Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem91 Structured version   Visualization version   GIF version

Theorem fourierdlem91 42038
Description: Given a piecewise continuous function and changing the interval and the partition, the limit at the upper bound of each interval of the moved partition is still finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem91.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem91.t 𝑇 = (𝐵𝐴)
fourierdlem91.m (𝜑𝑀 ∈ ℕ)
fourierdlem91.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem91.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem91.6 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem91.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem91.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem91.c (𝜑𝐶 ∈ ℝ)
fourierdlem91.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem91.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem91.h 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem91.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem91.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem91.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem91.J 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem91.17 (𝜑𝐽 ∈ (0..^𝑁))
fourierdlem91.u 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))
fourierdlem91.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
fourierdlem91.w 𝑊 = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
Assertion
Ref Expression
fourierdlem91 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
Distinct variable groups:   𝐴,𝑓,𝑘,𝑦   𝐴,𝑖,𝑥,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖   𝐵,𝑓,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝐶,𝑓,𝑦   𝐶,𝑖,𝑚,𝑝   𝑥,𝐶   𝐷,𝑓,𝑦   𝐷,𝑖,𝑚,𝑝   𝑥,𝐷   𝑓,𝐸,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑥,𝑦   𝑓,𝐻   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥,𝑦   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑓,𝑁,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑝   𝑆,𝑓,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑓,𝑘,𝑦   𝑇,𝑖,𝑥   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑖,𝑍,𝑥,𝑦   𝜑,𝑓,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐶(𝑘)   𝐷(𝑘)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑆(𝑚)   𝑇(𝑚,𝑝)   𝑈(𝑓,𝑖,𝑘,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑦,𝑖,𝑘,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝐽(𝑓,𝑘,𝑚,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑀(𝑦,𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑊(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑍(𝑓,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem91
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem91.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem91.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
3 fourierdlem91.p . . . . . . . . . . . . . 14 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 41950 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 233 . . . . . . . . . . 11 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 495 . . . . . . . . . 10 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
8 elmapi 8281 . . . . . . . . . 10 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
97, 8syl 17 . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶ℝ)
10 fzossfz 12906 . . . . . . . . . 10 (0..^𝑀) ⊆ (0...𝑀)
11 fourierdlem91.t . . . . . . . . . . . . 13 𝑇 = (𝐵𝐴)
12 fourierdlem91.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
13 fourierdlem91.J . . . . . . . . . . . . 13 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
14 fourierdlem91.i . . . . . . . . . . . . 13 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
153, 2, 1, 11, 12, 13, 14fourierdlem37 41985 . . . . . . . . . . . 12 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))})))
1615simpld 495 . . . . . . . . . . 11 (𝜑𝐼:ℝ⟶(0..^𝑀))
17 fourierdlem91.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℝ)
18 fourierdlem91.d . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ (𝐶(,)+∞))
19 elioore 12618 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
2018, 19syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℝ)
21 elioo4g 12647 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2218, 21sylib 219 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2322simprd 496 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐶 < 𝐷𝐷 < +∞))
2423simpld 495 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 < 𝐷)
25 fourierdlem91.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
26 oveq1 7026 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
2726eleq1d 2866 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2827rexbidv 3259 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2928cbvrabv 3433 . . . . . . . . . . . . . . . . . . 19 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
3029uneq2i 4059 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
31 fourierdlem91.n . . . . . . . . . . . . . . . . . . 19 𝑁 = ((♯‘𝐻) − 1)
32 fourierdlem91.h . . . . . . . . . . . . . . . . . . . . 21 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
3332fveq2i 6544 . . . . . . . . . . . . . . . . . . . 20 (♯‘𝐻) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
3433oveq1i 7029 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐻) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
3531, 34eqtri 2818 . . . . . . . . . . . . . . . . . 18 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
36 fourierdlem91.s . . . . . . . . . . . . . . . . . . 19 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
37 isoeq5 6940 . . . . . . . . . . . . . . . . . . . . 21 (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3832, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
3938iotabii 6214 . . . . . . . . . . . . . . . . . . 19 (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
4036, 39eqtri 2818 . . . . . . . . . . . . . . . . . 18 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
4111, 3, 2, 1, 17, 20, 24, 25, 30, 35, 40fourierdlem54 42001 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
4241simpld 495 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
4342simprd 496 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ (𝑂𝑁))
4442simpld 495 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
4525fourierdlem2 41950 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
4644, 45syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
4743, 46mpbid 233 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
4847simpld 495 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)))
49 elmapi 8281 . . . . . . . . . . . . 13 (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) → 𝑆:(0...𝑁)⟶ℝ)
5048, 49syl 17 . . . . . . . . . . . 12 (𝜑𝑆:(0...𝑁)⟶ℝ)
51 fourierdlem91.17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (0..^𝑁))
52 elfzofz 12903 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁))
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑁))
5450, 53ffvelrnd 6720 . . . . . . . . . . 11 (𝜑 → (𝑆𝐽) ∈ ℝ)
5516, 54ffvelrnd 6720 . . . . . . . . . 10 (𝜑 → (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))
5610, 55sseldi 3889 . . . . . . . . 9 (𝜑 → (𝐼‘(𝑆𝐽)) ∈ (0...𝑀))
579, 56ffvelrnd 6720 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ)
5857rexrd 10540 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ*)
5958adantr 481 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ*)
60 fzofzp1 12984 . . . . . . . . . 10 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝐼‘(𝑆𝐽)) + 1) ∈ (0...𝑀))
6155, 60syl 17 . . . . . . . . 9 (𝜑 → ((𝐼‘(𝑆𝐽)) + 1) ∈ (0...𝑀))
629, 61ffvelrnd 6720 . . . . . . . 8 (𝜑 → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ)
6362rexrd 10540 . . . . . . 7 (𝜑 → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ*)
6463adantr 481 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ*)
653, 2, 1fourierdlem11 41959 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
6665simp1d 1135 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
6766rexrd 10540 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
6865simp2d 1136 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
69 iocssre 12666 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
7067, 68, 69syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
7165simp3d 1137 . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
7266, 68, 71, 11, 12fourierdlem4 41952 . . . . . . . . 9 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
73 fzofzp1 12984 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁))
7451, 73syl 17 . . . . . . . . . 10 (𝜑 → (𝐽 + 1) ∈ (0...𝑁))
7550, 74ffvelrnd 6720 . . . . . . . . 9 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ)
7672, 75ffvelrnd 6720 . . . . . . . 8 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ (𝐴(,]𝐵))
7770, 76sseldd 3892 . . . . . . 7 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
7877adantr 481 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
7966, 68iccssred 41335 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8066, 68, 71, 13fourierdlem17 41965 . . . . . . . . . 10 (𝜑𝑍:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
8172, 54ffvelrnd 6720 . . . . . . . . . 10 (𝜑 → (𝐸‘(𝑆𝐽)) ∈ (𝐴(,]𝐵))
8280, 81ffvelrnd 6720 . . . . . . . . 9 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ (𝐴[,]𝐵))
8379, 82sseldd 3892 . . . . . . . 8 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℝ)
8447simprrd 770 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))
85 fveq2 6541 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐽 → (𝑆𝑖) = (𝑆𝐽))
86 oveq1 7026 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐽 → (𝑖 + 1) = (𝐽 + 1))
8786fveq2d 6545 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐽 → (𝑆‘(𝑖 + 1)) = (𝑆‘(𝐽 + 1)))
8885, 87breq12d 4977 . . . . . . . . . . . . . . 15 (𝑖 = 𝐽 → ((𝑆𝑖) < (𝑆‘(𝑖 + 1)) ↔ (𝑆𝐽) < (𝑆‘(𝐽 + 1))))
8988rspccva 3556 . . . . . . . . . . . . . 14 ((∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
9084, 51, 89syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
9154, 75posdifd 11077 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐽) < (𝑆‘(𝐽 + 1)) ↔ 0 < ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
9290, 91mpbid 233 . . . . . . . . . . . 12 (𝜑 → 0 < ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
93 eleq1 2869 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝑗 ∈ (0..^𝑁) ↔ 𝐽 ∈ (0..^𝑁)))
9493anbi2d 628 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → ((𝜑𝑗 ∈ (0..^𝑁)) ↔ (𝜑𝐽 ∈ (0..^𝑁))))
95 oveq1 7026 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1))
9695fveq2d 6545 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝐽 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝐽 + 1)))
9796fveq2d 6545 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝐽 → (𝐸‘(𝑆‘(𝑗 + 1))) = (𝐸‘(𝑆‘(𝐽 + 1))))
98 fveq2 6541 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝐽 → (𝑆𝑗) = (𝑆𝐽))
9998fveq2d 6545 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝐽 → (𝐸‘(𝑆𝑗)) = (𝐸‘(𝑆𝐽)))
10099fveq2d 6545 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝐽 → (𝑍‘(𝐸‘(𝑆𝑗))) = (𝑍‘(𝐸‘(𝑆𝐽))))
10197, 100oveq12d 7037 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))))
10296, 98oveq12d 7037 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
103101, 102eqeq12d 2809 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
10494, 103imbi12d 346 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → (((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗))) ↔ ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))))
10511oveq2i 7030 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 · 𝑇) = (𝑘 · (𝐵𝐴))
106105oveq2i 7030 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵𝐴)))
107106eleq1i 2872 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
108107rexbii 3210 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
109108rgenw 3116 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
110 rabbi 3341 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄) ↔ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
111109, 110mpbi 231 . . . . . . . . . . . . . . . . . . . 20 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}
112111uneq2i 4059 . . . . . . . . . . . . . . . . . . 19 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
113112fveq2i 6544 . . . . . . . . . . . . . . . . . 18 (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))
114113oveq1i 7029 . . . . . . . . . . . . . . . . 17 ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
11535, 114eqtri 2818 . . . . . . . . . . . . . . . 16 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
116 isoeq5 6940 . . . . . . . . . . . . . . . . . . 19 (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))))
117112, 116ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
118117iotabii 6214 . . . . . . . . . . . . . . . . 17 (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
11940, 118eqtri 2818 . . . . . . . . . . . . . . . 16 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
120 eqid 2794 . . . . . . . . . . . . . . . 16 ((𝑆𝑗) + (𝐵 − (𝐸‘(𝑆𝑗)))) = ((𝑆𝑗) + (𝐵 − (𝐸‘(𝑆𝑗))))
1213, 11, 2, 1, 17, 18, 25, 115, 119, 12, 13, 120fourierdlem65 42012 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)))
122104, 121vtoclg 3509 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
123122anabsi7 667 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
12451, 123mpdan 683 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
12592, 124breqtrrd 4992 . . . . . . . . . . 11 (𝜑 → 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))))
12683, 77posdifd 11077 . . . . . . . . . . 11 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))) ↔ 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽))))))
127125, 126mpbird 258 . . . . . . . . . 10 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))))
128100, 97oveq12d 7037 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))
12998fveq2d 6545 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝐼‘(𝑆𝑗)) = (𝐼‘(𝑆𝐽)))
130129fveq2d 6545 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑄‘(𝐼‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝐽))))
131129oveq1d 7034 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → ((𝐼‘(𝑆𝑗)) + 1) = ((𝐼‘(𝑆𝐽)) + 1))
132131fveq2d 6545 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑄‘((𝐼‘(𝑆𝑗)) + 1)) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
133130, 132oveq12d 7037 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))) = ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
134128, 133sseq12d 3923 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))) ↔ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
13594, 134imbi12d 346 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → (((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1)))) ↔ ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))))
13632, 30eqtri 2818 . . . . . . . . . . . . . 14 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
137 eqid 2794 . . . . . . . . . . . . . 14 ((𝑆𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = ((𝑆𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))
13811, 3, 2, 1, 17, 20, 24, 25, 136, 31, 36, 12, 13, 137, 14fourierdlem79 42026 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))))
139135, 138vtoclg 3509 . . . . . . . . . . . 12 (𝐽 ∈ (0..^𝑁) → ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
140139anabsi7 667 . . . . . . . . . . 11 ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
14151, 140mpdan 683 . . . . . . . . . 10 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
14257, 62, 83, 77, 127, 141fourierdlem10 41958 . . . . . . . . 9 (𝜑 → ((𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))) ∧ (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
143142simpld 495 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))))
14457, 83, 77, 143, 127lelttrd 10647 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))))
145144adantr 481 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))))
14662adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ)
147142simprd 496 . . . . . . . 8 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
148147adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
149 neqne 2991 . . . . . . . . 9 (¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) → (𝐸‘(𝑆‘(𝐽 + 1))) ≠ (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
150149necomd 3038 . . . . . . . 8 (¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ≠ (𝐸‘(𝑆‘(𝐽 + 1))))
151150adantl 482 . . . . . . 7 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ≠ (𝐸‘(𝑆‘(𝐽 + 1))))
15278, 146, 148, 151leneltd 10643 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
15359, 64, 78, 145, 152eliood 41328 . . . . 5 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
154 fvres 6560 . . . . 5 ((𝐸‘(𝑆‘(𝐽 + 1))) ∈ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))) = (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1)))))
155153, 154syl 17 . . . 4 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))) = (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1)))))
156155eqcomd 2800 . . 3 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))))
157156ifeq2da 4414 . 2 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) = if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))))
158 fourierdlem91.f . . . . . 6 (𝜑𝐹:ℝ⟶ℂ)
159 fdm 6393 . . . . . . . 8 (𝐹:ℝ⟶ℂ → dom 𝐹 = ℝ)
160158, 159syl 17 . . . . . . 7 (𝜑 → dom 𝐹 = ℝ)
161160feq2d 6371 . . . . . 6 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:ℝ⟶ℂ))
162158, 161mpbird 258 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℂ)
163 ioosscn 41324 . . . . . 6 ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ
164163a1i 11 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ)
165 ioossre 12648 . . . . . 6 ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℝ
166165, 160sseqtrrid 3943 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ dom 𝐹)
167 fourierdlem91.u . . . . . . 7 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))
16875, 77resubcld 10918 . . . . . . 7 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ)
169167, 168syl5eqel 2886 . . . . . 6 (𝜑𝑈 ∈ ℝ)
170169recnd 10518 . . . . 5 (𝜑𝑈 ∈ ℂ)
171 eqid 2794 . . . . 5 {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}
17283, 77, 169iooshift 41353 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)})
173 ioossre 12648 . . . . . . 7 (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ ℝ
174173, 160sseqtrrid 3943 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ dom 𝐹)
175172, 174eqsstrrd 3929 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} ⊆ dom 𝐹)
176 elioore 12618 . . . . . 6 (𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑦 ∈ ℝ)
17768, 66resubcld 10918 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴) ∈ ℝ)
17811, 177syl5eqel 2886 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ)
179178recnd 10518 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
18066, 68posdifd 11077 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
18171, 180mpbid 233 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝐵𝐴))
182181, 11syl6breqr 5006 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑇)
183182gt0ne0d 11054 . . . . . . . . . . . 12 (𝜑𝑇 ≠ 0)
184170, 179, 183divcan1d 11267 . . . . . . . . . . 11 (𝜑 → ((𝑈 / 𝑇) · 𝑇) = 𝑈)
185184eqcomd 2800 . . . . . . . . . 10 (𝜑𝑈 = ((𝑈 / 𝑇) · 𝑇))
186185oveq2d 7035 . . . . . . . . 9 (𝜑 → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇)))
187186adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇)))
188187fveq2d 6545 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))))
189158adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
190178adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℝ)
19177recnd 10518 . . . . . . . . . . . . . 14 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
19275recnd 10518 . . . . . . . . . . . . . 14 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ)
193191, 192negsubdi2d 10863 . . . . . . . . . . . . 13 (𝜑 → -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
194193eqcomd 2800 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) = -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))))
195194oveq1d 7034 . . . . . . . . . . 11 (𝜑 → (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
196167oveq1i 7029 . . . . . . . . . . . 12 (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇)
197196a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇))
19812a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
199 id 22 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1)))
200 oveq2 7027 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵𝑥) = (𝐵 − (𝑆‘(𝐽 + 1))))
201200oveq1d 7034 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))
202201fveq2d 6545 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
203202oveq1d 7034 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
204199, 203oveq12d 7037 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
205204adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
20668, 75resubcld 10918 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ)
207206, 178, 183redivcld 11318 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ)
208207flcld 13018 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ)
209208zred 11937 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ)
210209, 178remulcld 10520 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ)
21175, 210readdcld 10519 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ)
212198, 205, 75, 211fvmptd 6644 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
213212oveq1d 7034 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))))
214208zcnd 11938 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℂ)
215214, 179mulcld 10510 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℂ)
216192, 215pncan2d 10849 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
217213, 216eqtrd 2830 . . . . . . . . . . . . 13 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
218217, 215eqeltrd 2882 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℂ)
219218, 179, 183divnegd 11279 . . . . . . . . . . 11 (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
220195, 197, 2193eqtr4d 2840 . . . . . . . . . 10 (𝜑 → (𝑈 / 𝑇) = -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
221217oveq1d 7034 . . . . . . . . . . . . 13 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇))
222214, 179, 183divcan4d 11272 . . . . . . . . . . . . 13 (𝜑 → (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
223221, 222eqtrd 2830 . . . . . . . . . . . 12 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
224223, 208eqeltrd 2882 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ)
225224znegcld 11939 . . . . . . . . . 10 (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ)
226220, 225eqeltrd 2882 . . . . . . . . 9 (𝜑 → (𝑈 / 𝑇) ∈ ℤ)
227226adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑈 / 𝑇) ∈ ℤ)
228 simpr 485 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
229 fourierdlem91.6 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
230229adantlr 711 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
231189, 190, 227, 228, 230fperiodmul 41125 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))) = (𝐹𝑦))
232188, 231eqtrd 2830 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹𝑦))
233176, 232sylan2 592 . . . . 5 ((𝜑𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) → (𝐹‘(𝑦 + 𝑈)) = (𝐹𝑦))
2346simprrd 770 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
235 fveq2 6541 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑄𝑖) = (𝑄‘(𝐼‘(𝑆𝐽))))
236 oveq1 7026 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑖 + 1) = ((𝐼‘(𝑆𝐽)) + 1))
237236fveq2d 6545 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
238235, 237breq12d 4977 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
239238rspccva 3556 . . . . . . . 8 ((∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)) ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
240234, 55, 239syl2anc 584 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
24155ancli 549 . . . . . . . 8 (𝜑 → (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)))
242 eleq1 2869 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑖 ∈ (0..^𝑀) ↔ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)))
243242anbi2d 628 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))))
244235, 237oveq12d 7037 . . . . . . . . . . . 12 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
245244reseq2d 5737 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
246244oveq1d 7034 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))
247245, 246eleq12d 2876 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ)))
248243, 247imbi12d 346 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))))
249 fourierdlem91.fcn . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
250248, 249vtoclg 3509 . . . . . . . 8 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ)))
25155, 241, 250sylc 65 . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))
252 nfv 1893 . . . . . . . . . 10 𝑖(𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))
253 fourierdlem91.w . . . . . . . . . . . . 13 𝑊 = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
254 nfmpt1 5061 . . . . . . . . . . . . 13 𝑖(𝑖 ∈ (0..^𝑀) ↦ 𝐿)
255253, 254nfcxfr 2946 . . . . . . . . . . . 12 𝑖𝑊
256 nfcv 2948 . . . . . . . . . . . 12 𝑖(𝐼‘(𝑆𝐽))
257255, 256nffv 6551 . . . . . . . . . . 11 𝑖(𝑊‘(𝐼‘(𝑆𝐽)))
258257nfel1 2962 . . . . . . . . . 10 𝑖(𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
259252, 258nfim 1879 . . . . . . . . 9 𝑖((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
260243biimpar 478 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝜑𝑖 ∈ (0..^𝑀)))
2612603adant2 1124 . . . . . . . . . . . . 13 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝜑𝑖 ∈ (0..^𝑀)))
262 fourierdlem91.l . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
263261, 262syl 17 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
264 fveq2 6541 . . . . . . . . . . . . . . . 16 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑊𝑖) = (𝑊‘(𝐼‘(𝑆𝐽))))
265264eqcomd 2800 . . . . . . . . . . . . . . 15 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑊‘(𝐼‘(𝑆𝐽))) = (𝑊𝑖))
266265adantr 481 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) = (𝑊𝑖))
267260simprd 496 . . . . . . . . . . . . . . 15 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝑖 ∈ (0..^𝑀))
268 elex 3454 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) → 𝐿 ∈ V)
269260, 262, 2683syl 18 . . . . . . . . . . . . . . 15 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝐿 ∈ V)
270253fvmpt2 6648 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ 𝐿 ∈ V) → (𝑊𝑖) = 𝐿)
271267, 269, 270syl2anc 584 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊𝑖) = 𝐿)
272266, 271eqtrd 2830 . . . . . . . . . . . . 13 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) = 𝐿)
2732723adant2 1124 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) = 𝐿)
274245, 237oveq12d 7037 . . . . . . . . . . . . . 14 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
275274eqcomd 2800 . . . . . . . . . . . . 13 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2762753ad2ant1 1126 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
277263, 273, 2763eltr4d 2897 . . . . . . . . . . 11 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
2782773exp 1112 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))))
2792622a1i 12 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) → ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))))
280278, 279impbid 213 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ↔ ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))))
281259, 280, 262vtoclg1f 3508 . . . . . . . 8 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
28255, 241, 281sylc 65 . . . . . . 7 (𝜑 → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
283 eqid 2794 . . . . . . 7 if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) = if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))))
284 eqid 2794 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))) ∪ {(𝑄‘((𝐼‘(𝑆𝐽)) + 1))})) = ((TopOpen‘ℂfld) ↾t (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))) ∪ {(𝑄‘((𝐼‘(𝑆𝐽)) + 1))}))
28557, 62, 240, 251, 282, 83, 77, 127, 141, 283, 284fourierdlem33 41981 . . . . . 6 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))))
286141resabs1d 5768 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))))
287286oveq1d 7034 . . . . . 6 (𝜑 → (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))))
288285, 287eleqtrd 2884 . . . . 5 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))))
289162, 164, 166, 170, 171, 175, 233, 288limcperiod 41464 . . . 4 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)))
290167oveq2i 7030 . . . . . 6 ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
291191, 192pncan3d 10850 . . . . . 6 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆‘(𝐽 + 1)))
292290, 291syl5eq 2842 . . . . 5 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = (𝑆‘(𝐽 + 1)))
293292oveq2d 7035 . . . 4 (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆‘(𝐽 + 1))))
294289, 293eleqtrd 2884 . . 3 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆‘(𝐽 + 1))))
295167oveq2i 7030 . . . . . . . . 9 ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
296295a1i 11 . . . . . . . 8 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))))
29717, 20iccssred 41335 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
298 ax-resscn 10443 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
299297, 298syl6ss 3903 . . . . . . . . . . . . . 14 (𝜑 → (𝐶[,]𝐷) ⊆ ℂ)
30025, 44, 43fourierdlem15 41963 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
301300, 53ffvelrnd 6720 . . . . . . . . . . . . . 14 (𝜑 → (𝑆𝐽) ∈ (𝐶[,]𝐷))
302299, 301sseldd 3892 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐽) ∈ ℂ)
303192, 302subcld 10847 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) ∈ ℂ)
30483recnd 10518 . . . . . . . . . . . 12 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℂ)
305191, 303, 304subsub23d 41107 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (𝑍‘(𝐸‘(𝑆𝐽))) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
306124, 305mpbird 258 . . . . . . . . . 10 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (𝑍‘(𝐸‘(𝑆𝐽))))
307306eqcomd 2800 . . . . . . . . 9 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
308307oveq1d 7034 . . . . . . . 8 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))))
309191, 303subcld 10847 . . . . . . . . . 10 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) ∈ ℂ)
310309, 192, 191addsub12d 10870 . . . . . . . . 9 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))))
311191, 303, 191sub32d 10879 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
312191subidd 10835 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = 0)
313312oveq1d 7034 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
314 df-neg 10722 . . . . . . . . . . . 12 -((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
315192, 302negsubdi2d 10863 . . . . . . . . . . . 12 (𝜑 → -((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
316314, 315syl5eqr 2844 . . . . . . . . . . 11 (𝜑 → (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
317311, 313, 3163eqtrd 2834 . . . . . . . . . 10 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
318317oveq2d 7035 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + ((𝑆𝐽) − (𝑆‘(𝐽 + 1)))))
319192, 302pncan3d 10850 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((𝑆𝐽) − (𝑆‘(𝐽 + 1)))) = (𝑆𝐽))
320310, 318, 3193eqtrd 2834 . . . . . . . 8 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆𝐽))
321296, 308, 3203eqtrd 2834 . . . . . . 7 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = (𝑆𝐽))
322321, 292oveq12d 7037 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))))
323172, 322eqtr3d 2832 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))))
324323reseq2d 5737 . . . 4 (𝜑 → (𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) = (𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))))
325324oveq1d 7034 . . 3 (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆‘(𝐽 + 1))) = ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
326294, 325eleqtrd 2884 . 2 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
327157, 326eqeltrd 2882 1 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2080  wne 2983  wral 3104  wrex 3105  {crab 3108  Vcvv 3436  cun 3859  wss 3861  ifcif 4383  {csn 4474  {cpr 4476   class class class wbr 4964  cmpt 5043  dom cdm 5446  ran crn 5447  cres 5448  cio 6190  wf 6224  cfv 6228   Isom wiso 6229  (class class class)co 7019  𝑚 cmap 8259  supcsup 8753  cc 10384  cr 10385  0cc0 10386  1c1 10387   + caddc 10389   · cmul 10391  +∞cpnf 10521  *cxr 10523   < clt 10524  cle 10525  cmin 10719  -cneg 10720   / cdiv 11147  cn 11488  2c2 11542  cz 11831  (,)cioo 12588  (,]cioc 12589  [,]cicc 12591  ...cfz 12742  ..^cfzo 12883  cfl 13010  chash 13540  t crest 16523  TopOpenctopn 16524  fldccnfld 20227  cnccncf 23167   lim climc 24143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-inf2 8953  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-pre-sup 10464
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-iin 4830  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-se 5406  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-isom 6237  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-om 7440  df-1st 7548  df-2nd 7549  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-oadd 7960  df-er 8142  df-map 8261  df-pm 8262  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-fi 8724  df-sup 8755  df-inf 8756  df-oi 8823  df-dju 9179  df-card 9217  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-div 11148  df-nn 11489  df-2 11550  df-3 11551  df-4 11552  df-5 11553  df-6 11554  df-7 11555  df-8 11556  df-9 11557  df-n0 11748  df-xnn0 11818  df-z 11832  df-dec 11949  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-plusg 16407  df-mulr 16408  df-starv 16409  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-rest 16525  df-topn 16526  df-topgen 16546  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-cn 21519  df-cnp 21520  df-cmp 21679  df-xms 22613  df-ms 22614  df-cncf 23169  df-limc 24147
This theorem is referenced by:  fourierdlem99  42046  fourierdlem100  42047  fourierdlem107  42054  fourierdlem109  42056
  Copyright terms: Public domain W3C validator