Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem91 Structured version   Visualization version   GIF version

Theorem fourierdlem91 46235
Description: Given a piecewise continuous function and changing the interval and the partition, the limit at the upper bound of each interval of the moved partition is still finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem91.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem91.t 𝑇 = (𝐵𝐴)
fourierdlem91.m (𝜑𝑀 ∈ ℕ)
fourierdlem91.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem91.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem91.6 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem91.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem91.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem91.c (𝜑𝐶 ∈ ℝ)
fourierdlem91.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem91.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem91.h 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem91.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem91.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem91.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem91.J 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem91.17 (𝜑𝐽 ∈ (0..^𝑁))
fourierdlem91.u 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))
fourierdlem91.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
fourierdlem91.w 𝑊 = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
Assertion
Ref Expression
fourierdlem91 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
Distinct variable groups:   𝐴,𝑓,𝑘,𝑦   𝐴,𝑖,𝑥,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖   𝐵,𝑓,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝐶,𝑓,𝑦   𝐶,𝑖,𝑚,𝑝   𝑥,𝐶   𝐷,𝑓,𝑦   𝐷,𝑖,𝑚,𝑝   𝑥,𝐷   𝑓,𝐸,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑥,𝑦   𝑓,𝐻   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥,𝑦   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑓,𝑁,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑝   𝑆,𝑓,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑓,𝑘,𝑦   𝑇,𝑖,𝑥   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑖,𝑍,𝑥,𝑦   𝜑,𝑓,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐶(𝑘)   𝐷(𝑘)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑆(𝑚)   𝑇(𝑚,𝑝)   𝑈(𝑓,𝑖,𝑘,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑦,𝑖,𝑘,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝐽(𝑓,𝑘,𝑚,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑀(𝑦,𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑊(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑍(𝑓,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem91
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem91.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem91.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
3 fourierdlem91.p . . . . . . . . . . . . . 14 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 46147 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 494 . . . . . . . . . 10 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
8 elmapi 8768 . . . . . . . . . 10 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
97, 8syl 17 . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶ℝ)
10 fzossfz 13573 . . . . . . . . . 10 (0..^𝑀) ⊆ (0...𝑀)
11 fourierdlem91.t . . . . . . . . . . . . 13 𝑇 = (𝐵𝐴)
12 fourierdlem91.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
13 fourierdlem91.J . . . . . . . . . . . . 13 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
14 fourierdlem91.i . . . . . . . . . . . . 13 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
153, 2, 1, 11, 12, 13, 14fourierdlem37 46182 . . . . . . . . . . . 12 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))})))
1615simpld 494 . . . . . . . . . . 11 (𝜑𝐼:ℝ⟶(0..^𝑀))
17 fourierdlem91.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℝ)
18 fourierdlem91.d . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ (𝐶(,)+∞))
19 elioore 13270 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
2018, 19syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℝ)
21 elioo4g 13301 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2218, 21sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2322simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐶 < 𝐷𝐷 < +∞))
2423simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 < 𝐷)
25 fourierdlem91.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
26 oveq1 7348 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
2726eleq1d 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2827rexbidv 3156 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2928cbvrabv 3405 . . . . . . . . . . . . . . . . . . 19 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
3029uneq2i 4110 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
31 fourierdlem91.n . . . . . . . . . . . . . . . . . . 19 𝑁 = ((♯‘𝐻) − 1)
32 fourierdlem91.h . . . . . . . . . . . . . . . . . . . . 21 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
3332fveq2i 6820 . . . . . . . . . . . . . . . . . . . 20 (♯‘𝐻) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
3433oveq1i 7351 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐻) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
3531, 34eqtri 2754 . . . . . . . . . . . . . . . . . 18 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
36 fourierdlem91.s . . . . . . . . . . . . . . . . . . 19 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
37 isoeq5 7250 . . . . . . . . . . . . . . . . . . . . 21 (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3832, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
3938iotabii 6461 . . . . . . . . . . . . . . . . . . 19 (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
4036, 39eqtri 2754 . . . . . . . . . . . . . . . . . 18 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
4111, 3, 2, 1, 17, 20, 24, 25, 30, 35, 40fourierdlem54 46198 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
4241simpld 494 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
4342simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ (𝑂𝑁))
4442simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
4525fourierdlem2 46147 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
4644, 45syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
4743, 46mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
4847simpld 494 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (ℝ ↑m (0...𝑁)))
49 elmapi 8768 . . . . . . . . . . . . 13 (𝑆 ∈ (ℝ ↑m (0...𝑁)) → 𝑆:(0...𝑁)⟶ℝ)
5048, 49syl 17 . . . . . . . . . . . 12 (𝜑𝑆:(0...𝑁)⟶ℝ)
51 fourierdlem91.17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (0..^𝑁))
52 elfzofz 13570 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁))
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑁))
5450, 53ffvelcdmd 7013 . . . . . . . . . . 11 (𝜑 → (𝑆𝐽) ∈ ℝ)
5516, 54ffvelcdmd 7013 . . . . . . . . . 10 (𝜑 → (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))
5610, 55sselid 3927 . . . . . . . . 9 (𝜑 → (𝐼‘(𝑆𝐽)) ∈ (0...𝑀))
579, 56ffvelcdmd 7013 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ)
5857rexrd 11157 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ*)
5958adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ*)
60 fzofzp1 13659 . . . . . . . . . 10 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝐼‘(𝑆𝐽)) + 1) ∈ (0...𝑀))
6155, 60syl 17 . . . . . . . . 9 (𝜑 → ((𝐼‘(𝑆𝐽)) + 1) ∈ (0...𝑀))
629, 61ffvelcdmd 7013 . . . . . . . 8 (𝜑 → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ)
6362rexrd 11157 . . . . . . 7 (𝜑 → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ*)
6463adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ*)
653, 2, 1fourierdlem11 46156 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
6665simp1d 1142 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
6766rexrd 11157 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
6865simp2d 1143 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
69 iocssre 13322 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
7067, 68, 69syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
7165simp3d 1144 . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
7266, 68, 71, 11, 12fourierdlem4 46149 . . . . . . . . 9 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
73 fzofzp1 13659 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁))
7451, 73syl 17 . . . . . . . . . 10 (𝜑 → (𝐽 + 1) ∈ (0...𝑁))
7550, 74ffvelcdmd 7013 . . . . . . . . 9 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ)
7672, 75ffvelcdmd 7013 . . . . . . . 8 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ (𝐴(,]𝐵))
7770, 76sseldd 3930 . . . . . . 7 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
7877adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
7966, 68iccssred 13329 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8066, 68, 71, 13fourierdlem17 46162 . . . . . . . . . 10 (𝜑𝑍:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
8172, 54ffvelcdmd 7013 . . . . . . . . . 10 (𝜑 → (𝐸‘(𝑆𝐽)) ∈ (𝐴(,]𝐵))
8280, 81ffvelcdmd 7013 . . . . . . . . 9 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ (𝐴[,]𝐵))
8379, 82sseldd 3930 . . . . . . . 8 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℝ)
8447simprrd 773 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))
85 fveq2 6817 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐽 → (𝑆𝑖) = (𝑆𝐽))
86 oveq1 7348 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐽 → (𝑖 + 1) = (𝐽 + 1))
8786fveq2d 6821 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐽 → (𝑆‘(𝑖 + 1)) = (𝑆‘(𝐽 + 1)))
8885, 87breq12d 5099 . . . . . . . . . . . . . . 15 (𝑖 = 𝐽 → ((𝑆𝑖) < (𝑆‘(𝑖 + 1)) ↔ (𝑆𝐽) < (𝑆‘(𝐽 + 1))))
8988rspccva 3571 . . . . . . . . . . . . . 14 ((∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
9084, 51, 89syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
9154, 75posdifd 11699 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐽) < (𝑆‘(𝐽 + 1)) ↔ 0 < ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
9290, 91mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 < ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
93 eleq1 2819 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝑗 ∈ (0..^𝑁) ↔ 𝐽 ∈ (0..^𝑁)))
9493anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → ((𝜑𝑗 ∈ (0..^𝑁)) ↔ (𝜑𝐽 ∈ (0..^𝑁))))
95 oveq1 7348 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1))
9695fveq2d 6821 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝐽 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝐽 + 1)))
9796fveq2d 6821 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝐽 → (𝐸‘(𝑆‘(𝑗 + 1))) = (𝐸‘(𝑆‘(𝐽 + 1))))
98 fveq2 6817 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝐽 → (𝑆𝑗) = (𝑆𝐽))
9998fveq2d 6821 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝐽 → (𝐸‘(𝑆𝑗)) = (𝐸‘(𝑆𝐽)))
10099fveq2d 6821 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝐽 → (𝑍‘(𝐸‘(𝑆𝑗))) = (𝑍‘(𝐸‘(𝑆𝐽))))
10197, 100oveq12d 7359 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))))
10296, 98oveq12d 7359 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
103101, 102eqeq12d 2747 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
10494, 103imbi12d 344 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → (((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗))) ↔ ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))))
10511oveq2i 7352 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 · 𝑇) = (𝑘 · (𝐵𝐴))
106105oveq2i 7352 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵𝐴)))
107106eleq1i 2822 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
108107rexbii 3079 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
109108rgenw 3051 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
110 rabbi 3425 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄) ↔ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
111109, 110mpbi 230 . . . . . . . . . . . . . . . . . . . 20 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}
112111uneq2i 4110 . . . . . . . . . . . . . . . . . . 19 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
113112fveq2i 6820 . . . . . . . . . . . . . . . . . 18 (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))
114113oveq1i 7351 . . . . . . . . . . . . . . . . 17 ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
11535, 114eqtri 2754 . . . . . . . . . . . . . . . 16 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
116 isoeq5 7250 . . . . . . . . . . . . . . . . . . 19 (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))))
117112, 116ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
118117iotabii 6461 . . . . . . . . . . . . . . . . 17 (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
11940, 118eqtri 2754 . . . . . . . . . . . . . . . 16 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
120 eqid 2731 . . . . . . . . . . . . . . . 16 ((𝑆𝑗) + (𝐵 − (𝐸‘(𝑆𝑗)))) = ((𝑆𝑗) + (𝐵 − (𝐸‘(𝑆𝑗))))
1213, 11, 2, 1, 17, 18, 25, 115, 119, 12, 13, 120fourierdlem65 46209 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)))
122104, 121vtoclg 3507 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
123122anabsi7 671 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
12451, 123mpdan 687 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
12592, 124breqtrrd 5114 . . . . . . . . . . 11 (𝜑 → 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))))
12683, 77posdifd 11699 . . . . . . . . . . 11 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))) ↔ 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽))))))
127125, 126mpbird 257 . . . . . . . . . 10 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))))
128100, 97oveq12d 7359 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))
12998fveq2d 6821 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝐼‘(𝑆𝑗)) = (𝐼‘(𝑆𝐽)))
130129fveq2d 6821 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑄‘(𝐼‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝐽))))
131129oveq1d 7356 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → ((𝐼‘(𝑆𝑗)) + 1) = ((𝐼‘(𝑆𝐽)) + 1))
132131fveq2d 6821 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑄‘((𝐼‘(𝑆𝑗)) + 1)) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
133130, 132oveq12d 7359 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))) = ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
134128, 133sseq12d 3963 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))) ↔ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
13594, 134imbi12d 344 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → (((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1)))) ↔ ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))))
13632, 30eqtri 2754 . . . . . . . . . . . . . 14 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
137 eqid 2731 . . . . . . . . . . . . . 14 ((𝑆𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = ((𝑆𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))
13811, 3, 2, 1, 17, 20, 24, 25, 136, 31, 36, 12, 13, 137, 14fourierdlem79 46223 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))))
139135, 138vtoclg 3507 . . . . . . . . . . . 12 (𝐽 ∈ (0..^𝑁) → ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
140139anabsi7 671 . . . . . . . . . . 11 ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
14151, 140mpdan 687 . . . . . . . . . 10 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
14257, 62, 83, 77, 127, 141fourierdlem10 46155 . . . . . . . . 9 (𝜑 → ((𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))) ∧ (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
143142simpld 494 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))))
14457, 83, 77, 143, 127lelttrd 11266 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))))
145144adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))))
14662adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ)
147142simprd 495 . . . . . . . 8 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
148147adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
149 neqne 2936 . . . . . . . . 9 (¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) → (𝐸‘(𝑆‘(𝐽 + 1))) ≠ (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
150149necomd 2983 . . . . . . . 8 (¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ≠ (𝐸‘(𝑆‘(𝐽 + 1))))
151150adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ≠ (𝐸‘(𝑆‘(𝐽 + 1))))
15278, 146, 148, 151leneltd 11262 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
15359, 64, 78, 145, 152eliood 45538 . . . . 5 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
154 fvres 6836 . . . . 5 ((𝐸‘(𝑆‘(𝐽 + 1))) ∈ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))) = (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1)))))
155153, 154syl 17 . . . 4 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))) = (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1)))))
156155eqcomd 2737 . . 3 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))))
157156ifeq2da 4503 . 2 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) = if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))))
158 fourierdlem91.f . . . . . 6 (𝜑𝐹:ℝ⟶ℂ)
159 fdm 6655 . . . . . . . 8 (𝐹:ℝ⟶ℂ → dom 𝐹 = ℝ)
160158, 159syl 17 . . . . . . 7 (𝜑 → dom 𝐹 = ℝ)
161160feq2d 6630 . . . . . 6 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:ℝ⟶ℂ))
162158, 161mpbird 257 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℂ)
163 ioosscn 13303 . . . . . 6 ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ
164163a1i 11 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ)
165 ioossre 13302 . . . . . 6 ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℝ
166165, 160sseqtrrid 3973 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ dom 𝐹)
167 fourierdlem91.u . . . . . . 7 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))
16875, 77resubcld 11540 . . . . . . 7 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ)
169167, 168eqeltrid 2835 . . . . . 6 (𝜑𝑈 ∈ ℝ)
170169recnd 11135 . . . . 5 (𝜑𝑈 ∈ ℂ)
171 eqid 2731 . . . . 5 {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}
17283, 77, 169iooshift 45562 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)})
173 ioossre 13302 . . . . . . 7 (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ ℝ
174173, 160sseqtrrid 3973 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ dom 𝐹)
175172, 174eqsstrrd 3965 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} ⊆ dom 𝐹)
176 elioore 13270 . . . . . 6 (𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑦 ∈ ℝ)
17768, 66resubcld 11540 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴) ∈ ℝ)
17811, 177eqeltrid 2835 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ)
179178recnd 11135 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
18066, 68posdifd 11699 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
18171, 180mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝐵𝐴))
182181, 11breqtrrdi 5128 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑇)
183182gt0ne0d 11676 . . . . . . . . . . . 12 (𝜑𝑇 ≠ 0)
184170, 179, 183divcan1d 11893 . . . . . . . . . . 11 (𝜑 → ((𝑈 / 𝑇) · 𝑇) = 𝑈)
185184eqcomd 2737 . . . . . . . . . 10 (𝜑𝑈 = ((𝑈 / 𝑇) · 𝑇))
186185oveq2d 7357 . . . . . . . . 9 (𝜑 → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇)))
187186adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇)))
188187fveq2d 6821 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))))
189158adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
190178adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℝ)
19177recnd 11135 . . . . . . . . . . . . . 14 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
19275recnd 11135 . . . . . . . . . . . . . 14 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ)
193191, 192negsubdi2d 11483 . . . . . . . . . . . . 13 (𝜑 → -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
194193eqcomd 2737 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) = -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))))
195194oveq1d 7356 . . . . . . . . . . 11 (𝜑 → (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
196167oveq1i 7351 . . . . . . . . . . . 12 (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇)
197196a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇))
19812a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
199 id 22 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1)))
200 oveq2 7349 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵𝑥) = (𝐵 − (𝑆‘(𝐽 + 1))))
201200oveq1d 7356 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))
202201fveq2d 6821 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
203202oveq1d 7356 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
204199, 203oveq12d 7359 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
205204adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
20668, 75resubcld 11540 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ)
207206, 178, 183redivcld 11944 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ)
208207flcld 13697 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ)
209208zred 12572 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ)
210209, 178remulcld 11137 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ)
21175, 210readdcld 11136 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ)
212198, 205, 75, 211fvmptd 6931 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
213212oveq1d 7356 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))))
214208zcnd 12573 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℂ)
215214, 179mulcld 11127 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℂ)
216192, 215pncan2d 11469 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
217213, 216eqtrd 2766 . . . . . . . . . . . . 13 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
218217, 215eqeltrd 2831 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℂ)
219218, 179, 183divnegd 11905 . . . . . . . . . . 11 (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
220195, 197, 2193eqtr4d 2776 . . . . . . . . . 10 (𝜑 → (𝑈 / 𝑇) = -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
221217oveq1d 7356 . . . . . . . . . . . . 13 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇))
222214, 179, 183divcan4d 11898 . . . . . . . . . . . . 13 (𝜑 → (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
223221, 222eqtrd 2766 . . . . . . . . . . . 12 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
224223, 208eqeltrd 2831 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ)
225224znegcld 12574 . . . . . . . . . 10 (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ)
226220, 225eqeltrd 2831 . . . . . . . . 9 (𝜑 → (𝑈 / 𝑇) ∈ ℤ)
227226adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑈 / 𝑇) ∈ ℤ)
228 simpr 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
229 fourierdlem91.6 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
230229adantlr 715 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
231189, 190, 227, 228, 230fperiodmul 45345 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))) = (𝐹𝑦))
232188, 231eqtrd 2766 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹𝑦))
233176, 232sylan2 593 . . . . 5 ((𝜑𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) → (𝐹‘(𝑦 + 𝑈)) = (𝐹𝑦))
2346simprrd 773 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
235 fveq2 6817 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑄𝑖) = (𝑄‘(𝐼‘(𝑆𝐽))))
236 oveq1 7348 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑖 + 1) = ((𝐼‘(𝑆𝐽)) + 1))
237236fveq2d 6821 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
238235, 237breq12d 5099 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
239238rspccva 3571 . . . . . . . 8 ((∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)) ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
240234, 55, 239syl2anc 584 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
24155ancli 548 . . . . . . . 8 (𝜑 → (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)))
242 eleq1 2819 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑖 ∈ (0..^𝑀) ↔ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)))
243242anbi2d 630 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))))
244235, 237oveq12d 7359 . . . . . . . . . . . 12 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
245244reseq2d 5923 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
246244oveq1d 7356 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))
247245, 246eleq12d 2825 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ)))
248243, 247imbi12d 344 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))))
249 fourierdlem91.fcn . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
250248, 249vtoclg 3507 . . . . . . . 8 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ)))
25155, 241, 250sylc 65 . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))
252 nfv 1915 . . . . . . . . . 10 𝑖(𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))
253 fourierdlem91.w . . . . . . . . . . . . 13 𝑊 = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
254 nfmpt1 5185 . . . . . . . . . . . . 13 𝑖(𝑖 ∈ (0..^𝑀) ↦ 𝐿)
255253, 254nfcxfr 2892 . . . . . . . . . . . 12 𝑖𝑊
256 nfcv 2894 . . . . . . . . . . . 12 𝑖(𝐼‘(𝑆𝐽))
257255, 256nffv 6827 . . . . . . . . . . 11 𝑖(𝑊‘(𝐼‘(𝑆𝐽)))
258257nfel1 2911 . . . . . . . . . 10 𝑖(𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
259252, 258nfim 1897 . . . . . . . . 9 𝑖((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
260243biimpar 477 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝜑𝑖 ∈ (0..^𝑀)))
2612603adant2 1131 . . . . . . . . . . . . 13 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝜑𝑖 ∈ (0..^𝑀)))
262 fourierdlem91.l . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
263261, 262syl 17 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
264 fveq2 6817 . . . . . . . . . . . . . . . 16 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑊𝑖) = (𝑊‘(𝐼‘(𝑆𝐽))))
265264eqcomd 2737 . . . . . . . . . . . . . . 15 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑊‘(𝐼‘(𝑆𝐽))) = (𝑊𝑖))
266265adantr 480 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) = (𝑊𝑖))
267260simprd 495 . . . . . . . . . . . . . . 15 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝑖 ∈ (0..^𝑀))
268 elex 3457 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) → 𝐿 ∈ V)
269260, 262, 2683syl 18 . . . . . . . . . . . . . . 15 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝐿 ∈ V)
270253fvmpt2 6935 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ 𝐿 ∈ V) → (𝑊𝑖) = 𝐿)
271267, 269, 270syl2anc 584 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊𝑖) = 𝐿)
272266, 271eqtrd 2766 . . . . . . . . . . . . 13 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) = 𝐿)
2732723adant2 1131 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) = 𝐿)
274245, 237oveq12d 7359 . . . . . . . . . . . . . 14 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
275274eqcomd 2737 . . . . . . . . . . . . 13 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2762753ad2ant1 1133 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
277263, 273, 2763eltr4d 2846 . . . . . . . . . . 11 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
2782773exp 1119 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))))
2792622a1i 12 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) → ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))))
280278, 279impbid 212 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ↔ ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))))
281259, 280, 262vtoclg1f 3522 . . . . . . . 8 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
28255, 241, 281sylc 65 . . . . . . 7 (𝜑 → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
283 eqid 2731 . . . . . . 7 if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) = if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))))
284 eqid 2731 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))) ∪ {(𝑄‘((𝐼‘(𝑆𝐽)) + 1))})) = ((TopOpen‘ℂfld) ↾t (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))) ∪ {(𝑄‘((𝐼‘(𝑆𝐽)) + 1))}))
28557, 62, 240, 251, 282, 83, 77, 127, 141, 283, 284fourierdlem33 46178 . . . . . 6 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))))
286141resabs1d 5952 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))))
287286oveq1d 7356 . . . . . 6 (𝜑 → (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))))
288285, 287eleqtrd 2833 . . . . 5 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))))
289162, 164, 166, 170, 171, 175, 233, 288limcperiod 45668 . . . 4 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)))
290167oveq2i 7352 . . . . . 6 ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
291191, 192pncan3d 11470 . . . . . 6 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆‘(𝐽 + 1)))
292290, 291eqtrid 2778 . . . . 5 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = (𝑆‘(𝐽 + 1)))
293292oveq2d 7357 . . . 4 (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆‘(𝐽 + 1))))
294289, 293eleqtrd 2833 . . 3 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆‘(𝐽 + 1))))
295167oveq2i 7352 . . . . . . . . 9 ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
296295a1i 11 . . . . . . . 8 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))))
29717, 20iccssred 13329 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
298 ax-resscn 11058 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
299297, 298sstrdi 3942 . . . . . . . . . . . . . 14 (𝜑 → (𝐶[,]𝐷) ⊆ ℂ)
30025, 44, 43fourierdlem15 46160 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
301300, 53ffvelcdmd 7013 . . . . . . . . . . . . . 14 (𝜑 → (𝑆𝐽) ∈ (𝐶[,]𝐷))
302299, 301sseldd 3930 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐽) ∈ ℂ)
303192, 302subcld 11467 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) ∈ ℂ)
30483recnd 11135 . . . . . . . . . . . 12 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℂ)
305191, 303, 304subsub23d 45328 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (𝑍‘(𝐸‘(𝑆𝐽))) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
306124, 305mpbird 257 . . . . . . . . . 10 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (𝑍‘(𝐸‘(𝑆𝐽))))
307306eqcomd 2737 . . . . . . . . 9 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
308307oveq1d 7356 . . . . . . . 8 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))))
309191, 303subcld 11467 . . . . . . . . . 10 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) ∈ ℂ)
310309, 192, 191addsub12d 11490 . . . . . . . . 9 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))))
311191, 303, 191sub32d 11499 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
312191subidd 11455 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = 0)
313312oveq1d 7356 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
314 df-neg 11342 . . . . . . . . . . . 12 -((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
315192, 302negsubdi2d 11483 . . . . . . . . . . . 12 (𝜑 → -((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
316314, 315eqtr3id 2780 . . . . . . . . . . 11 (𝜑 → (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
317311, 313, 3163eqtrd 2770 . . . . . . . . . 10 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
318317oveq2d 7357 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + ((𝑆𝐽) − (𝑆‘(𝐽 + 1)))))
319192, 302pncan3d 11470 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((𝑆𝐽) − (𝑆‘(𝐽 + 1)))) = (𝑆𝐽))
320310, 318, 3193eqtrd 2770 . . . . . . . 8 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆𝐽))
321296, 308, 3203eqtrd 2770 . . . . . . 7 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = (𝑆𝐽))
322321, 292oveq12d 7359 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))))
323172, 322eqtr3d 2768 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))))
324323reseq2d 5923 . . . 4 (𝜑 → (𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) = (𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))))
325324oveq1d 7356 . . 3 (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆‘(𝐽 + 1))) = ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
326294, 325eleqtrd 2833 . 2 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
327157, 326eqeltrd 2831 1 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cun 3895  wss 3897  ifcif 4470  {csn 4571  {cpr 4573   class class class wbr 5086  cmpt 5167  dom cdm 5611  ran crn 5612  cres 5613  cio 6430  wf 6472  cfv 6476   Isom wiso 6477  (class class class)co 7341  m cmap 8745  supcsup 9319  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  +∞cpnf 11138  *cxr 11140   < clt 11141  cle 11142  cmin 11339  -cneg 11340   / cdiv 11769  cn 12120  2c2 12175  cz 12463  (,)cioo 13240  (,]cioc 13241  [,]cicc 13243  ...cfz 13402  ..^cfzo 13549  cfl 13689  chash 14232  t crest 17319  TopOpenctopn 17320  fldccnfld 21286  cnccncf 24791   lim climc 25785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-mulr 17170  df-starv 17171  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-rest 17321  df-topn 17322  df-topgen 17342  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-cn 23137  df-cnp 23138  df-cmp 23297  df-xms 24230  df-ms 24231  df-cncf 24793  df-limc 25789
This theorem is referenced by:  fourierdlem99  46243  fourierdlem100  46244  fourierdlem107  46251  fourierdlem109  46253
  Copyright terms: Public domain W3C validator