Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem96 Structured version   Visualization version   GIF version

Theorem fourierdlem96 45649
Description: limit for 𝐹 at the lower bound of an interval for the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem96.f (πœ‘ β†’ 𝐹:β„βŸΆβ„)
fourierdlem96.p 𝑃 = (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜π‘š) = 𝐡) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
fourierdlem96.t 𝑇 = (𝐡 βˆ’ 𝐴)
fourierdlem96.m (πœ‘ β†’ 𝑀 ∈ β„•)
fourierdlem96.q (πœ‘ β†’ 𝑄 ∈ (π‘ƒβ€˜π‘€))
fourierdlem96.fper ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜(π‘₯ + 𝑇)) = (πΉβ€˜π‘₯))
fourierdlem96.qcn ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) ∈ (((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))–cnβ†’β„‚))
fourierdlem96.8 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑅 ∈ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)))
fourierdlem96.c (πœ‘ β†’ 𝐢 ∈ ℝ)
fourierdlem96.d (πœ‘ β†’ 𝐷 ∈ (𝐢(,)+∞))
fourierdlem96.j (πœ‘ β†’ 𝐽 ∈ (0..^((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)))
fourierdlem96.v 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒβ„Ž ∈ β„€ (𝑦 + (β„Ž Β· 𝑇)) ∈ ran 𝑄})))
Assertion
Ref Expression
fourierdlem96 (πœ‘ β†’ if(((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜(π‘‰β€˜π½))) = (π‘„β€˜((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦))}, ℝ, < ))β€˜(π‘‰β€˜π½))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)β€˜((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦))}, ℝ, < ))β€˜(π‘‰β€˜π½))), (πΉβ€˜((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜(π‘‰β€˜π½))))) ∈ ((𝐹 β†Ύ ((π‘‰β€˜π½)(,)(π‘‰β€˜(𝐽 + 1)))) limβ„‚ (π‘‰β€˜π½)))
Distinct variable groups:   𝐴,𝑗,𝑒,𝑦,𝑖,π‘₯   𝐴,π‘š,𝑝,𝑖,𝑦   𝐡,𝑗,𝑒,𝑦,𝑖,π‘₯   𝐡,π‘š,𝑝   𝑣,𝐡,𝑗,𝑦   𝐢,𝑔,𝑦   𝐢,𝑖,π‘₯   𝐢,π‘š,𝑝   𝐷,𝑔,𝑦   𝐷,𝑖,π‘₯   𝐷,π‘š,𝑝   𝑖,𝐹,π‘₯   𝑖,𝐽,π‘₯   𝑗,𝑀,𝑦,𝑖,π‘₯   π‘š,𝑀,𝑝   𝑄,𝑔,π‘˜,𝑦   𝑄,β„Ž,𝑦   𝑄,𝑖,𝑗,π‘₯   𝑄,π‘š,𝑝   𝑖,π‘˜,π‘š,𝑝   π‘₯,𝑅   𝑇,𝑔,π‘˜,𝑦   𝑇,β„Ž   𝑇,𝑖,𝑗,𝑣,π‘₯   𝑇,π‘š,𝑝   𝑖,𝑉,π‘₯   𝑉,𝑝   πœ‘,𝑖,π‘₯   π‘₯,π‘˜
Allowed substitution hints:   πœ‘(𝑦,𝑣,𝑒,𝑔,β„Ž,𝑗,π‘˜,π‘š,𝑝)   𝐴(𝑣,𝑔,β„Ž,π‘˜)   𝐡(𝑔,β„Ž,π‘˜)   𝐢(𝑣,𝑒,β„Ž,𝑗,π‘˜)   𝐷(𝑣,𝑒,β„Ž,𝑗,π‘˜)   𝑃(π‘₯,𝑦,𝑣,𝑒,𝑔,β„Ž,𝑖,𝑗,π‘˜,π‘š,𝑝)   𝑄(𝑣,𝑒)   𝑅(𝑦,𝑣,𝑒,𝑔,β„Ž,𝑖,𝑗,π‘˜,π‘š,𝑝)   𝑇(𝑒)   𝐹(𝑦,𝑣,𝑒,𝑔,β„Ž,𝑗,π‘˜,π‘š,𝑝)   𝐽(𝑦,𝑣,𝑒,𝑔,β„Ž,𝑗,π‘˜,π‘š,𝑝)   𝑀(𝑣,𝑒,𝑔,β„Ž,π‘˜)   𝑉(𝑦,𝑣,𝑒,𝑔,β„Ž,𝑗,π‘˜,π‘š)

Proof of Theorem fourierdlem96
Dummy variables 𝑓 𝑙 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem96.p . 2 𝑃 = (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜π‘š) = 𝐡) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
2 fourierdlem96.t . 2 𝑇 = (𝐡 βˆ’ 𝐴)
3 fourierdlem96.m . 2 (πœ‘ β†’ 𝑀 ∈ β„•)
4 fourierdlem96.q . 2 (πœ‘ β†’ 𝑄 ∈ (π‘ƒβ€˜π‘€))
5 fourierdlem96.f . . 3 (πœ‘ β†’ 𝐹:β„βŸΆβ„)
6 ax-resscn 11190 . . . 4 ℝ βŠ† β„‚
76a1i 11 . . 3 (πœ‘ β†’ ℝ βŠ† β„‚)
85, 7fssd 6734 . 2 (πœ‘ β†’ 𝐹:β„βŸΆβ„‚)
9 fourierdlem96.fper . 2 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜(π‘₯ + 𝑇)) = (πΉβ€˜π‘₯))
10 fourierdlem96.qcn . 2 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) ∈ (((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))–cnβ†’β„‚))
11 fourierdlem96.8 . 2 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑅 ∈ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)))
12 fourierdlem96.c . 2 (πœ‘ β†’ 𝐢 ∈ ℝ)
13 fourierdlem96.d . 2 (πœ‘ β†’ 𝐷 ∈ (𝐢(,)+∞))
14 eqid 2725 . 2 (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = 𝐢 ∧ (π‘β€˜π‘š) = 𝐷) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))}) = (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = 𝐢 ∧ (π‘β€˜π‘š) = 𝐷) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
15 oveq1 7420 . . . . . . 7 (𝑧 = 𝑦 β†’ (𝑧 + (𝑙 Β· 𝑇)) = (𝑦 + (𝑙 Β· 𝑇)))
1615eleq1d 2810 . . . . . 6 (𝑧 = 𝑦 β†’ ((𝑧 + (𝑙 Β· 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄))
1716rexbidv 3169 . . . . 5 (𝑧 = 𝑦 β†’ (βˆƒπ‘™ ∈ β„€ (𝑧 + (𝑙 Β· 𝑇)) ∈ ran 𝑄 ↔ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄))
1817cbvrabv 3430 . . . 4 {𝑧 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑧 + (𝑙 Β· 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}
1918uneq2i 4154 . . 3 ({𝐢, 𝐷} βˆͺ {𝑧 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑧 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}) = ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})
2019eqcomi 2734 . 2 ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}) = ({𝐢, 𝐷} βˆͺ {𝑧 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑧 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})
21 oveq1 7420 . . . . . . . . . 10 (π‘˜ = 𝑙 β†’ (π‘˜ Β· 𝑇) = (𝑙 Β· 𝑇))
2221oveq2d 7429 . . . . . . . . 9 (π‘˜ = 𝑙 β†’ (𝑦 + (π‘˜ Β· 𝑇)) = (𝑦 + (𝑙 Β· 𝑇)))
2322eleq1d 2810 . . . . . . . 8 (π‘˜ = 𝑙 β†’ ((𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄))
2423cbvrexvw 3226 . . . . . . 7 (βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄 ↔ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄)
2524a1i 11 . . . . . 6 (𝑦 ∈ (𝐢[,]𝐷) β†’ (βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄 ↔ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄))
2625rabbiia 3423 . . . . 5 {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}
2726uneq2i 4154 . . . 4 ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄}) = ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})
2827fveq2i 6893 . . 3 (β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) = (β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}))
2928oveq1i 7423 . 2 ((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1) = ((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)
30 oveq1 7420 . . . . . . . . . . 11 (𝑙 = β„Ž β†’ (𝑙 Β· 𝑇) = (β„Ž Β· 𝑇))
3130oveq2d 7429 . . . . . . . . . 10 (𝑙 = β„Ž β†’ (𝑦 + (𝑙 Β· 𝑇)) = (𝑦 + (β„Ž Β· 𝑇)))
3231eleq1d 2810 . . . . . . . . 9 (𝑙 = β„Ž β†’ ((𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (β„Ž Β· 𝑇)) ∈ ran 𝑄))
3332cbvrexvw 3226 . . . . . . . 8 (βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄 ↔ βˆƒβ„Ž ∈ β„€ (𝑦 + (β„Ž Β· 𝑇)) ∈ ran 𝑄)
3433a1i 11 . . . . . . 7 (𝑦 ∈ (𝐢[,]𝐷) β†’ (βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄 ↔ βˆƒβ„Ž ∈ β„€ (𝑦 + (β„Ž Β· 𝑇)) ∈ ran 𝑄))
3534rabbiia 3423 . . . . . 6 {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒβ„Ž ∈ β„€ (𝑦 + (β„Ž Β· 𝑇)) ∈ ran 𝑄}
3635uneq2i 4154 . . . . 5 ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}) = ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒβ„Ž ∈ β„€ (𝑦 + (β„Ž Β· 𝑇)) ∈ ran 𝑄})
37 isoeq5 7322 . . . . 5 (({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}) = ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒβ„Ž ∈ β„€ (𝑦 + (β„Ž Β· 𝑇)) ∈ ran 𝑄}) β†’ (𝑔 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒβ„Ž ∈ β„€ (𝑦 + (β„Ž Β· 𝑇)) ∈ ran 𝑄}))))
3836, 37ax-mp 5 . . . 4 (𝑔 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒβ„Ž ∈ β„€ (𝑦 + (β„Ž Β· 𝑇)) ∈ ran 𝑄})))
3938iotabii 6528 . . 3 (℩𝑔𝑔 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒβ„Ž ∈ β„€ (𝑦 + (β„Ž Β· 𝑇)) ∈ ran 𝑄})))
40 isoeq1 7318 . . . 4 (𝑓 = 𝑔 β†’ (𝑓 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}))))
4140cbviotavw 6503 . . 3 (℩𝑓𝑓 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})))
42 fourierdlem96.v . . 3 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒβ„Ž ∈ β„€ (𝑦 + (β„Ž Β· 𝑇)) ∈ ran 𝑄})))
4339, 41, 423eqtr4ri 2764 . 2 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘™ ∈ β„€ (𝑦 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})))
44 id 22 . . . 4 (𝑣 = π‘₯ β†’ 𝑣 = π‘₯)
45 oveq2 7421 . . . . . . 7 (𝑣 = π‘₯ β†’ (𝐡 βˆ’ 𝑣) = (𝐡 βˆ’ π‘₯))
4645oveq1d 7428 . . . . . 6 (𝑣 = π‘₯ β†’ ((𝐡 βˆ’ 𝑣) / 𝑇) = ((𝐡 βˆ’ π‘₯) / 𝑇))
4746fveq2d 6894 . . . . 5 (𝑣 = π‘₯ β†’ (βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) = (βŒŠβ€˜((𝐡 βˆ’ π‘₯) / 𝑇)))
4847oveq1d 7428 . . . 4 (𝑣 = π‘₯ β†’ ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇) = ((βŒŠβ€˜((𝐡 βˆ’ π‘₯) / 𝑇)) Β· 𝑇))
4944, 48oveq12d 7431 . . 3 (𝑣 = π‘₯ β†’ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)) = (π‘₯ + ((βŒŠβ€˜((𝐡 βˆ’ π‘₯) / 𝑇)) Β· 𝑇)))
5049cbvmptv 5257 . 2 (𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇))) = (π‘₯ ∈ ℝ ↦ (π‘₯ + ((βŒŠβ€˜((𝐡 βˆ’ π‘₯) / 𝑇)) Β· 𝑇)))
51 eqeq1 2729 . . . 4 (𝑒 = 𝑧 β†’ (𝑒 = 𝐡 ↔ 𝑧 = 𝐡))
52 id 22 . . . 4 (𝑒 = 𝑧 β†’ 𝑒 = 𝑧)
5351, 52ifbieq2d 4551 . . 3 (𝑒 = 𝑧 β†’ if(𝑒 = 𝐡, 𝐴, 𝑒) = if(𝑧 = 𝐡, 𝐴, 𝑧))
5453cbvmptv 5257 . 2 (𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒)) = (𝑧 ∈ (𝐴(,]𝐡) ↦ if(𝑧 = 𝐡, 𝐴, 𝑧))
55 fourierdlem96.j . 2 (πœ‘ β†’ 𝐽 ∈ (0..^((β™―β€˜({𝐢, 𝐷} βˆͺ {𝑦 ∈ (𝐢[,]𝐷) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)))
56 eqid 2725 . 2 ((π‘‰β€˜(𝐽 + 1)) βˆ’ ((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜(π‘‰β€˜(𝐽 + 1)))) = ((π‘‰β€˜(𝐽 + 1)) βˆ’ ((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜(π‘‰β€˜(𝐽 + 1))))
57 fveq2 6890 . . . . . . 7 (𝑗 = 𝑖 β†’ (π‘„β€˜π‘—) = (π‘„β€˜π‘–))
5857breq1d 5154 . . . . . 6 (𝑗 = 𝑖 β†’ ((π‘„β€˜π‘—) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦)) ↔ (π‘„β€˜π‘–) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦))))
5958cbvrabv 3430 . . . . 5 {𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦))} = {𝑖 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘–) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦))}
60 fveq2 6890 . . . . . . . 8 (𝑦 = π‘₯ β†’ ((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦) = ((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘₯))
6160fveq2d 6894 . . . . . . 7 (𝑦 = π‘₯ β†’ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦)) = ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘₯)))
6261breq2d 5156 . . . . . 6 (𝑦 = π‘₯ β†’ ((π‘„β€˜π‘–) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦)) ↔ (π‘„β€˜π‘–) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘₯))))
6362rabbidv 3427 . . . . 5 (𝑦 = π‘₯ β†’ {𝑖 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘–) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦))} = {𝑖 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘–) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘₯))})
6459, 63eqtrid 2777 . . . 4 (𝑦 = π‘₯ β†’ {𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦))} = {𝑖 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘–) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘₯))})
6564supeq1d 9464 . . 3 (𝑦 = π‘₯ β†’ sup({𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘–) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘₯))}, ℝ, < ))
6665cbvmptv 5257 . 2 (𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦))}, ℝ, < )) = (π‘₯ ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘–) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘₯))}, ℝ, < ))
67 eqid 2725 . 2 (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
681, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 20, 29, 43, 50, 54, 55, 56, 66, 67fourierdlem89 45642 1 (πœ‘ β†’ if(((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜(π‘‰β€˜π½))) = (π‘„β€˜((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦))}, ℝ, < ))β€˜(π‘‰β€˜π½))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)β€˜((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜π‘¦))}, ℝ, < ))β€˜(π‘‰β€˜π½))), (πΉβ€˜((𝑒 ∈ (𝐴(,]𝐡) ↦ if(𝑒 = 𝐡, 𝐴, 𝑒))β€˜((𝑣 ∈ ℝ ↦ (𝑣 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑣) / 𝑇)) Β· 𝑇)))β€˜(π‘‰β€˜π½))))) ∈ ((𝐹 β†Ύ ((π‘‰β€˜π½)(,)(π‘‰β€˜(𝐽 + 1)))) limβ„‚ (π‘‰β€˜π½)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  βˆƒwrex 3060  {crab 3419   βˆͺ cun 3939   βŠ† wss 3941  ifcif 4525  {cpr 4627   class class class wbr 5144   ↦ cmpt 5227  ran crn 5674   β†Ύ cres 5675  β„©cio 6493  βŸΆwf 6539  β€˜cfv 6543   Isom wiso 6544  (class class class)co 7413   ↑m cmap 8838  supcsup 9458  β„‚cc 11131  β„cr 11132  0cc0 11133  1c1 11134   + caddc 11136   Β· cmul 11138  +∞cpnf 11270   < clt 11273   ≀ cle 11274   βˆ’ cmin 11469   / cdiv 11896  β„•cn 12237  β„€cz 12583  (,)cioo 13351  (,]cioc 13352  [,]cicc 13354  ...cfz 13511  ..^cfzo 13654  βŒŠcfl 13782  β™―chash 14316  β€“cnβ†’ccncf 24809   limβ„‚ climc 25804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9429  df-sup 9460  df-inf 9461  df-oi 9528  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-xnn0 12570  df-z 12584  df-dec 12703  df-uz 12848  df-q 12958  df-rp 13002  df-xneg 13119  df-xadd 13120  df-xmul 13121  df-ioo 13355  df-ioc 13356  df-ico 13357  df-icc 13358  df-fz 13512  df-fzo 13655  df-fl 13784  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-struct 17110  df-slot 17145  df-ndx 17157  df-base 17175  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17398  df-topn 17399  df-topgen 17419  df-psmet 21270  df-xmet 21271  df-met 21272  df-bl 21273  df-mopn 21274  df-cnfld 21279  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22862  df-cld 22936  df-ntr 22937  df-cls 22938  df-nei 23015  df-lp 23053  df-cn 23144  df-cnp 23145  df-cmp 23304  df-xms 24239  df-ms 24240  df-cncf 24811  df-limc 25808
This theorem is referenced by:  fourierdlem112  45665
  Copyright terms: Public domain W3C validator