| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fourierdlem91.q | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) | 
| 2 |  | fourierdlem91.m | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 3 |  | fourierdlem91.p | . . . . . . . . . . . . . 14
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | 
| 4 | 3 | fourierdlem2 46129 | . . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) | 
| 5 | 2, 4 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) | 
| 6 | 1, 5 | mpbid 232 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) | 
| 7 | 6 | simpld 494 | . . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) | 
| 8 |  | elmapi 8890 | . . . . . . . . . 10
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) | 
| 9 | 7, 8 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) | 
| 10 |  | fzossfz 13719 | . . . . . . . . . 10
⊢
(0..^𝑀) ⊆
(0...𝑀) | 
| 11 |  | fourierdlem91.t | . . . . . . . . . . . . 13
⊢ 𝑇 = (𝐵 − 𝐴) | 
| 12 |  | fourierdlem91.e | . . . . . . . . . . . . 13
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) | 
| 13 |  | fourierdlem91.J | . . . . . . . . . . . . 13
⊢ 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) | 
| 14 |  | fourierdlem91.i | . . . . . . . . . . . . 13
⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}, ℝ, < )) | 
| 15 | 3, 2, 1, 11, 12, 13, 14 | fourierdlem37 46164 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}))) | 
| 16 | 15 | simpld 494 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐼:ℝ⟶(0..^𝑀)) | 
| 17 |  | fourierdlem91.c | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐶 ∈ ℝ) | 
| 18 |  | fourierdlem91.d | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) | 
| 19 |  | elioore 13418 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ) | 
| 20 | 18, 19 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐷 ∈ ℝ) | 
| 21 |  | elioo4g 13448 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷 ∧ 𝐷 < +∞))) | 
| 22 | 18, 21 | sylib 218 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷 ∧ 𝐷 < +∞))) | 
| 23 | 22 | simprd 495 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐶 < 𝐷 ∧ 𝐷 < +∞)) | 
| 24 | 23 | simpld 494 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐶 < 𝐷) | 
| 25 |  | fourierdlem91.o | . . . . . . . . . . . . . . . . . 18
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | 
| 26 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇))) | 
| 27 | 26 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) | 
| 28 | 27 | rexbidv 3178 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) | 
| 29 | 28 | cbvrabv 3446 | . . . . . . . . . . . . . . . . . . 19
⊢ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} | 
| 30 | 29 | uneq2i 4164 | . . . . . . . . . . . . . . . . . 18
⊢ ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) | 
| 31 |  | fourierdlem91.n | . . . . . . . . . . . . . . . . . . 19
⊢ 𝑁 = ((♯‘𝐻) − 1) | 
| 32 |  | fourierdlem91.h | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) | 
| 33 | 32 | fveq2i 6908 | . . . . . . . . . . . . . . . . . . . 20
⊢
(♯‘𝐻) =
(♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) | 
| 34 | 33 | oveq1i 7442 | . . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝐻)
− 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) | 
| 35 | 31, 34 | eqtri 2764 | . . . . . . . . . . . . . . . . . 18
⊢ 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) | 
| 36 |  | fourierdlem91.s | . . . . . . . . . . . . . . . . . . 19
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) | 
| 37 |  | isoeq5 7342 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) | 
| 38 | 32, 37 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) | 
| 39 | 38 | iotabii 6545 | . . . . . . . . . . . . . . . . . . 19
⊢
(℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) | 
| 40 | 36, 39 | eqtri 2764 | . . . . . . . . . . . . . . . . . 18
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) | 
| 41 | 11, 3, 2, 1, 17, 20, 24, 25, 30, 35, 40 | fourierdlem54 46180 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) | 
| 42 | 41 | simpld 494 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁))) | 
| 43 | 42 | simprd 495 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ∈ (𝑂‘𝑁)) | 
| 44 | 42 | simpld 494 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 45 | 25 | fourierdlem2 46129 | . . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) | 
| 46 | 44, 45 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) | 
| 47 | 43, 46 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))))) | 
| 48 | 47 | simpld 494 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ (ℝ ↑m
(0...𝑁))) | 
| 49 |  | elmapi 8890 | . . . . . . . . . . . . 13
⊢ (𝑆 ∈ (ℝ
↑m (0...𝑁))
→ 𝑆:(0...𝑁)⟶ℝ) | 
| 50 | 48, 49 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑆:(0...𝑁)⟶ℝ) | 
| 51 |  | fourierdlem91.17 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) | 
| 52 |  | elfzofz 13716 | . . . . . . . . . . . . 13
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁)) | 
| 53 | 51, 52 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ (0...𝑁)) | 
| 54 | 50, 53 | ffvelcdmd 7104 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑆‘𝐽) ∈ ℝ) | 
| 55 | 16, 54 | ffvelcdmd 7104 | . . . . . . . . . 10
⊢ (𝜑 → (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) | 
| 56 | 10, 55 | sselid 3980 | . . . . . . . . 9
⊢ (𝜑 → (𝐼‘(𝑆‘𝐽)) ∈ (0...𝑀)) | 
| 57 | 9, 56 | ffvelcdmd 7104 | . . . . . . . 8
⊢ (𝜑 → (𝑄‘(𝐼‘(𝑆‘𝐽))) ∈ ℝ) | 
| 58 | 57 | rexrd 11312 | . . . . . . 7
⊢ (𝜑 → (𝑄‘(𝐼‘(𝑆‘𝐽))) ∈
ℝ*) | 
| 59 | 58 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → (𝑄‘(𝐼‘(𝑆‘𝐽))) ∈
ℝ*) | 
| 60 |  | fzofzp1 13804 | . . . . . . . . . 10
⊢ ((𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀) → ((𝐼‘(𝑆‘𝐽)) + 1) ∈ (0...𝑀)) | 
| 61 | 55, 60 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → ((𝐼‘(𝑆‘𝐽)) + 1) ∈ (0...𝑀)) | 
| 62 | 9, 61 | ffvelcdmd 7104 | . . . . . . . 8
⊢ (𝜑 → (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)) ∈ ℝ) | 
| 63 | 62 | rexrd 11312 | . . . . . . 7
⊢ (𝜑 → (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)) ∈
ℝ*) | 
| 64 | 63 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)) ∈
ℝ*) | 
| 65 | 3, 2, 1 | fourierdlem11 46138 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) | 
| 66 | 65 | simp1d 1142 | . . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 67 | 66 | rexrd 11312 | . . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈
ℝ*) | 
| 68 | 65 | simp2d 1143 | . . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 69 |  | iocssre 13468 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝐴(,]𝐵) ⊆
ℝ) | 
| 70 | 67, 68, 69 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → (𝐴(,]𝐵) ⊆ ℝ) | 
| 71 | 65 | simp3d 1144 | . . . . . . . . . 10
⊢ (𝜑 → 𝐴 < 𝐵) | 
| 72 | 66, 68, 71, 11, 12 | fourierdlem4 46131 | . . . . . . . . 9
⊢ (𝜑 → 𝐸:ℝ⟶(𝐴(,]𝐵)) | 
| 73 |  | fzofzp1 13804 | . . . . . . . . . . 11
⊢ (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁)) | 
| 74 | 51, 73 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (𝐽 + 1) ∈ (0...𝑁)) | 
| 75 | 50, 74 | ffvelcdmd 7104 | . . . . . . . . 9
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ) | 
| 76 | 72, 75 | ffvelcdmd 7104 | . . . . . . . 8
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ (𝐴(,]𝐵)) | 
| 77 | 70, 76 | sseldd 3983 | . . . . . . 7
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ) | 
| 78 | 77 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ) | 
| 79 | 66, 68 | iccssred 13475 | . . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) | 
| 80 | 66, 68, 71, 13 | fourierdlem17 46144 | . . . . . . . . . 10
⊢ (𝜑 → 𝑍:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) | 
| 81 | 72, 54 | ffvelcdmd 7104 | . . . . . . . . . 10
⊢ (𝜑 → (𝐸‘(𝑆‘𝐽)) ∈ (𝐴(,]𝐵)) | 
| 82 | 80, 81 | ffvelcdmd 7104 | . . . . . . . . 9
⊢ (𝜑 → (𝑍‘(𝐸‘(𝑆‘𝐽))) ∈ (𝐴[,]𝐵)) | 
| 83 | 79, 82 | sseldd 3983 | . . . . . . . 8
⊢ (𝜑 → (𝑍‘(𝐸‘(𝑆‘𝐽))) ∈ ℝ) | 
| 84 | 47 | simprrd 773 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))) | 
| 85 |  | fveq2 6905 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐽 → (𝑆‘𝑖) = (𝑆‘𝐽)) | 
| 86 |  | oveq1 7439 | . . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝐽 → (𝑖 + 1) = (𝐽 + 1)) | 
| 87 | 86 | fveq2d 6909 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐽 → (𝑆‘(𝑖 + 1)) = (𝑆‘(𝐽 + 1))) | 
| 88 | 85, 87 | breq12d 5155 | . . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐽 → ((𝑆‘𝑖) < (𝑆‘(𝑖 + 1)) ↔ (𝑆‘𝐽) < (𝑆‘(𝐽 + 1)))) | 
| 89 | 88 | rspccva 3620 | . . . . . . . . . . . . . 14
⊢
((∀𝑖 ∈
(0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑆‘𝐽) < (𝑆‘(𝐽 + 1))) | 
| 90 | 84, 51, 89 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆‘𝐽) < (𝑆‘(𝐽 + 1))) | 
| 91 | 54, 75 | posdifd 11851 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑆‘𝐽) < (𝑆‘(𝐽 + 1)) ↔ 0 < ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) | 
| 92 | 90, 91 | mpbid 232 | . . . . . . . . . . . 12
⊢ (𝜑 → 0 < ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) | 
| 93 |  | eleq1 2828 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝐽 → (𝑗 ∈ (0..^𝑁) ↔ 𝐽 ∈ (0..^𝑁))) | 
| 94 | 93 | anbi2d 630 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ↔ (𝜑 ∧ 𝐽 ∈ (0..^𝑁)))) | 
| 95 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1)) | 
| 96 | 95 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝐽 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝐽 + 1))) | 
| 97 | 96 | fveq2d 6909 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝐽 → (𝐸‘(𝑆‘(𝑗 + 1))) = (𝐸‘(𝑆‘(𝐽 + 1)))) | 
| 98 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝐽 → (𝑆‘𝑗) = (𝑆‘𝐽)) | 
| 99 | 98 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝐽 → (𝐸‘(𝑆‘𝑗)) = (𝐸‘(𝑆‘𝐽))) | 
| 100 | 99 | fveq2d 6909 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝐽 → (𝑍‘(𝐸‘(𝑆‘𝑗))) = (𝑍‘(𝐸‘(𝑆‘𝐽)))) | 
| 101 | 97, 100 | oveq12d 7450 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝐽 → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝑗)))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽))))) | 
| 102 | 96, 98 | oveq12d 7450 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝐽 → ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) | 
| 103 | 101, 102 | eqeq12d 2752 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → (((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) | 
| 104 | 94, 103 | imbi12d 344 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) ↔ ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))))) | 
| 105 | 11 | oveq2i 7443 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 · 𝑇) = (𝑘 · (𝐵 − 𝐴)) | 
| 106 | 105 | oveq2i 7443 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵 − 𝐴))) | 
| 107 | 106 | eleq1i 2831 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) | 
| 108 | 107 | rexbii 3093 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑘 ∈
ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) | 
| 109 | 108 | rgenw 3064 | . . . . . . . . . . . . . . . . . . . . 21
⊢
∀𝑦 ∈
(𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) | 
| 110 |  | rabbi 3466 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑦 ∈
(𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄) ↔ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) | 
| 111 | 109, 110 | mpbi 230 | . . . . . . . . . . . . . . . . . . . 20
⊢ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄} | 
| 112 | 111 | uneq2i 4164 | . . . . . . . . . . . . . . . . . . 19
⊢ ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) | 
| 113 | 112 | fveq2i 6908 | . . . . . . . . . . . . . . . . . 18
⊢
(♯‘({𝐶,
𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) | 
| 114 | 113 | oveq1i 7442 | . . . . . . . . . . . . . . . . 17
⊢
((♯‘({𝐶,
𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) | 
| 115 | 35, 114 | eqtri 2764 | . . . . . . . . . . . . . . . 16
⊢ 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) | 
| 116 |  | isoeq5 7342 | . . . . . . . . . . . . . . . . . . 19
⊢ (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})))) | 
| 117 | 112, 116 | ax-mp 5 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) | 
| 118 | 117 | iotabii 6545 | . . . . . . . . . . . . . . . . 17
⊢
(℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) | 
| 119 | 40, 118 | eqtri 2764 | . . . . . . . . . . . . . . . 16
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) | 
| 120 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢ ((𝑆‘𝑗) + (𝐵 − (𝐸‘(𝑆‘𝑗)))) = ((𝑆‘𝑗) + (𝐵 − (𝐸‘(𝑆‘𝑗)))) | 
| 121 | 3, 11, 2, 1, 17, 18, 25, 115, 119, 12, 13, 120 | fourierdlem65 46191 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) | 
| 122 | 104, 121 | vtoclg 3553 | . . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (0..^𝑁) → ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) | 
| 123 | 122 | anabsi7 671 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) | 
| 124 | 51, 123 | mpdan 687 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) | 
| 125 | 92, 124 | breqtrrd 5170 | . . . . . . . . . . 11
⊢ (𝜑 → 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽))))) | 
| 126 | 83, 77 | posdifd 11851 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))) ↔ 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))))) | 
| 127 | 125, 126 | mpbird 257 | . . . . . . . . . 10
⊢ (𝜑 → (𝑍‘(𝐸‘(𝑆‘𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1)))) | 
| 128 | 100, 97 | oveq12d 7450 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → ((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) | 
| 129 | 98 | fveq2d 6909 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝐽 → (𝐼‘(𝑆‘𝑗)) = (𝐼‘(𝑆‘𝐽))) | 
| 130 | 129 | fveq2d 6909 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → (𝑄‘(𝐼‘(𝑆‘𝑗))) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) | 
| 131 | 129 | oveq1d 7447 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝐽 → ((𝐼‘(𝑆‘𝑗)) + 1) = ((𝐼‘(𝑆‘𝐽)) + 1)) | 
| 132 | 131 | fveq2d 6909 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) | 
| 133 | 130, 132 | oveq12d 7450 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) = ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) | 
| 134 | 128, 133 | sseq12d 4016 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐽 → (((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) ↔ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))) | 
| 135 | 94, 134 | imbi12d 344 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) ↔ ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))))) | 
| 136 | 32, 30 | eqtri 2764 | . . . . . . . . . . . . . 14
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) | 
| 137 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢ ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) | 
| 138 | 11, 3, 2, 1, 17, 20, 24, 25, 136, 31, 36, 12, 13, 137, 14 | fourierdlem79 46205 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) | 
| 139 | 135, 138 | vtoclg 3553 | . . . . . . . . . . . 12
⊢ (𝐽 ∈ (0..^𝑁) → ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))) | 
| 140 | 139 | anabsi7 671 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) | 
| 141 | 51, 140 | mpdan 687 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) | 
| 142 | 57, 62, 83, 77, 127, 141 | fourierdlem10 46137 | . . . . . . . . 9
⊢ (𝜑 → ((𝑄‘(𝐼‘(𝑆‘𝐽))) ≤ (𝑍‘(𝐸‘(𝑆‘𝐽))) ∧ (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) | 
| 143 | 142 | simpld 494 | . . . . . . . 8
⊢ (𝜑 → (𝑄‘(𝐼‘(𝑆‘𝐽))) ≤ (𝑍‘(𝐸‘(𝑆‘𝐽)))) | 
| 144 | 57, 83, 77, 143, 127 | lelttrd 11420 | . . . . . . 7
⊢ (𝜑 → (𝑄‘(𝐼‘(𝑆‘𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1)))) | 
| 145 | 144 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → (𝑄‘(𝐼‘(𝑆‘𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1)))) | 
| 146 | 62 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)) ∈ ℝ) | 
| 147 | 142 | simprd 495 | . . . . . . . 8
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) | 
| 148 | 147 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) | 
| 149 |  | neqne 2947 | . . . . . . . . 9
⊢ (¬
(𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)) → (𝐸‘(𝑆‘(𝐽 + 1))) ≠ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) | 
| 150 | 149 | necomd 2995 | . . . . . . . 8
⊢ (¬
(𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)) → (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)) ≠ (𝐸‘(𝑆‘(𝐽 + 1)))) | 
| 151 | 150 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)) ≠ (𝐸‘(𝑆‘(𝐽 + 1)))) | 
| 152 | 78, 146, 148, 151 | leneltd 11416 | . . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) < (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) | 
| 153 | 59, 64, 78, 145, 152 | eliood 45516 | . . . . 5
⊢ ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) | 
| 154 |  | fvres 6924 | . . . . 5
⊢ ((𝐸‘(𝑆‘(𝐽 + 1))) ∈ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))) = (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) | 
| 155 | 153, 154 | syl 17 | . . . 4
⊢ ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))) = (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) | 
| 156 | 155 | eqcomd 2742 | . . 3
⊢ ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) → (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) | 
| 157 | 156 | ifeq2da 4557 | . 2
⊢ (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) = if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))))) | 
| 158 |  | fourierdlem91.f | . . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) | 
| 159 |  | fdm 6744 | . . . . . . . 8
⊢ (𝐹:ℝ⟶ℂ →
dom 𝐹 =
ℝ) | 
| 160 | 158, 159 | syl 17 | . . . . . . 7
⊢ (𝜑 → dom 𝐹 = ℝ) | 
| 161 | 160 | feq2d 6721 | . . . . . 6
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:ℝ⟶ℂ)) | 
| 162 | 158, 161 | mpbird 257 | . . . . 5
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) | 
| 163 |  | ioosscn 13450 | . . . . . 6
⊢ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ | 
| 164 | 163 | a1i 11 | . . . . 5
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ) | 
| 165 |  | ioossre 13449 | . . . . . 6
⊢ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℝ | 
| 166 | 165, 160 | sseqtrrid 4026 | . . . . 5
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ dom 𝐹) | 
| 167 |  | fourierdlem91.u | . . . . . . 7
⊢ 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) | 
| 168 | 75, 77 | resubcld 11692 | . . . . . . 7
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ) | 
| 169 | 167, 168 | eqeltrid 2844 | . . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℝ) | 
| 170 | 169 | recnd 11290 | . . . . 5
⊢ (𝜑 → 𝑈 ∈ ℂ) | 
| 171 |  | eqid 2736 | . . . . 5
⊢ {𝑥 ∈ ℂ ∣
∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} | 
| 172 | 83, 77, 169 | iooshift 45540 | . . . . . 6
⊢ (𝜑 → (((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) | 
| 173 |  | ioossre 13449 | . . . . . . 7
⊢ (((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ ℝ | 
| 174 | 173, 160 | sseqtrrid 4026 | . . . . . 6
⊢ (𝜑 → (((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ dom 𝐹) | 
| 175 | 172, 174 | eqsstrrd 4018 | . . . . 5
⊢ (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} ⊆ dom 𝐹) | 
| 176 |  | elioore 13418 | . . . . . 6
⊢ (𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑦 ∈ ℝ) | 
| 177 | 68, 66 | resubcld 11692 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) | 
| 178 | 11, 177 | eqeltrid 2844 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ ℝ) | 
| 179 | 178 | recnd 11290 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ ℂ) | 
| 180 | 66, 68 | posdifd 11851 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) | 
| 181 | 71, 180 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) | 
| 182 | 181, 11 | breqtrrdi 5184 | . . . . . . . . . . . . 13
⊢ (𝜑 → 0 < 𝑇) | 
| 183 | 182 | gt0ne0d 11828 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ≠ 0) | 
| 184 | 170, 179,
183 | divcan1d 12045 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑈 / 𝑇) · 𝑇) = 𝑈) | 
| 185 | 184 | eqcomd 2742 | . . . . . . . . . 10
⊢ (𝜑 → 𝑈 = ((𝑈 / 𝑇) · 𝑇)) | 
| 186 | 185 | oveq2d 7448 | . . . . . . . . 9
⊢ (𝜑 → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇))) | 
| 187 | 186 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇))) | 
| 188 | 187 | fveq2d 6909 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇)))) | 
| 189 | 158 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ) | 
| 190 | 178 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑇 ∈ ℝ) | 
| 191 | 77 | recnd 11290 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ) | 
| 192 | 75 | recnd 11290 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ) | 
| 193 | 191, 192 | negsubdi2d 11637 | . . . . . . . . . . . . 13
⊢ (𝜑 → -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) | 
| 194 | 193 | eqcomd 2742 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) = -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) | 
| 195 | 194 | oveq1d 7447 | . . . . . . . . . . 11
⊢ (𝜑 → (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇)) | 
| 196 | 167 | oveq1i 7442 | . . . . . . . . . . . 12
⊢ (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇) | 
| 197 | 196 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇)) | 
| 198 | 12 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)))) | 
| 199 |  | id 22 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1))) | 
| 200 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵 − 𝑥) = (𝐵 − (𝑆‘(𝐽 + 1)))) | 
| 201 | 200 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵 − 𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) | 
| 202 | 201 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵 − 𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))) | 
| 203 | 202 | oveq1d 7447 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) | 
| 204 | 199, 203 | oveq12d 7450 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))) | 
| 205 | 204 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))) | 
| 206 | 68, 75 | resubcld 11692 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ) | 
| 207 | 206, 178,
183 | redivcld 12096 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ) | 
| 208 | 207 | flcld 13839 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ) | 
| 209 | 208 | zred 12724 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ) | 
| 210 | 209, 178 | remulcld 11292 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ) | 
| 211 | 75, 210 | readdcld 11291 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ) | 
| 212 | 198, 205,
75, 211 | fvmptd 7022 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))) | 
| 213 | 212 | oveq1d 7447 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1)))) | 
| 214 | 208 | zcnd 12725 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℂ) | 
| 215 | 214, 179 | mulcld 11282 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℂ) | 
| 216 | 192, 215 | pncan2d 11623 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) | 
| 217 | 213, 216 | eqtrd 2776 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) | 
| 218 | 217, 215 | eqeltrd 2840 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℂ) | 
| 219 | 218, 179,
183 | divnegd 12057 | . . . . . . . . . . 11
⊢ (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇)) | 
| 220 | 195, 197,
219 | 3eqtr4d 2786 | . . . . . . . . . 10
⊢ (𝜑 → (𝑈 / 𝑇) = -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇)) | 
| 221 | 217 | oveq1d 7447 | . . . . . . . . . . . . 13
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇)) | 
| 222 | 214, 179,
183 | divcan4d 12050 | . . . . . . . . . . . . 13
⊢ (𝜑 → (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))) | 
| 223 | 221, 222 | eqtrd 2776 | . . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))) | 
| 224 | 223, 208 | eqeltrd 2840 | . . . . . . . . . . 11
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ) | 
| 225 | 224 | znegcld 12726 | . . . . . . . . . 10
⊢ (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ) | 
| 226 | 220, 225 | eqeltrd 2840 | . . . . . . . . 9
⊢ (𝜑 → (𝑈 / 𝑇) ∈ ℤ) | 
| 227 | 226 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑈 / 𝑇) ∈ ℤ) | 
| 228 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | 
| 229 |  | fourierdlem91.6 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | 
| 230 | 229 | adantlr 715 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | 
| 231 | 189, 190,
227, 228, 230 | fperiodmul 45321 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))) = (𝐹‘𝑦)) | 
| 232 | 188, 231 | eqtrd 2776 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹‘𝑦)) | 
| 233 | 176, 232 | sylan2 593 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) → (𝐹‘(𝑦 + 𝑈)) = (𝐹‘𝑦)) | 
| 234 | 6 | simprrd 773 | . . . . . . . 8
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) | 
| 235 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑄‘𝑖) = (𝑄‘(𝐼‘(𝑆‘𝐽)))) | 
| 236 |  | oveq1 7439 | . . . . . . . . . . 11
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑖 + 1) = ((𝐼‘(𝑆‘𝐽)) + 1)) | 
| 237 | 236 | fveq2d 6909 | . . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) | 
| 238 | 235, 237 | breq12d 5155 | . . . . . . . . 9
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝐼‘(𝑆‘𝐽))) < (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) | 
| 239 | 238 | rspccva 3620 | . . . . . . . 8
⊢
((∀𝑖 ∈
(0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑄‘(𝐼‘(𝑆‘𝐽))) < (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) | 
| 240 | 234, 55, 239 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → (𝑄‘(𝐼‘(𝑆‘𝐽))) < (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) | 
| 241 | 55 | ancli 548 | . . . . . . . 8
⊢ (𝜑 → (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) | 
| 242 |  | eleq1 2828 | . . . . . . . . . . 11
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑖 ∈ (0..^𝑀) ↔ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) | 
| 243 | 242 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)))) | 
| 244 | 235, 237 | oveq12d 7450 | . . . . . . . . . . . 12
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) | 
| 245 | 244 | reseq2d 5996 | . . . . . . . . . . 11
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))) | 
| 246 | 244 | oveq1d 7447 | . . . . . . . . . . 11
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ)) | 
| 247 | 245, 246 | eleq12d 2834 | . . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ))) | 
| 248 | 243, 247 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ)))) | 
| 249 |  | fourierdlem91.fcn | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) | 
| 250 | 248, 249 | vtoclg 3553 | . . . . . . . 8
⊢ ((𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ))) | 
| 251 | 55, 241, 250 | sylc 65 | . . . . . . 7
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))–cn→ℂ)) | 
| 252 |  | nfv 1913 | . . . . . . . . . 10
⊢
Ⅎ𝑖(𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) | 
| 253 |  | fourierdlem91.w | . . . . . . . . . . . . 13
⊢ 𝑊 = (𝑖 ∈ (0..^𝑀) ↦ 𝐿) | 
| 254 |  | nfmpt1 5249 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝑖 ∈ (0..^𝑀) ↦ 𝐿) | 
| 255 | 253, 254 | nfcxfr 2902 | . . . . . . . . . . . 12
⊢
Ⅎ𝑖𝑊 | 
| 256 |  | nfcv 2904 | . . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝐼‘(𝑆‘𝐽)) | 
| 257 | 255, 256 | nffv 6915 | . . . . . . . . . . 11
⊢
Ⅎ𝑖(𝑊‘(𝐼‘(𝑆‘𝐽))) | 
| 258 | 257 | nfel1 2921 | . . . . . . . . . 10
⊢
Ⅎ𝑖(𝑊‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) | 
| 259 | 252, 258 | nfim 1895 | . . . . . . . . 9
⊢
Ⅎ𝑖((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) | 
| 260 | 243 | biimpar 477 | . . . . . . . . . . . . . 14
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝜑 ∧ 𝑖 ∈ (0..^𝑀))) | 
| 261 | 260 | 3adant2 1131 | . . . . . . . . . . . . 13
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝜑 ∧ 𝑖 ∈ (0..^𝑀))) | 
| 262 |  | fourierdlem91.l | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 263 | 261, 262 | syl 17 | . . . . . . . . . . . 12
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 264 |  | fveq2 6905 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑊‘𝑖) = (𝑊‘(𝐼‘(𝑆‘𝐽)))) | 
| 265 | 264 | eqcomd 2742 | . . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (𝑊‘(𝐼‘(𝑆‘𝐽))) = (𝑊‘𝑖)) | 
| 266 | 265 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆‘𝐽))) = (𝑊‘𝑖)) | 
| 267 | 260 | simprd 495 | . . . . . . . . . . . . . . 15
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → 𝑖 ∈ (0..^𝑀)) | 
| 268 |  | elex 3500 | . . . . . . . . . . . . . . . 16
⊢ (𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) → 𝐿 ∈ V) | 
| 269 | 260, 262,
268 | 3syl 18 | . . . . . . . . . . . . . . 15
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → 𝐿 ∈ V) | 
| 270 | 253 | fvmpt2 7026 | . . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝐿 ∈ V) → (𝑊‘𝑖) = 𝐿) | 
| 271 | 267, 269,
270 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝑊‘𝑖) = 𝐿) | 
| 272 | 266, 271 | eqtrd 2776 | . . . . . . . . . . . . 13
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆‘𝐽))) = 𝐿) | 
| 273 | 272 | 3adant2 1131 | . . . . . . . . . . . 12
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆‘𝐽))) = 𝐿) | 
| 274 | 245, 237 | oveq12d 7450 | . . . . . . . . . . . . . 14
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) | 
| 275 | 274 | eqcomd 2742 | . . . . . . . . . . . . 13
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 276 | 275 | 3ad2ant1 1133 | . . . . . . . . . . . 12
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 277 | 263, 273,
276 | 3eltr4d 2855 | . . . . . . . . . . 11
⊢ ((𝑖 = (𝐼‘(𝑆‘𝐽)) ∧ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) | 
| 278 | 277 | 3exp 1119 | . . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) → ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))))) | 
| 279 | 262 | 2a1i 12 | . . . . . . . . . 10
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))))) | 
| 280 | 278, 279 | impbid 212 | . . . . . . . . 9
⊢ (𝑖 = (𝐼‘(𝑆‘𝐽)) → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ↔ ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))))) | 
| 281 | 259, 280,
262 | vtoclg1f 3569 | . . . . . . . 8
⊢ ((𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆‘𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))) | 
| 282 | 55, 241, 281 | sylc 65 | . . . . . . 7
⊢ (𝜑 → (𝑊‘(𝐼‘(𝑆‘𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) limℂ (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) | 
| 283 |  | eqid 2736 | . . . . . . 7
⊢ if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) = if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) | 
| 284 |  | eqid 2736 | . . . . . . 7
⊢
((TopOpen‘ℂfld) ↾t (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) ∪ {(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))})) =
((TopOpen‘ℂfld) ↾t (((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))) ∪ {(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))})) | 
| 285 | 57, 62, 240, 251, 282, 83, 77, 127, 141, 283, 284 | fourierdlem33 46160 | . . . . . 6
⊢ (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) limℂ (𝐸‘(𝑆‘(𝐽 + 1))))) | 
| 286 | 141 | resabs1d 6025 | . . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))) | 
| 287 | 286 | oveq1d 7447 | . . . . . 6
⊢ (𝜑 → (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) limℂ (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) limℂ (𝐸‘(𝑆‘(𝐽 + 1))))) | 
| 288 | 285, 287 | eleqtrd 2842 | . . . . 5
⊢ (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) limℂ (𝐸‘(𝑆‘(𝐽 + 1))))) | 
| 289 | 162, 164,
166, 170, 171, 175, 233, 288 | limcperiod 45648 | . . . 4
⊢ (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) limℂ ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈))) | 
| 290 | 167 | oveq2i 7443 | . . . . . 6
⊢ ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) | 
| 291 | 191, 192 | pncan3d 11624 | . . . . . 6
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆‘(𝐽 + 1))) | 
| 292 | 290, 291 | eqtrid 2788 | . . . . 5
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = (𝑆‘(𝐽 + 1))) | 
| 293 | 292 | oveq2d 7448 | . . . 4
⊢ (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) limℂ ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) limℂ (𝑆‘(𝐽 + 1)))) | 
| 294 | 289, 293 | eleqtrd 2842 | . . 3
⊢ (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) limℂ (𝑆‘(𝐽 + 1)))) | 
| 295 | 167 | oveq2i 7443 | . . . . . . . . 9
⊢ ((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) | 
| 296 | 295 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))) | 
| 297 | 17, 20 | iccssred 13475 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℝ) | 
| 298 |  | ax-resscn 11213 | . . . . . . . . . . . . . . 15
⊢ ℝ
⊆ ℂ | 
| 299 | 297, 298 | sstrdi 3995 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℂ) | 
| 300 | 25, 44, 43 | fourierdlem15 46142 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆:(0...𝑁)⟶(𝐶[,]𝐷)) | 
| 301 | 300, 53 | ffvelcdmd 7104 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆‘𝐽) ∈ (𝐶[,]𝐷)) | 
| 302 | 299, 301 | sseldd 3983 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆‘𝐽) ∈ ℂ) | 
| 303 | 192, 302 | subcld 11621 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)) ∈ ℂ) | 
| 304 | 83 | recnd 11290 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑍‘(𝐸‘(𝑆‘𝐽))) ∈ ℂ) | 
| 305 | 191, 303,
304 | subsub23d 45304 | . . . . . . . . . . 11
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = (𝑍‘(𝐸‘(𝑆‘𝐽))) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆‘𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) | 
| 306 | 124, 305 | mpbird 257 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = (𝑍‘(𝐸‘(𝑆‘𝐽)))) | 
| 307 | 306 | eqcomd 2742 | . . . . . . . . 9
⊢ (𝜑 → (𝑍‘(𝐸‘(𝑆‘𝐽))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) | 
| 308 | 307 | oveq1d 7447 | . . . . . . . 8
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))) | 
| 309 | 191, 303 | subcld 11621 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) ∈ ℂ) | 
| 310 | 309, 192,
191 | addsub12d 11644 | . . . . . . . . 9
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))))) | 
| 311 | 191, 303,
191 | sub32d 11653 | . . . . . . . . . . 11
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) | 
| 312 | 191 | subidd 11609 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = 0) | 
| 313 | 312 | oveq1d 7447 | . . . . . . . . . . 11
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)))) | 
| 314 |  | df-neg 11496 | . . . . . . . . . . . 12
⊢ -((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) | 
| 315 | 192, 302 | negsubdi2d 11637 | . . . . . . . . . . . 12
⊢ (𝜑 → -((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽)) = ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) | 
| 316 | 314, 315 | eqtr3id 2790 | . . . . . . . . . . 11
⊢ (𝜑 → (0 − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) = ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) | 
| 317 | 311, 313,
316 | 3eqtrd 2780 | . . . . . . . . . 10
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) | 
| 318 | 317 | oveq2d 7448 | . . . . . . . . 9
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1))))) | 
| 319 | 192, 302 | pncan3d 11624 | . . . . . . . . 9
⊢ (𝜑 → ((𝑆‘(𝐽 + 1)) + ((𝑆‘𝐽) − (𝑆‘(𝐽 + 1)))) = (𝑆‘𝐽)) | 
| 320 | 310, 318,
319 | 3eqtrd 2780 | . . . . . . . 8
⊢ (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆‘𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆‘𝐽)) | 
| 321 | 296, 308,
320 | 3eqtrd 2780 | . . . . . . 7
⊢ (𝜑 → ((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈) = (𝑆‘𝐽)) | 
| 322 | 321, 292 | oveq12d 7450 | . . . . . 6
⊢ (𝜑 → (((𝑍‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) | 
| 323 | 172, 322 | eqtr3d 2778 | . . . . 5
⊢ (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) | 
| 324 | 323 | reseq2d 5996 | . . . 4
⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) = (𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))))) | 
| 325 | 324 | oveq1d 7447 | . . 3
⊢ (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) limℂ (𝑆‘(𝐽 + 1))) = ((𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) limℂ (𝑆‘(𝐽 + 1)))) | 
| 326 | 294, 325 | eleqtrd 2842 | . 2
⊢ (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆‘𝐽)))(,)(𝑄‘((𝐼‘(𝑆‘𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) limℂ (𝑆‘(𝐽 + 1)))) | 
| 327 | 157, 326 | eqeltrd 2840 | 1
⊢ (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) limℂ (𝑆‘(𝐽 + 1)))) |