adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
9153adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
92 fourierdlem112.fper . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
9392adantlr 715 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
94 eleq1w 2824 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
9594anbi2d 630 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑗 ∈ (0..^𝑀))))
96 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
9781fveq2d 6910 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
9896, 97oveq12d 7449 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
9998reseq2d 5997 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))))
10098oveq1d 7446 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
10199, 100eleq12d 2835 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ)))
10295, 101imbi12d 344 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))))
103 fourierdlem112.fcn . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
104102, 103chvarvv 1998 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
105104adantlr 715 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
10657adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (-π + 𝑋) ∈ ℝ)
10757rexrd 11311 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) ∈ ℝ*)
108 pnfxr 11315 . . . . . . . . . . . 12 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . 11 (𝜑 → +∞ ∈ ℝ*)
11058ltpnfd 13163 . . . . . . . . . . 11 (𝜑 → (π + 𝑋) < +∞)
111107, 109, 58, 66, 110eliood 45511 . . . . . . . . . 10 (𝜑 → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
112111adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
113 id 22 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^𝑁))
11472oveq2i 7442 . . . . . . . . . . 11 (0..^𝑁) = (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))
115113, 114eleqtrdi 2851 . . . . . . . . . 10 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
116115adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
11772oveq2i 7442 . . . . . . . . . . . 12 (0...𝑁) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))
118 isoeq4 7340 . . . . . . . . . . . 12 ((0...𝑁) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) → (𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
119117, 118ax-mp 5 . . . . . . . . . . 11 (𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
120119iotabii 6546 . . . . . . . . . 10 (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
12173, 120eqtri 2765 . . . . . . . . 9 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
12279, 89, 50, 90, 91, 93, 105, 106, 112, 116, 121fourierdlem98 46219 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
123 fourierdlem112.fbd . . . . . . . . . 10 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
124123adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
125 nfra1 3284 . . . . . . . . . . 11 𝑡𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤
126 elioore 13417 . . . . . . . . . . . . 13 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → 𝑡 ∈ ℝ)
127 rspa 3248 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ≤ 𝑤)
128126, 127sylan2 593 . . . . . . . . . . . 12 ((∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
129128ex 412 . . . . . . . . . . 11 (∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
130125, 129ralrimi 3257 . . . . . . . . . 10 (∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
131130reximi 3084 . . . . . . . . 9 (∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
132124, 131syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
133 ssid 4006 . . . . . . . . . . . 12 ℝ ⊆ ℝ
134 dvfre 25989 . . . . . . . . . . . 12 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
13543, 133, 134sylancl 586 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
136135adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
137 eqid 2737 . . . . . . . . . . . . 13 (ℝ D 𝐹) = (ℝ D 𝐹)
13854a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → π ∈ ℝ)
13961a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → -π ∈ ℝ)
14098reseq2d 5997 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))))
141140, 100eleq12d 2835 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ)))
14295, 141imbi12d 344 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))))
143 fourierdlem112.fdvcn . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
144142, 143chvarvv 1998 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
145144adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
146 fourierdlem112.x . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
14756, 146readdcld 11290 . . . . . . . . . . . . . 14 (𝜑 → (-π + 𝑋) ∈ ℝ)
148147adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (-π + 𝑋) ∈ ℝ)
149147rexrd 11311 . . . . . . . . . . . . . . 15 (𝜑 → (-π + 𝑋) ∈ ℝ*)
15055, 146readdcld 11290 . . . . . . . . . . . . . . 15 (𝜑 → (π + 𝑋) ∈ ℝ)
15156, 55, 146, 65ltadd1dd 11874 . . . . . . . . . . . . . . 15 (𝜑 → (-π + 𝑋) < (π + 𝑋))
152150ltpnfd 13163 . . . . . . . . . . . . . . 15 (𝜑 → (π + 𝑋) < +∞)
153149, 109, 150, 151, 152eliood 45511 . . . . . . . . . . . . . 14 (𝜑 → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
154153adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
155 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = → (𝑘 · 𝑇) = ( · 𝑇))
156155oveq2d 7447 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + ( · 𝑇)))
157156eleq1d 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
158157cbvrexvw 3238 . . . . . . . . . . . . . . . . . . 19 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
159158rgenw 3065 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋))(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
160 rabbi 3467 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋))(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄) ↔ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
161159, 160mpbi 230 . . . . . . . . . . . . . . . . 17 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}
162161uneq2i 4165 . . . . . . . . . . . . . . . 16 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
163 isoeq5 7341 . . . . . . . . . . . . . . . 16 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))))
164162, 163ax-mp 5 . . . . . . . . . . . . . . 15 (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
165164iotabii 6546 . . . . . . . . . . . . . 14 (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
166121, 165eqtri 2765 . . . . . . . . . . . . 13 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
167 eleq1w 2824 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (𝑣 ∈ dom (ℝ D 𝐹) ↔ 𝑢 ∈ dom (ℝ D 𝐹)))
168 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → ((ℝ D 𝐹)‘𝑣) = ((ℝ D 𝐹)‘𝑢))
169167, 168ifbieq1d 4550 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → if(𝑣 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑣), 0) = if(𝑢 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑢), 0))
170169cbvmptv 5255 . . . . . . . . . . . . 13 (𝑣 ∈ ℝ ↦ if(𝑣 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑣), 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑢), 0))
17179, 137, 89, 138, 139, 50, 90, 91, 93, 145, 148, 154, 116, 166, 170fourierdlem97 46218 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
172 cncff 24919 . . . . . . . . . . . 12 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
173 fdm 6745 . . . . . . . . . . . 12 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
174171, 172, 1733syl 18 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑁)) → dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
175 ssdmres 6031 . . . . . . . . . . 11 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
176174, 175sylibr 234 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
177136, 176fssresd 6775 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
178 ax-resscn 11212 . . . . . . . . . . 11 ℝ ⊆ ℂ
179178a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
180 cncfcdm 24924 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ))
181179, 171, 180syl2anc 584 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ))
182177, 181mpbird 257 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
183 fourierdlem112.fdvbd . . . . . . . . . . 11 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
184183adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
185 nfv 1914 . . . . . . . . . . . . . 14 𝑡(𝜑𝑖 ∈ (0..^𝑁))
186 nfra1 3284 . . . . . . . . . . . . . 14 𝑡𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
187185, 186nfan 1899 . . . . . . . . . . . . 13 𝑡((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
188 fvres 6925 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
189188adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
190189fveq2d 6910 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
191190adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
192 simplr 769 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
193176sselda 3983 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
194193adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
195 rspa 3248 . . . . . . . . . . . . . . . 16 ((∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
196192, 194, 195syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
197191, 196eqbrtrd 5165 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
198197ex 412 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
199187, 198ralrimi 3257 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
200199ex 412 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑁)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
201200reximdv 3170 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
202184, 201mpd 15 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
203 nfra1 3284 . . . . . . . . . . . 12 𝑡𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧
204188eqcomd 2743 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → ((ℝ D 𝐹)‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡))
205204fveq2d 6910 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘((ℝ D 𝐹)‘𝑡)) = (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)))
206205adantl 481 . . . . . . . . . . . . . 14 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) = (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)))
207 rspa 3248 . . . . . . . . . . . . . 14 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
208206, 207eqbrtrd 5165 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
209208ex 412 . . . . . . . . . . . 12 (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
210203, 209ralrimi 3257 . . . . . . . . . . 11 (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
211210a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
212211reximdv 3170 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
213202, 212mpd 15 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
214 nfv 1914 . . . . . . . . . . . 12 𝑖(𝜑𝑗 ∈ (0..^𝑀))
215 nfcsb1v 3923 . . . . . . . . . . . . 13 𝑖𝑗 / 𝑖𝐶
216215nfel1 2922 . . . . . . . . . . . 12 𝑖𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗))
217214, 216nfim 1896 . . . . . . . . . . 11 𝑖((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
218 csbeq1a 3913 . . . . . . . . . . . . 13 (𝑖 = 𝑗𝐶 = 𝑗 / 𝑖𝐶)
21999, 96oveq12d 7449 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
220218, 219eleq12d 2835 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ↔ 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗))))
22195, 220imbi12d 344 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))))
222 fourierdlem112.c . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
223217, 221, 222chvarfv 2240 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
224223adantlr 715 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
22579, 89, 50, 90, 91, 93, 105, 224, 106, 112, 116, 121fourierdlem96 46217 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → if(((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))) = (𝑄‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝐶)‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
226 nfcsb1v 3923 . . . . . . . . . . . . 13 𝑖𝑗 / 𝑖𝑈
227226nfel1 2922 . . . . . . . . . . . 12 𝑖𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1)))
228214, 227nfim 1896 . . . . . . . . . . 11 𝑖((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
229 csbeq1a 3913 . . . . . . . . . . . . 13 (𝑖 = 𝑗𝑈 = 𝑗 / 𝑖𝑈)
23099, 97oveq12d 7449 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
231229, 230eleq12d 2835 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ↔ 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1)))))
23295, 231imbi12d 344 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))))
233 fourierdlem112.u . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
234228, 232, 233chvarfv 2240 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
235234adantlr 715 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
23679, 89, 50, 90, 91, 93, 105, 235, 148, 154, 116, 121fourierdlem99 46220 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → if(((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))) = (𝑄‘(((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖)) + 1)), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝑈)‘((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
237 eqeq1 2741 . . . . . . . . . 10 (𝑔 = 𝑠 → (𝑔 = 0 ↔ 𝑠 = 0))
238 oveq2 7439 . . . . . . . . . . . . 13 (𝑔 = 𝑠 → (𝑋 + 𝑔) = (𝑋 + 𝑠))
239238fveq2d 6910 . . . . . . . . . . . 12 (𝑔 = 𝑠 → (𝐹‘(𝑋 + 𝑔)) = (𝐹‘(𝑋 + 𝑠)))
240 breq2 5147 . . . . . . . . . . . . 13 (𝑔 = 𝑠 → (0 < 𝑔 ↔ 0 < 𝑠))
241240ifbid 4549 . . . . . . . . . . . 12 (𝑔 = 𝑠 → if(0 < 𝑔, 𝑅, 𝐿) = if(0 < 𝑠, 𝑅, 𝐿))
242239, 241oveq12d 7449 . . . . . . . . . . 11 (𝑔 = 𝑠 → ((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)))
243 id 22 . . . . . . . . . . 11 (𝑔 = 𝑠𝑔 = 𝑠)
244242, 243oveq12d 7449 . . . . . . . . . 10 (𝑔 = 𝑠 → (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠))
245237, 244ifbieq2d 4552 . . . . . . . . 9 (𝑔 = 𝑠 → if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠)))
246245cbvmptv 5255 . . . . . . . 8 (𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠)))
247 eqeq1 2741 . . . . . . . . . 10 (𝑜 = 𝑠 → (𝑜 = 0 ↔ 𝑠 = 0))
248 id 22 . . . . . . . . . . 11 (𝑜 = 𝑠𝑜 = 𝑠)
249 oveq1 7438 . . . . . . . . . . . . 13 (𝑜 = 𝑠 → (𝑜 / 2) = (𝑠 / 2))
250249fveq2d 6910 . . . . . . . . . . . 12 (𝑜 = 𝑠 → (sin‘(𝑜 / 2)) = (sin‘(𝑠 / 2)))
251250oveq2d 7447 . . . . . . . . . . 11 (𝑜 = 𝑠 → (2 · (sin‘(𝑜 / 2))) = (2 · (sin‘(𝑠 / 2))))
252248, 251oveq12d 7449 . . . . . . . . . 10 (𝑜 = 𝑠 → (𝑜 / (2 · (sin‘(𝑜 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
253247, 252ifbieq2d 4552 . . . . . . . . 9 (𝑜 = 𝑠 → if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
254253cbvmptv 5255 . . . . . . . 8 (𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2)))))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
255 fveq2 6906 . . . . . . . . . 10 (𝑟 = 𝑠 → ((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) = ((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠))
256 fveq2 6906 . . . . . . . . . 10 (𝑟 = 𝑠 → ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟) = ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠))
257255, 256oveq12d 7449 . . . . . . . . 9 (𝑟 = 𝑠 → (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)) = (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠)))
258257cbvmptv 5255 . . . . . . . 8 (𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) = (𝑠 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠)))
259 oveq2 7439 . . . . . . . . . 10 (𝑑 = 𝑠 → ((𝑘 + (1 / 2)) · 𝑑) = ((𝑘 + (1 / 2)) · 𝑠))
260259fveq2d 6910 . . . . . . . . 9 (𝑑 = 𝑠 → (sin‘((𝑘 + (1 / 2)) · 𝑑)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
261260cbvmptv 5255 . . . . . . . 8 (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑠)))
262 fveq2 6906 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠))
263 fveq2 6906 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧) = ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠))
264262, 263oveq12d 7449 . . . . . . . . 9 (𝑧 = 𝑠 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠)))
265264cbvmptv 5255 . . . . . . . 8 (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))) = (𝑠 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠)))
266 fveq2 6906 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
267266fveq1d 6908 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
268267oveq2d 7447 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
269268adantr 480 . . . . . . . . . 10 ((𝑚 = 𝑛𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
270269itgeq2dv 25817 . . . . . . . . 9 (𝑚 = 𝑛 → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
271270cbvmptv 5255 . . . . . . . 8 (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
272 oveq1 7438 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑘 → (𝑐 + (1 / 2)) = (𝑘 + (1 / 2)))
273272oveq1d 7446 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑘 → ((𝑐 + (1 / 2)) · 𝑑) = ((𝑘 + (1 / 2)) · 𝑑))
274273fveq2d 6910 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑘 → (sin‘((𝑐 + (1 / 2)) · 𝑑)) = (sin‘((𝑘 + (1 / 2)) · 𝑑)))
275274mpteq2dv 5244 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑘 → (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑))) = (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑))))
276275fveq1d 6908 . . . . . . . . . . . . . . 15 (𝑐 = 𝑘 → ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧) = ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))
277276oveq2d 7447 . . . . . . . . . . . . . 14 (𝑐 = 𝑘 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))
278277mpteq2dv 5244 . . . . . . . . . . . . 13 (𝑐 = 𝑘 → (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧))) = (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))))
279278fveq1d 6908 . . . . . . . . . . . 12 (𝑐 = 𝑘 → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
280279adantr 480 . . . . . . . . . . 11 ((𝑐 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
281280itgeq2dv 25817 . . . . . . . . . 10 (𝑐 = 𝑘 → ∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 = ∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠)
282281oveq1d 7446 . . . . . . . . 9 (𝑐 = 𝑘 → (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π) = (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
283282cbvmptv 5255 . . . . . . . 8 (𝑐 ∈ ℕ ↦ (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π)) = (𝑘 ∈ ℕ ↦ (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
284 fourierdlem112.r . . . . . . . 8 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
285 fourierdlem112.l . . . . . . . 8 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
286 fourierdlem112.e . . . . . . . 8 (𝜑𝐸 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
287 fourierdlem112.i . . . . . . . 8 (𝜑𝐼 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
288 fourierdlem112.d . . . . . . . . 9 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
289 oveq1 7438 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → (𝑦 mod (2 · π)) = (𝑠 mod (2 · π)))
290289eqeq1d 2739 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → ((𝑦 mod (2 · π)) = 0 ↔ (𝑠 mod (2 · π)) = 0))
291 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑦 = 𝑠 → ((𝑚 + (1 / 2)) · 𝑦) = ((𝑚 + (1 / 2)) · 𝑠))
292291fveq2d 6910 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → (sin‘((𝑚 + (1 / 2)) · 𝑦)) = (sin‘((𝑚 + (1 / 2)) · 𝑠)))
293 oveq1 7438 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑠 → (𝑦 / 2) = (𝑠 / 2))
294293fveq2d 6910 . . . . . . . . . . . . . . 15 (𝑦 = 𝑠 → (sin‘(𝑦 / 2)) = (sin‘(𝑠 / 2)))
295294oveq2d 7447 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
296292, 295oveq12d 7449 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
297290, 296ifbieq2d 4552 . . . . . . . . . . . 12 (𝑦 = 𝑠 → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
298297cbvmptv 5255 . . . . . . . . . . 11 (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
299 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑘𝑠 ∈ ℝ) → 𝑚 = 𝑘)
300299oveq2d 7447 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (2 · 𝑚) = (2 · 𝑘))
301300oveq1d 7446 . . . . . . . . . . . . . 14 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((2 · 𝑚) + 1) = ((2 · 𝑘) + 1))
302301oveq1d 7446 . . . . . . . . . . . . 13 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (((2 · 𝑚) + 1) / (2 · π)) = (((2 · 𝑘) + 1) / (2 · π)))
303299oveq1d 7446 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (𝑚 + (1 / 2)) = (𝑘 + (1 / 2)))
304303oveq1d 7446 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((𝑚 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
305304fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (sin‘((𝑚 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
306305oveq1d 7446 . . . . . . . . . . . . 13 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
307302, 306ifeq12d 4547 . . . . . . . . . . . 12 ((𝑚 = 𝑘𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
308307mpteq2dva 5242 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
309298, 308eqtrid 2789 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
310309cbvmptv 5255 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) = (𝑘 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
311288, 310eqtri 2765 . . . . . . . 8 𝐷 = (𝑘 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
312 eqid 2737 . . . . . . . 8 ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (-π[,]𝑙)) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (-π[,]𝑙))
313 eqid 2737 . . . . . . . 8 ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))) = ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))
314 eqid 2737 . . . . . . . 8 ((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1) = ((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)
315 isoeq1 7337 . . . . . . . . 9 (𝑢 = 𝑤 → (𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) ↔ 𝑤 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))))))
316315cbviotavw 6522 . . . . . . . 8 (℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))))) = (℩𝑤𝑤 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))
317 fveq2 6906 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
318317oveq1d 7446 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
319318cbvmptv 5255 . . . . . . . 8 (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑁) ↦ ((𝑉𝑖) − 𝑋))
320 eqid 2737 . . . . . . . 8 (𝑚 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑚)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑚 + 1)))) = (𝑚 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑚)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑚 + 1))))
321 fveq2 6906 . . . . . . . . . . . . . 14 (𝑎 = 𝑠 → ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠))
322 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → ((𝑏 + (1 / 2)) · 𝑎) = ((𝑏 + (1 / 2)) · 𝑠))
323322fveq2d 6910 . . . . . . . . . . . . . 14 (𝑎 = 𝑠 → (sin‘((𝑏 + (1 / 2)) · 𝑎)) = (sin‘((𝑏 + (1 / 2)) · 𝑠)))
324321, 323oveq12d 7449 . . . . . . . . . . . . 13 (𝑎 = 𝑠 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))))
325324cbvitgv 25812 . . . . . . . . . . . 12 ∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
326325fveq2i 6909 . . . . . . . . . . 11 (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
327326breq1i 5150 . . . . . . . . . 10 ((abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2) ↔ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2))
328327anbi2i 623 . . . . . . . . 9 (((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ↔ ((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)))
329324cbvitgv 25812 . . . . . . . . . . 11 ∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
330329fveq2i 6909 . . . . . . . . . 10 (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
331330breq1i 5150 . . . . . . . . 9 ((abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2) ↔ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2))
332328, 331anbi12i 628 . . . . . . . 8 ((((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ∧ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ↔ (((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)) ∧ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)))
33343, 44, 45, 76, 77, 78, 122, 132, 182, 213, 225, 236, 246, 254, 258, 261, 265, 271, 283, 284, 285, 286, 287, 311, 312, 313, 314, 316, 319, 320, 332fourierdlem103 46224 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ⇝ (𝐿 / 2))
334 nnex 12272 . . . . . . . . . 10 ℕ ∈ V
335334mptex 7243 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))) ∈ V
33628, 335eqeltri 2837 . . . . . . . 8 𝑍 ∈ V
337336a1i 11 . . . . . . 7 (𝜑𝑍 ∈ V)
338268adantr 480 . . . . . . . . . 10 ((𝑚 = 𝑛𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
339338itgeq2dv 25817 . . . . . . . . 9 (𝑚 = 𝑛 → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
340339cbvmptv 5255 . . . . . . . 8 (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
341279adantr 480 . . . . . . . . . . 11 ((𝑐 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
342341itgeq2dv 25817 . . . . . . . . . 10 (𝑐 = 𝑘 → ∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 = ∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠)
343342oveq1d 7446 . . . . . . . . 9 (𝑐 = 𝑘 → (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π) = (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
344343cbvmptv 5255 . . . . . . . 8 (𝑐 ∈ ℕ ↦ (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π)) = (𝑘 ∈ ℕ ↦ (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
345 eqid 2737 . . . . . . . 8 ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (𝑒[,]π)) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (𝑒[,]π))
346 eqid 2737 . . . . . . . 8 ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))) = ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))
347 eqid 2737 . . . . . . . 8 ((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1) = ((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)
348 isoeq1 7337 . . . . . . . . 9 (𝑢 = 𝑣 → (𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) ↔ 𝑣 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))))))
349348cbviotavw 6522 . . . . . . . 8 (℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))))) = (℩𝑣𝑣 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))
350 eqid 2737 . . . . . . . 8 (𝑎 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑎)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑎 + 1)))) = (𝑎 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑎)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑎 + 1))))
351324cbvitgv 25812 . . . . . . . . . . . 12 ∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
352351fveq2i 6909 . . . . . . . . . . 11 (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
353352breq1i 5150 . . . . . . . . . 10 ((abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2) ↔ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2))
354353anbi2i 623 . . . . . . . . 9 (((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ↔ ((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)))
355324cbvitgv 25812 . . . . . . . . . . 11 ∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
356355fveq2i 6909 . . . . . . . . . 10 (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
357356breq1i 5150 . . . . . . . . 9 ((abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2) ↔ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2))
358354, 357anbi12i 628 . . . . . . . 8 ((((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ∧ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ↔ (((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)) ∧ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)))
35943, 44, 45, 76, 77, 78, 122, 132, 182, 213, 225, 236, 246, 254, 258, 261, 265, 340, 344, 284, 285, 286, 287, 311, 345, 346, 347, 349, 319, 350, 358fourierdlem104 46225 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ⇝ (𝑅 / 2))
360 eqidd 2738 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
361270adantl 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
362 simpr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
363 elioore 13417 . . . . . . . . . . 11 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ℝ)
36443adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
36544adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ ℝ) → 𝑋 ∈ ℝ)
366 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
367365, 366readdcld 11290 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ℝ) → (𝑋 + 𝑠) ∈ ℝ)
368364, 367ffvelcdmd 7105 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ ℝ) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
369368adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
370288dirkerre 46110 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
371370adantll 714 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
372369, 371remulcld 11291 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
373363, 372sylan2 593 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
374 ioossicc 13473 . . . . . . . . . . . . 13 (-π(,)0) ⊆ (-π[,]0)
37561leidi 11797 . . . . . . . . . . . . . 14 -π ≤ -π
37662, 54, 60ltleii 11384 . . . . . . . . . . . . . 14 0 ≤ π
377 iccss 13455 . . . . . . . . . . . . . 14 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -π ∧ 0 ≤ π)) → (-π[,]0) ⊆ (-π[,]π))
37861, 54, 375, 376, 377mp4an 693 . . . . . . . . . . . . 13 (-π[,]0) ⊆ (-π[,]π)
379374, 378sstri 3993 . . . . . . . . . . . 12 (-π(,)0) ⊆ (-π[,]π)
380379a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ⊆ (-π[,]π))
381 ioombl 25600 . . . . . . . . . . . 12 (-π(,)0) ∈ dom vol
382381a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ∈ dom vol)
38343adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
38444adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
38556, 55iccssred 13474 . . . . . . . . . . . . . . . 16 (𝜑 → (-π[,]π) ⊆ ℝ)
386385sselda 3983 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
387384, 386readdcld 11290 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
388383, 387ffvelcdmd 7105 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
389388adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
390 iccssre 13469 . . . . . . . . . . . . . . . 16 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
39161, 54, 390mp2an 692 . . . . . . . . . . . . . . 15 (-π[,]π) ⊆ ℝ
392391sseli 3979 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
393392, 370sylan2 593 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
394393adantll 714 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
395389, 394remulcld 11291 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
39661a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
39754a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
39843adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
39944adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
40076adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑁 ∈ ℕ)
40177adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁))
402122adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
403225adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → if(((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))) = (𝑄‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝐶)‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
404236adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → if(((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))) = (𝑄‘(((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖)) + 1)), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝑈)‘((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
405288dirkercncf 46122 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
406405adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
407 eqid 2737 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
408396, 397, 398, 399, 45, 400, 401, 402, 403, 404, 319, 51, 406, 407fourierdlem84 46205 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
409380, 382, 395, 408iblss 25840 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
410373, 409itgcl 25819 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
411360, 361, 362, 410fvmptd 7023 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
412411, 410eqeltrd 2841 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) ∈ ℂ)
413 eqidd 2738 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
414339adantl 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
41543adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
41644adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
417 elioore 13417 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ℝ)
418417adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
419416, 418readdcld 11290 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0(,)π)) → (𝑋 + 𝑠) ∈ ℝ)
420415, 419ffvelcdmd 7105 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
421420adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
422417, 370sylan2 593 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
423422adantll 714 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
424421, 423remulcld 11291 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
425 ioossicc 13473 . . . . . . . . . . . . 13 (0(,)π) ⊆ (0[,]π)
42661, 62, 59ltleii 11384 . . . . . . . . . . . . . 14 -π ≤ 0
42754leidi 11797 . . . . . . . . . . . . . 14 π ≤ π
428 iccss 13455 . . . . . . . . . . . . . 14 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 0 ∧ π ≤ π)) → (0[,]π) ⊆ (-π[,]π))
42961, 54, 426, 427, 428mp4an 693 . . . . . . . . . . . . 13 (0[,]π) ⊆ (-π[,]π)
430425, 429sstri 3993 . . . . . . . . . . . 12 (0(,)π) ⊆ (-π[,]π)
431430a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ⊆ (-π[,]π))
432 ioombl 25600 . . . . . . . . . . . 12 (0(,)π) ∈ dom vol
433432a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ∈ dom vol)
434431, 433, 395, 408iblss 25840 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
435424, 434itgcl 25819 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
436413, 414, 362, 435fvmptd 7023 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
437436, 435eqeltrd 2841 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) ∈ ℂ)
438 eleq1w 2824 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 ∈ ℕ ↔ 𝑛 ∈ ℕ))
439438anbi2d 630 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝜑𝑚 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
440 fveq2 6906 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑍𝑚) = (𝑍𝑛))
441270, 339oveq12d 7449 . . . . . . . . . . 11 (𝑚 = 𝑛 → (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
442440, 441eqeq12d 2753 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ↔ (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)))
443439, 442imbi12d 344 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)) ↔ ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))))
444 oveq1 7438 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑛 · 𝑥) = (𝑚 · 𝑥))
445444fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑚 · 𝑥)))
446445oveq2d 7447 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑚 · 𝑥))))
447446adantr 480 . . . . . . . . . . . . . 14 ((𝑛 = 𝑚𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑚 · 𝑥))))
448447itgeq2dv 25817 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥)
449448oveq1d 7446 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
450449cbvmptv 5255 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑚 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
45129, 450eqtri 2765 . . . . . . . . . 10 𝐴 = (𝑚 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
452 fourierdlem112.b . . . . . . . . . . 11 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
453444fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑚 · 𝑥)))
454453oveq2d 7447 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑚 · 𝑥))))
455454adantr 480 . . . . . . . . . . . . . 14 ((𝑛 = 𝑚𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑚 · 𝑥))))
456455itgeq2dv 25817 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥)
457456oveq1d 7446 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
458457cbvmptv 5255 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑚 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
459452, 458eqtri 2765 . . . . . . . . . 10 𝐵 = (𝑚 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
460 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
461 oveq1 7438 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
462461fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
463460, 462oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
464 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
465461fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
466464, 465oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
467463, 466oveq12d 7449 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
468467cbvsumv 15732 . . . . . . . . . . . . 13 Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
469468oveq2i 7442 . . . . . . . . . . . 12 (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
470469mpteq2i 5247 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))) = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
471 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
472471sumeq1d 15736 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
473472oveq2d 7447 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
474473cbvmptv 5255 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
475 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
476 oveq1 7438 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝑘 · 𝑋) = (𝑚 · 𝑋))
477476fveq2d 6910 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (cos‘(𝑘 · 𝑋)) = (cos‘(𝑚 · 𝑋)))
478475, 477oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) = ((𝐴𝑚) · (cos‘(𝑚 · 𝑋))))
479 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
480476fveq2d 6910 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (sin‘(𝑘 · 𝑋)) = (sin‘(𝑚 · 𝑋)))
481479, 480oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) = ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))
482478, 481oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋)))))
483482cbvsumv 15732 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))
484483oveq2i 7442 . . . . . . . . . . . . 13 (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋)))))
485484mpteq2i 5247 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
486474, 485eqtri 2765 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
48728, 470, 4863eqtri 2769 . . . . . . . . . 10 𝑍 = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
488 oveq2 7439 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑋 + 𝑦) = (𝑋 + 𝑥))
489488fveq2d 6910 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑥)))
490 fveq2 6906 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐷𝑚)‘𝑦) = ((𝐷𝑚)‘𝑥))
491489, 490oveq12d 7449 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹‘(𝑋 + 𝑦)) · ((𝐷𝑚)‘𝑦)) = ((𝐹‘(𝑋 + 𝑥)) · ((𝐷𝑚)‘𝑥)))
492491cbvmptv 5255 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑦)) · ((𝐷𝑚)‘𝑦))) = (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷𝑚)‘𝑥)))
493 eqid 2737 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝𝑛) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝𝑛) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
494 fveq2 6906 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
495494oveq1d 7446 . . . . . . . . . . 11 (𝑗 = 𝑖 → ((𝑄𝑗) − 𝑋) = ((𝑄𝑖) − 𝑋))
496495cbvmptv 5255 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋))
497451, 459, 487, 288, 51, 52, 53, 146, 43, 92, 492, 103, 222, 233, 48, 493, 496fourierdlem111 46232 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
498443, 497chvarvv 1998 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
499411, 436oveq12d 7449 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) + ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛)) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
500498, 499eqtr4d 2780 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) + ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛)))
50116, 24, 27, 42, 14, 15, 333, 337, 359, 412, 437, 500climaddf 45630 . . . . . 6 (𝜑𝑍 ⇝ ((𝐿 / 2) + (𝑅 / 2)))
502 limccl 25910 . . . . . . . 8 ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ ℂ
503502, 285sselid 3981 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
504 limccl 25910 . . . . . . . 8 ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ⊆ ℂ
505504, 284sselid 3981 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
506 2cnd 12344 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
507 2pos 12369 . . . . . . . . 9 0 < 2
508507a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
509508gt0ne0d 11827 . . . . . . 7 (𝜑 → 2 ≠ 0)
510503, 505, 506, 509divdird 12081 . . . . . 6 (𝜑 → ((𝐿 + 𝑅) / 2) = ((𝐿 / 2) + (𝑅 / 2)))
511501, 510breqtrrd 5171 . . . . 5 (𝜑𝑍 ⇝ ((𝐿 + 𝑅) / 2))
512 0nn0 12541 . . . . . . . 8 0 ∈ ℕ0
51343adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
514 eqid 2737 . . . . . . . . . 10 (-π(,)π) = (-π(,)π)
515 ioossre 13448 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ ℝ
516515a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ⊆ ℝ)
51743, 516feqresmpt 6978 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (-π(,)π)) = (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)))
518 ioossicc 13473 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ (-π[,]π)
519518a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ⊆ (-π[,]π))
520 ioombl 25600 . . . . . . . . . . . . . 14 (-π(,)π) ∈ dom vol
521520a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ∈ dom vol)
52243adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
523385sselda 3983 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
524522, 523ffvelcdmd 7105 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (-π[,]π)) → (𝐹𝑥) ∈ ℝ)
52543, 385feqresmpt 6978 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (-π[,]π)) = (𝑥 ∈ (-π[,]π) ↦ (𝐹𝑥)))
526178a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ⊆ ℂ)
52743, 526fssd 6753 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℝ⟶ℂ)
528527, 385fssresd 6775 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 ↾ (-π[,]π)):(-π[,]π)⟶ℂ)
529 ioossicc 13473 . . . . . . . . . . . . . . . . . 18 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
53061rexri 11319 . . . . . . . . . . . . . . . . . . . 20 -π ∈ ℝ*
531530a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
53254rexri 11319 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ*
533532a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
53451, 52, 53fourierdlem15 46137 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
535534adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
536 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
537531, 533, 535, 536fourierdlem8 46130 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
538529, 537sstrid 3995 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
539538resabs1d 6026 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
540539, 103eqeltrd 2841 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
541539eqcomd 2743 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
542541oveq1d 7446 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
543222, 542eleqtrd 2843 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
544541oveq1d 7446 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
545233, 544eleqtrd 2843 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
54651, 52, 53, 528, 540, 543, 545fourierdlem69 46190 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (-π[,]π)) ∈ 𝐿1)
547525, 546eqeltrrd 2842 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ (𝐹𝑥)) ∈ 𝐿1)
548519, 521, 524, 547iblss 25840 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1)
549517, 548eqeltrd 2841 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
550549adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
551 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → 0 ∈ ℕ0)
552513, 514, 550, 29, 551fourierdlem16 46138 . . . . . . . . 9 ((𝜑 ∧ 0 ∈ ℕ0) → (((𝐴‘0) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ))
553552simplld 768 . . . . . . . 8 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)
554512, 553mpan2 691 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℝ)
555554rehalfcld 12513 . . . . . 6 (𝜑 → ((𝐴‘0) / 2) ∈ ℝ)
556555recnd 11289 . . . . 5 (𝜑 → ((𝐴‘0) / 2) ∈ ℂ)
557334mptex 7243 . . . . . 6 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ∈ V
558557a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ∈ V)
559 simpr 484 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
560555adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝐴‘0) / 2) ∈ ℝ)
561 fzfid 14014 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (1...𝑚) ∈ Fin)
562 simpll 767 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → 𝜑)
563 elfznn 13593 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑚) → 𝑛 ∈ ℕ)
564563adantl 481 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → 𝑛 ∈ ℕ)
565 simpl 482 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝜑)
566362nnnn0d 12587 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
567 eleq1w 2824 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘 ∈ ℕ0𝑛 ∈ ℕ0))
568567anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ0) ↔ (𝜑𝑛 ∈ ℕ0)))
569 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
570569eleq1d 2826 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝐴𝑘) ∈ ℝ ↔ (𝐴𝑛) ∈ ℝ))
571568, 570imbi12d 344 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)))
57243adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
573549adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
574 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
575572, 514, 573, 29, 574fourierdlem16 46138 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
576575simplld 768 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
577571, 576chvarvv 1998 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)
578565, 566, 577syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℝ)
579362nnred 12281 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
580579, 399remulcld 11291 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑛 · 𝑋) ∈ ℝ)
581580recoscld 16180 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
582578, 581remulcld 11291 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
583 eleq1w 2824 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ))
584583anbi2d 630 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
585 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
586585eleq1d 2826 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝐵𝑘) ∈ ℝ ↔ (𝐵𝑛) ∈ ℝ))
587584, 586imbi12d 344 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)))
58843adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
589549adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
590 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
591588, 514, 589, 452, 590fourierdlem21 46143 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((𝐵𝑘) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ ((𝐹𝑥) · (sin‘(𝑘 · 𝑥)))) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
592591simplld 768 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
593587, 592chvarvv 1998 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
594580resincld 16179 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
595593, 594remulcld 11291 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
596582, 595readdcld 11290 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
597562, 564, 596syl2anc 584 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
598561, 597fsumrecl 15770 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
599560, 598readdcld 11290 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ)
60028fvmpt2 7027 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
601559, 599, 600syl2anc 584 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
602601, 599eqeltrd 2841 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) ∈ ℝ)
603602recnd 11289 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) ∈ ℂ)
604 eqidd 2738 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
605 oveq2 7439 . . . . . . . . 9 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
606605sumeq1d 15736 . . . . . . . 8 (𝑛 = 𝑚 → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
607606adantl 481 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 = 𝑚) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
608 sumex 15724 . . . . . . . 8 Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ V
609608a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ V)
610604, 607, 559, 609fvmptd 7023 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑚) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
611560recnd 11289 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐴‘0) / 2) ∈ ℂ)
612598recnd 11289 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℂ)
613611, 612pncan2d 11622 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)) = Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
614613, 468eqtr2di 2794 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)))
615 ovex 7464 . . . . . . . . 9 (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ V
61628fvmpt2 7027 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ V) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
617559, 615, 616sylancl 586 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
618617eqcomd 2743 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑍𝑚))
619618oveq1d 7446 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)) = ((𝑍𝑚) − ((𝐴‘0) / 2)))
620610, 614, 6193eqtrd 2781 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑚) = ((𝑍𝑚) − ((𝐴‘0) / 2)))
62114, 15, 511, 556, 558, 603, 620climsubc1 15674 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
622 seqex 14044 . . . . . 6 seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ∈ V
623622a1i 11 . . . . 5 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ∈ V)
624 eqidd 2738 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
625 oveq2 7439 . . . . . . . . 9 (𝑛 = 𝑙 → (1...𝑛) = (1...𝑙))
626625sumeq1d 15736 . . . . . . . 8 (𝑛 = 𝑙 → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
627626adantl 481 . . . . . . 7 (((𝜑𝑙 ∈ ℕ) ∧ 𝑛 = 𝑙) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
628 simpr 484 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
629 fzfid 14014 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → (1...𝑙) ∈ Fin)
630 elfznn 13593 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ)
631630nnnn0d 12587 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ0)
632631, 576sylan2 593 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (𝐴𝑘) ∈ ℝ)
633630nnred 12281 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℝ)
634633adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝑙)) → 𝑘 ∈ ℝ)
635146adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝑙)) → 𝑋 ∈ ℝ)
636634, 635remulcld 11291 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝑙)) → (𝑘 · 𝑋) ∈ ℝ)
637636recoscld 16180 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (cos‘(𝑘 · 𝑋)) ∈ ℝ)
638632, 637remulcld 11291 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑙)) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
639630, 592sylan2 593 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (𝐵𝑘) ∈ ℝ)
640636resincld 16179 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (sin‘(𝑘 · 𝑋)) ∈ ℝ)
641639, 640remulcld 11291 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑙)) → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) ∈ ℝ)
642638, 641readdcld 11290 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑙)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
643642adantlr 715 . . . . . . . 8 (((𝜑𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
644629, 643fsumrecl 15770 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
645624, 627, 628, 644fvmptd 7023 . . . . . 6 ((𝜑𝑙 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑙) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
646 eleq1w 2824 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑛 ∈ ℕ ↔ 𝑙 ∈ ℕ))
647646anbi2d 630 . . . . . . . 8 (𝑛 = 𝑙 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑙 ∈ ℕ)))
648 fveq2 6906 . . . . . . . . 9 (𝑛 = 𝑙 → (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
649626, 648eqeq12d 2753 . . . . . . . 8 (𝑛 = 𝑙 → (Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛) ↔ Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙)))
650647, 649imbi12d 344 . . . . . . 7 (𝑛 = 𝑙 → (((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛)) ↔ ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))))
651 eqidd 2738 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))
652 fveq2 6906 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
653 oveq1 7438 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑗 · 𝑋) = (𝑘 · 𝑋))
654653fveq2d 6910 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (cos‘(𝑗 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
655652, 654oveq12d 7449 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
656 fveq2 6906 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
657653fveq2d 6910 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (sin‘(𝑗 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
658656, 657oveq12d 7449 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
659655, 658oveq12d 7449 . . . . . . . . . 10 (𝑗 = 𝑘 → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
660659adantl 481 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑗 = 𝑘) → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
661 elfznn 13593 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
662661adantl 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
663 simpll 767 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
664 nnnn0 12533 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
665 nn0re 12535 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
666665adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
667146adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝑋 ∈ ℝ)
668666, 667remulcld 11291 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · 𝑋) ∈ ℝ)
669668recoscld 16180 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (cos‘(𝑘 · 𝑋)) ∈ ℝ)
670576, 669remulcld 11291 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
671664, 670sylan2 593 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
672664, 668sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 · 𝑋) ∈ ℝ)
673672resincld 16179 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (sin‘(𝑘 · 𝑋)) ∈ ℝ)
674592, 673remulcld 11291 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) ∈ ℝ)
675671, 674readdcld 11290 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
676663, 662, 675syl2anc 584 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
677651, 660, 662, 676fvmptd 7023 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))‘𝑘) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
678362, 14eleqtrdi 2851 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
679676recnd 11289 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℂ)
680677, 678, 679fsumser 15766 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛))
681650, 680chvarvv 1998 . . . . . 6 ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
682645, 681eqtrd 2777 . . . . 5 ((𝜑𝑙 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑙) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
68314, 558, 623, 15, 682climeq 15603 . . . 4 (𝜑 → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ↔ seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))))
684621, 683mpbid 232 . . 3 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
68513, 684eqbrtrd 5165 . 2 (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
686 eqidd 2738 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))
687 fveq2 6906 . . . . . . . . 9 (𝑗 = 𝑛 → (𝐴𝑗) = (𝐴𝑛))
688 oveq1 7438 . . . . . . . . . 10 (𝑗 = 𝑛 → (𝑗 · 𝑋) = (𝑛 · 𝑋))
689688fveq2d 6910 . . . . . . . . 9 (𝑗 = 𝑛 → (cos‘(𝑗 · 𝑋)) = (cos‘(𝑛 · 𝑋)))
690687, 689oveq12d 7449 . . . . . . . 8 (𝑗 = 𝑛 → ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) = ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))))
691 fveq2 6906 . . . . . . . . 9 (𝑗 = 𝑛 → (𝐵𝑗) = (𝐵𝑛))
692688fveq2d 6910 . . . . . . . . 9 (𝑗 = 𝑛 → (sin‘(𝑗 · 𝑋)) = (sin‘(𝑛 · 𝑋)))
693691, 692oveq12d 7449 . . . . . . . 8 (𝑗 = 𝑛 → ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))) = ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
694690, 693oveq12d 7449 . . . . . . 7 (𝑗 = 𝑛 → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
695694adantl 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
696686, 695, 362, 596fvmptd 7023 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))‘𝑛) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
697596recnd 11289 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℂ)
69814, 15, 696, 697, 684isumclim 15793 . . . 4 (𝜑 → Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
699698oveq2d 7447 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))))
700503, 505addcld 11280 . . . . 5 (𝜑 → (𝐿 + 𝑅) ∈ ℂ)
701700halfcld 12511 . . . 4 (𝜑 → ((𝐿 + 𝑅) / 2) ∈ ℂ)
702556, 701pncan3d 11623 . . 3 (𝜑 → (((𝐴‘0) / 2) + (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) = ((𝐿 + 𝑅) / 2))
703699, 702eqtrd 2777 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
704685, 703jca 511 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  csb 3899  cun 3949  cin 3950  wss 3951  ifcif 4525  {cpr 4628   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  cres 5687  cio 6512  wf 6557  cfv 6561   Isom wiso 6562  crio 7387  (class class class)co 7431  m cmap 8866  supcsup 9480  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  +crp 13034  (,)cioo 13387  (,]cioc 13388  [,]cicc 13390  ...cfz 13547  ..^cfzo 13694  cfl 13830   mod cmo 13909  seqcseq 14042  chash 14369  abscabs 15273  cli 15520  Σcsu 15722  sincsin 16099  cosccos 16100  πcpi 16102  cnccncf 24902  volcvol 25498  𝐿1cibl 25652  citg 25653   lim climc 25897   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-t1 23322  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-ditg 25882  df-limc 25901  df-dv 25902
This theorem is referenced by:  fourierdlem113  46234
  Copyright terms: Public domain W3C validator