Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem91 Structured version   Visualization version   GIF version

Theorem fourierdlem91 43628
Description: Given a piecewise continuous function and changing the interval and the partition, the limit at the upper bound of each interval of the moved partition is still finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem91.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem91.t 𝑇 = (𝐵𝐴)
fourierdlem91.m (𝜑𝑀 ∈ ℕ)
fourierdlem91.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem91.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem91.6 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem91.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem91.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem91.c (𝜑𝐶 ∈ ℝ)
fourierdlem91.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem91.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem91.h 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem91.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem91.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem91.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem91.J 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem91.17 (𝜑𝐽 ∈ (0..^𝑁))
fourierdlem91.u 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))
fourierdlem91.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
fourierdlem91.w 𝑊 = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
Assertion
Ref Expression
fourierdlem91 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
Distinct variable groups:   𝐴,𝑓,𝑘,𝑦   𝐴,𝑖,𝑥,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖   𝐵,𝑓,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝐶,𝑓,𝑦   𝐶,𝑖,𝑚,𝑝   𝑥,𝐶   𝐷,𝑓,𝑦   𝐷,𝑖,𝑚,𝑝   𝑥,𝐷   𝑓,𝐸,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑥,𝑦   𝑓,𝐻   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥,𝑦   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑓,𝑁,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑝   𝑆,𝑓,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑓,𝑘,𝑦   𝑇,𝑖,𝑥   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑖,𝑍,𝑥,𝑦   𝜑,𝑓,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐶(𝑘)   𝐷(𝑘)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑆(𝑚)   𝑇(𝑚,𝑝)   𝑈(𝑓,𝑖,𝑘,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑦,𝑖,𝑘,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝐽(𝑓,𝑘,𝑚,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑀(𝑦,𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑊(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑍(𝑓,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem91
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem91.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem91.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
3 fourierdlem91.p . . . . . . . . . . . . . 14 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 43540 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 494 . . . . . . . . . 10 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
8 elmapi 8595 . . . . . . . . . 10 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
97, 8syl 17 . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶ℝ)
10 fzossfz 13334 . . . . . . . . . 10 (0..^𝑀) ⊆ (0...𝑀)
11 fourierdlem91.t . . . . . . . . . . . . 13 𝑇 = (𝐵𝐴)
12 fourierdlem91.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
13 fourierdlem91.J . . . . . . . . . . . . 13 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
14 fourierdlem91.i . . . . . . . . . . . . 13 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
153, 2, 1, 11, 12, 13, 14fourierdlem37 43575 . . . . . . . . . . . 12 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))})))
1615simpld 494 . . . . . . . . . . 11 (𝜑𝐼:ℝ⟶(0..^𝑀))
17 fourierdlem91.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℝ)
18 fourierdlem91.d . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ (𝐶(,)+∞))
19 elioore 13038 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
2018, 19syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℝ)
21 elioo4g 13068 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2218, 21sylib 217 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2322simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐶 < 𝐷𝐷 < +∞))
2423simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 < 𝐷)
25 fourierdlem91.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
26 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
2726eleq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2827rexbidv 3225 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2928cbvrabv 3416 . . . . . . . . . . . . . . . . . . 19 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
3029uneq2i 4090 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
31 fourierdlem91.n . . . . . . . . . . . . . . . . . . 19 𝑁 = ((♯‘𝐻) − 1)
32 fourierdlem91.h . . . . . . . . . . . . . . . . . . . . 21 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
3332fveq2i 6759 . . . . . . . . . . . . . . . . . . . 20 (♯‘𝐻) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
3433oveq1i 7265 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐻) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
3531, 34eqtri 2766 . . . . . . . . . . . . . . . . . 18 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
36 fourierdlem91.s . . . . . . . . . . . . . . . . . . 19 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
37 isoeq5 7172 . . . . . . . . . . . . . . . . . . . . 21 (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3832, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
3938iotabii 6403 . . . . . . . . . . . . . . . . . . 19 (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
4036, 39eqtri 2766 . . . . . . . . . . . . . . . . . 18 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
4111, 3, 2, 1, 17, 20, 24, 25, 30, 35, 40fourierdlem54 43591 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
4241simpld 494 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
4342simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ (𝑂𝑁))
4442simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
4525fourierdlem2 43540 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
4644, 45syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
4743, 46mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
4847simpld 494 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (ℝ ↑m (0...𝑁)))
49 elmapi 8595 . . . . . . . . . . . . 13 (𝑆 ∈ (ℝ ↑m (0...𝑁)) → 𝑆:(0...𝑁)⟶ℝ)
5048, 49syl 17 . . . . . . . . . . . 12 (𝜑𝑆:(0...𝑁)⟶ℝ)
51 fourierdlem91.17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (0..^𝑁))
52 elfzofz 13331 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁))
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑁))
5450, 53ffvelrnd 6944 . . . . . . . . . . 11 (𝜑 → (𝑆𝐽) ∈ ℝ)
5516, 54ffvelrnd 6944 . . . . . . . . . 10 (𝜑 → (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))
5610, 55sselid 3915 . . . . . . . . 9 (𝜑 → (𝐼‘(𝑆𝐽)) ∈ (0...𝑀))
579, 56ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ)
5857rexrd 10956 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ*)
5958adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ*)
60 fzofzp1 13412 . . . . . . . . . 10 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝐼‘(𝑆𝐽)) + 1) ∈ (0...𝑀))
6155, 60syl 17 . . . . . . . . 9 (𝜑 → ((𝐼‘(𝑆𝐽)) + 1) ∈ (0...𝑀))
629, 61ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ)
6362rexrd 10956 . . . . . . 7 (𝜑 → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ*)
6463adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ*)
653, 2, 1fourierdlem11 43549 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
6665simp1d 1140 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
6766rexrd 10956 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
6865simp2d 1141 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
69 iocssre 13088 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
7067, 68, 69syl2anc 583 . . . . . . . 8 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
7165simp3d 1142 . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
7266, 68, 71, 11, 12fourierdlem4 43542 . . . . . . . . 9 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
73 fzofzp1 13412 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁))
7451, 73syl 17 . . . . . . . . . 10 (𝜑 → (𝐽 + 1) ∈ (0...𝑁))
7550, 74ffvelrnd 6944 . . . . . . . . 9 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ)
7672, 75ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ (𝐴(,]𝐵))
7770, 76sseldd 3918 . . . . . . 7 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
7877adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
7966, 68iccssred 13095 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8066, 68, 71, 13fourierdlem17 43555 . . . . . . . . . 10 (𝜑𝑍:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
8172, 54ffvelrnd 6944 . . . . . . . . . 10 (𝜑 → (𝐸‘(𝑆𝐽)) ∈ (𝐴(,]𝐵))
8280, 81ffvelrnd 6944 . . . . . . . . 9 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ (𝐴[,]𝐵))
8379, 82sseldd 3918 . . . . . . . 8 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℝ)
8447simprrd 770 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))
85 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐽 → (𝑆𝑖) = (𝑆𝐽))
86 oveq1 7262 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐽 → (𝑖 + 1) = (𝐽 + 1))
8786fveq2d 6760 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐽 → (𝑆‘(𝑖 + 1)) = (𝑆‘(𝐽 + 1)))
8885, 87breq12d 5083 . . . . . . . . . . . . . . 15 (𝑖 = 𝐽 → ((𝑆𝑖) < (𝑆‘(𝑖 + 1)) ↔ (𝑆𝐽) < (𝑆‘(𝐽 + 1))))
8988rspccva 3551 . . . . . . . . . . . . . 14 ((∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
9084, 51, 89syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
9154, 75posdifd 11492 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐽) < (𝑆‘(𝐽 + 1)) ↔ 0 < ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
9290, 91mpbid 231 . . . . . . . . . . . 12 (𝜑 → 0 < ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
93 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝑗 ∈ (0..^𝑁) ↔ 𝐽 ∈ (0..^𝑁)))
9493anbi2d 628 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → ((𝜑𝑗 ∈ (0..^𝑁)) ↔ (𝜑𝐽 ∈ (0..^𝑁))))
95 oveq1 7262 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1))
9695fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝐽 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝐽 + 1)))
9796fveq2d 6760 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝐽 → (𝐸‘(𝑆‘(𝑗 + 1))) = (𝐸‘(𝑆‘(𝐽 + 1))))
98 fveq2 6756 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝐽 → (𝑆𝑗) = (𝑆𝐽))
9998fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝐽 → (𝐸‘(𝑆𝑗)) = (𝐸‘(𝑆𝐽)))
10099fveq2d 6760 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝐽 → (𝑍‘(𝐸‘(𝑆𝑗))) = (𝑍‘(𝐸‘(𝑆𝐽))))
10197, 100oveq12d 7273 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))))
10296, 98oveq12d 7273 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
103101, 102eqeq12d 2754 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
10494, 103imbi12d 344 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → (((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗))) ↔ ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))))
10511oveq2i 7266 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 · 𝑇) = (𝑘 · (𝐵𝐴))
106105oveq2i 7266 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵𝐴)))
107106eleq1i 2829 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
108107rexbii 3177 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
109108rgenw 3075 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
110 rabbi 3309 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄) ↔ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
111109, 110mpbi 229 . . . . . . . . . . . . . . . . . . . 20 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}
112111uneq2i 4090 . . . . . . . . . . . . . . . . . . 19 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
113112fveq2i 6759 . . . . . . . . . . . . . . . . . 18 (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))
114113oveq1i 7265 . . . . . . . . . . . . . . . . 17 ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
11535, 114eqtri 2766 . . . . . . . . . . . . . . . 16 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
116 isoeq5 7172 . . . . . . . . . . . . . . . . . . 19 (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))))
117112, 116ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
118117iotabii 6403 . . . . . . . . . . . . . . . . 17 (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
11940, 118eqtri 2766 . . . . . . . . . . . . . . . 16 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
120 eqid 2738 . . . . . . . . . . . . . . . 16 ((𝑆𝑗) + (𝐵 − (𝐸‘(𝑆𝑗)))) = ((𝑆𝑗) + (𝐵 − (𝐸‘(𝑆𝑗))))
1213, 11, 2, 1, 17, 18, 25, 115, 119, 12, 13, 120fourierdlem65 43602 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)))
122104, 121vtoclg 3495 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
123122anabsi7 667 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
12451, 123mpdan 683 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
12592, 124breqtrrd 5098 . . . . . . . . . . 11 (𝜑 → 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))))
12683, 77posdifd 11492 . . . . . . . . . . 11 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))) ↔ 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽))))))
127125, 126mpbird 256 . . . . . . . . . 10 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))))
128100, 97oveq12d 7273 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))
12998fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝐼‘(𝑆𝑗)) = (𝐼‘(𝑆𝐽)))
130129fveq2d 6760 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑄‘(𝐼‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝐽))))
131129oveq1d 7270 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → ((𝐼‘(𝑆𝑗)) + 1) = ((𝐼‘(𝑆𝐽)) + 1))
132131fveq2d 6760 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑄‘((𝐼‘(𝑆𝑗)) + 1)) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
133130, 132oveq12d 7273 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))) = ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
134128, 133sseq12d 3950 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))) ↔ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
13594, 134imbi12d 344 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → (((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1)))) ↔ ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))))
13632, 30eqtri 2766 . . . . . . . . . . . . . 14 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
137 eqid 2738 . . . . . . . . . . . . . 14 ((𝑆𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = ((𝑆𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))
13811, 3, 2, 1, 17, 20, 24, 25, 136, 31, 36, 12, 13, 137, 14fourierdlem79 43616 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))))
139135, 138vtoclg 3495 . . . . . . . . . . . 12 (𝐽 ∈ (0..^𝑁) → ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
140139anabsi7 667 . . . . . . . . . . 11 ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
14151, 140mpdan 683 . . . . . . . . . 10 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
14257, 62, 83, 77, 127, 141fourierdlem10 43548 . . . . . . . . 9 (𝜑 → ((𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))) ∧ (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
143142simpld 494 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))))
14457, 83, 77, 143, 127lelttrd 11063 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))))
145144adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))))
14662adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ)
147142simprd 495 . . . . . . . 8 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
148147adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
149 neqne 2950 . . . . . . . . 9 (¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) → (𝐸‘(𝑆‘(𝐽 + 1))) ≠ (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
150149necomd 2998 . . . . . . . 8 (¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ≠ (𝐸‘(𝑆‘(𝐽 + 1))))
151150adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ≠ (𝐸‘(𝑆‘(𝐽 + 1))))
15278, 146, 148, 151leneltd 11059 . . . . . 6 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
15359, 64, 78, 145, 152eliood 42926 . . . . 5 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
154 fvres 6775 . . . . 5 ((𝐸‘(𝑆‘(𝐽 + 1))) ∈ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))) = (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1)))))
155153, 154syl 17 . . . 4 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))) = (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1)))))
156155eqcomd 2744 . . 3 ((𝜑 ∧ ¬ (𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))))
157156ifeq2da 4488 . 2 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) = if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))))
158 fourierdlem91.f . . . . . 6 (𝜑𝐹:ℝ⟶ℂ)
159 fdm 6593 . . . . . . . 8 (𝐹:ℝ⟶ℂ → dom 𝐹 = ℝ)
160158, 159syl 17 . . . . . . 7 (𝜑 → dom 𝐹 = ℝ)
161160feq2d 6570 . . . . . 6 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:ℝ⟶ℂ))
162158, 161mpbird 256 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℂ)
163 ioosscn 13070 . . . . . 6 ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ
164163a1i 11 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ)
165 ioossre 13069 . . . . . 6 ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℝ
166165, 160sseqtrrid 3970 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ dom 𝐹)
167 fourierdlem91.u . . . . . . 7 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))
16875, 77resubcld 11333 . . . . . . 7 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ)
169167, 168eqeltrid 2843 . . . . . 6 (𝜑𝑈 ∈ ℝ)
170169recnd 10934 . . . . 5 (𝜑𝑈 ∈ ℂ)
171 eqid 2738 . . . . 5 {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}
17283, 77, 169iooshift 42950 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)})
173 ioossre 13069 . . . . . . 7 (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ ℝ
174173, 160sseqtrrid 3970 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ dom 𝐹)
175172, 174eqsstrrd 3956 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} ⊆ dom 𝐹)
176 elioore 13038 . . . . . 6 (𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑦 ∈ ℝ)
17768, 66resubcld 11333 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴) ∈ ℝ)
17811, 177eqeltrid 2843 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ)
179178recnd 10934 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
18066, 68posdifd 11492 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
18171, 180mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝐵𝐴))
182181, 11breqtrrdi 5112 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑇)
183182gt0ne0d 11469 . . . . . . . . . . . 12 (𝜑𝑇 ≠ 0)
184170, 179, 183divcan1d 11682 . . . . . . . . . . 11 (𝜑 → ((𝑈 / 𝑇) · 𝑇) = 𝑈)
185184eqcomd 2744 . . . . . . . . . 10 (𝜑𝑈 = ((𝑈 / 𝑇) · 𝑇))
186185oveq2d 7271 . . . . . . . . 9 (𝜑 → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇)))
187186adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇)))
188187fveq2d 6760 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))))
189158adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
190178adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℝ)
19177recnd 10934 . . . . . . . . . . . . . 14 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
19275recnd 10934 . . . . . . . . . . . . . 14 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ)
193191, 192negsubdi2d 11278 . . . . . . . . . . . . 13 (𝜑 → -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
194193eqcomd 2744 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) = -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))))
195194oveq1d 7270 . . . . . . . . . . 11 (𝜑 → (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
196167oveq1i 7265 . . . . . . . . . . . 12 (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇)
197196a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇))
19812a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
199 id 22 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1)))
200 oveq2 7263 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵𝑥) = (𝐵 − (𝑆‘(𝐽 + 1))))
201200oveq1d 7270 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))
202201fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
203202oveq1d 7270 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
204199, 203oveq12d 7273 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
205204adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
20668, 75resubcld 11333 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ)
207206, 178, 183redivcld 11733 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ)
208207flcld 13446 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ)
209208zred 12355 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ)
210209, 178remulcld 10936 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ)
21175, 210readdcld 10935 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ)
212198, 205, 75, 211fvmptd 6864 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
213212oveq1d 7270 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))))
214208zcnd 12356 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℂ)
215214, 179mulcld 10926 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℂ)
216192, 215pncan2d 11264 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
217213, 216eqtrd 2778 . . . . . . . . . . . . 13 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
218217, 215eqeltrd 2839 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℂ)
219218, 179, 183divnegd 11694 . . . . . . . . . . 11 (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
220195, 197, 2193eqtr4d 2788 . . . . . . . . . 10 (𝜑 → (𝑈 / 𝑇) = -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
221217oveq1d 7270 . . . . . . . . . . . . 13 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇))
222214, 179, 183divcan4d 11687 . . . . . . . . . . . . 13 (𝜑 → (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
223221, 222eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
224223, 208eqeltrd 2839 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ)
225224znegcld 12357 . . . . . . . . . 10 (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ)
226220, 225eqeltrd 2839 . . . . . . . . 9 (𝜑 → (𝑈 / 𝑇) ∈ ℤ)
227226adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑈 / 𝑇) ∈ ℤ)
228 simpr 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
229 fourierdlem91.6 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
230229adantlr 711 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
231189, 190, 227, 228, 230fperiodmul 42733 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))) = (𝐹𝑦))
232188, 231eqtrd 2778 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹𝑦))
233176, 232sylan2 592 . . . . 5 ((𝜑𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) → (𝐹‘(𝑦 + 𝑈)) = (𝐹𝑦))
2346simprrd 770 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
235 fveq2 6756 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑄𝑖) = (𝑄‘(𝐼‘(𝑆𝐽))))
236 oveq1 7262 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑖 + 1) = ((𝐼‘(𝑆𝐽)) + 1))
237236fveq2d 6760 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
238235, 237breq12d 5083 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
239238rspccva 3551 . . . . . . . 8 ((∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)) ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
240234, 55, 239syl2anc 583 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
24155ancli 548 . . . . . . . 8 (𝜑 → (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)))
242 eleq1 2826 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑖 ∈ (0..^𝑀) ↔ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)))
243242anbi2d 628 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))))
244235, 237oveq12d 7273 . . . . . . . . . . . 12 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
245244reseq2d 5880 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
246244oveq1d 7270 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))
247245, 246eleq12d 2833 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ)))
248243, 247imbi12d 344 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))))
249 fourierdlem91.fcn . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
250248, 249vtoclg 3495 . . . . . . . 8 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ)))
25155, 241, 250sylc 65 . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))
252 nfv 1918 . . . . . . . . . 10 𝑖(𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))
253 fourierdlem91.w . . . . . . . . . . . . 13 𝑊 = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
254 nfmpt1 5178 . . . . . . . . . . . . 13 𝑖(𝑖 ∈ (0..^𝑀) ↦ 𝐿)
255253, 254nfcxfr 2904 . . . . . . . . . . . 12 𝑖𝑊
256 nfcv 2906 . . . . . . . . . . . 12 𝑖(𝐼‘(𝑆𝐽))
257255, 256nffv 6766 . . . . . . . . . . 11 𝑖(𝑊‘(𝐼‘(𝑆𝐽)))
258257nfel1 2922 . . . . . . . . . 10 𝑖(𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
259252, 258nfim 1900 . . . . . . . . 9 𝑖((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
260243biimpar 477 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝜑𝑖 ∈ (0..^𝑀)))
2612603adant2 1129 . . . . . . . . . . . . 13 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝜑𝑖 ∈ (0..^𝑀)))
262 fourierdlem91.l . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
263261, 262syl 17 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
264 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑊𝑖) = (𝑊‘(𝐼‘(𝑆𝐽))))
265264eqcomd 2744 . . . . . . . . . . . . . . 15 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑊‘(𝐼‘(𝑆𝐽))) = (𝑊𝑖))
266265adantr 480 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) = (𝑊𝑖))
267260simprd 495 . . . . . . . . . . . . . . 15 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝑖 ∈ (0..^𝑀))
268 elex 3440 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) → 𝐿 ∈ V)
269260, 262, 2683syl 18 . . . . . . . . . . . . . . 15 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝐿 ∈ V)
270253fvmpt2 6868 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ 𝐿 ∈ V) → (𝑊𝑖) = 𝐿)
271267, 269, 270syl2anc 583 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊𝑖) = 𝐿)
272266, 271eqtrd 2778 . . . . . . . . . . . . 13 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) = 𝐿)
2732723adant2 1129 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) = 𝐿)
274245, 237oveq12d 7273 . . . . . . . . . . . . . 14 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
275274eqcomd 2744 . . . . . . . . . . . . 13 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2762753ad2ant1 1131 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
277263, 273, 2763eltr4d 2854 . . . . . . . . . . 11 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
2782773exp 1117 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))))
2792622a1i 12 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) → ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))))
280278, 279impbid 211 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ↔ ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))))
281259, 280, 262vtoclg1f 3494 . . . . . . . 8 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
28255, 241, 281sylc 65 . . . . . . 7 (𝜑 → (𝑊‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
283 eqid 2738 . . . . . . 7 if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) = if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1)))))
284 eqid 2738 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))) ∪ {(𝑄‘((𝐼‘(𝑆𝐽)) + 1))})) = ((TopOpen‘ℂfld) ↾t (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))) ∪ {(𝑄‘((𝐼‘(𝑆𝐽)) + 1))}))
28557, 62, 240, 251, 282, 83, 77, 127, 141, 283, 284fourierdlem33 43571 . . . . . 6 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))))
286141resabs1d 5911 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))))
287286oveq1d 7270 . . . . . 6 (𝜑 → (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))))
288285, 287eleqtrd 2841 . . . . 5 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝐸‘(𝑆‘(𝐽 + 1)))))
289162, 164, 166, 170, 171, 175, 233, 288limcperiod 43059 . . . 4 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)))
290167oveq2i 7266 . . . . . 6 ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
291191, 192pncan3d 11265 . . . . . 6 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆‘(𝐽 + 1)))
292290, 291syl5eq 2791 . . . . 5 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = (𝑆‘(𝐽 + 1)))
293292oveq2d 7271 . . . 4 (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆‘(𝐽 + 1))))
294289, 293eleqtrd 2841 . . 3 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆‘(𝐽 + 1))))
295167oveq2i 7266 . . . . . . . . 9 ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
296295a1i 11 . . . . . . . 8 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))))
29717, 20iccssred 13095 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
298 ax-resscn 10859 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
299297, 298sstrdi 3929 . . . . . . . . . . . . . 14 (𝜑 → (𝐶[,]𝐷) ⊆ ℂ)
30025, 44, 43fourierdlem15 43553 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
301300, 53ffvelrnd 6944 . . . . . . . . . . . . . 14 (𝜑 → (𝑆𝐽) ∈ (𝐶[,]𝐷))
302299, 301sseldd 3918 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐽) ∈ ℂ)
303192, 302subcld 11262 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) ∈ ℂ)
30483recnd 10934 . . . . . . . . . . . 12 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℂ)
305191, 303, 304subsub23d 42715 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (𝑍‘(𝐸‘(𝑆𝐽))) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
306124, 305mpbird 256 . . . . . . . . . 10 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (𝑍‘(𝐸‘(𝑆𝐽))))
307306eqcomd 2744 . . . . . . . . 9 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
308307oveq1d 7270 . . . . . . . 8 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))))
309191, 303subcld 11262 . . . . . . . . . 10 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) ∈ ℂ)
310309, 192, 191addsub12d 11285 . . . . . . . . 9 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))))
311191, 303, 191sub32d 11294 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
312191subidd 11250 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = 0)
313312oveq1d 7270 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
314 df-neg 11138 . . . . . . . . . . . 12 -((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
315192, 302negsubdi2d 11278 . . . . . . . . . . . 12 (𝜑 → -((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
316314, 315eqtr3id 2793 . . . . . . . . . . 11 (𝜑 → (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
317311, 313, 3163eqtrd 2782 . . . . . . . . . 10 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
318317oveq2d 7271 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + ((𝑆𝐽) − (𝑆‘(𝐽 + 1)))))
319192, 302pncan3d 11265 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((𝑆𝐽) − (𝑆‘(𝐽 + 1)))) = (𝑆𝐽))
320310, 318, 3193eqtrd 2782 . . . . . . . 8 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆𝐽))
321296, 308, 3203eqtrd 2782 . . . . . . 7 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = (𝑆𝐽))
322321, 292oveq12d 7273 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))))
323172, 322eqtr3d 2780 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))))
324323reseq2d 5880 . . . 4 (𝜑 → (𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) = (𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))))
325324oveq1d 7270 . . 3 (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆‘(𝐽 + 1))) = ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
326294, 325eleqtrd 2841 . 2 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
327157, 326eqeltrd 2839 1 (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆‘(𝐽 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cun 3881  wss 3883  ifcif 4456  {csn 4558  {cpr 4560   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  cio 6374  wf 6414  cfv 6418   Isom wiso 6419  (class class class)co 7255  m cmap 8573  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  cz 12249  (,)cioo 13008  (,]cioc 13009  [,]cicc 13011  ...cfz 13168  ..^cfzo 13311  cfl 13438  chash 13972  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  cnccncf 23945   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-cn 22286  df-cnp 22287  df-cmp 22446  df-xms 23381  df-ms 23382  df-cncf 23947  df-limc 24935
This theorem is referenced by:  fourierdlem99  43636  fourierdlem100  43637  fourierdlem107  43644  fourierdlem109  43646
  Copyright terms: Public domain W3C validator