MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgid Structured version   Visualization version   GIF version

Theorem oppgid 19344
Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
oppgid.2 0 = (0g𝑅)
Assertion
Ref Expression
oppgid 0 = (0g𝑂)

Proof of Theorem oppgid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . . . . 6 (((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦) ↔ ((𝑦(+g𝑅)𝑥) = 𝑦 ∧ (𝑥(+g𝑅)𝑦) = 𝑦))
2 eqid 2736 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
3 oppgbas.1 . . . . . . . . 9 𝑂 = (oppg𝑅)
4 eqid 2736 . . . . . . . . 9 (+g𝑂) = (+g𝑂)
52, 3, 4oppgplus 19337 . . . . . . . 8 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑅)𝑥)
65eqeq1i 2741 . . . . . . 7 ((𝑥(+g𝑂)𝑦) = 𝑦 ↔ (𝑦(+g𝑅)𝑥) = 𝑦)
72, 3, 4oppgplus 19337 . . . . . . . 8 (𝑦(+g𝑂)𝑥) = (𝑥(+g𝑅)𝑦)
87eqeq1i 2741 . . . . . . 7 ((𝑦(+g𝑂)𝑥) = 𝑦 ↔ (𝑥(+g𝑅)𝑦) = 𝑦)
96, 8anbi12i 628 . . . . . 6 (((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦) ↔ ((𝑦(+g𝑅)𝑥) = 𝑦 ∧ (𝑥(+g𝑅)𝑦) = 𝑦))
101, 9bitr4i 278 . . . . 5 (((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦))
1110ralbii 3083 . . . 4 (∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦))
1211anbi2i 623 . . 3 ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦)))
1312iotabii 6521 . 2 (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦)))
14 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
15 oppgid.2 . . 3 0 = (0g𝑅)
1614, 2, 15grpidval 18644 . 2 0 = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦)))
173, 14oppgbas 19339 . . 3 (Base‘𝑅) = (Base‘𝑂)
18 eqid 2736 . . 3 (0g𝑂) = (0g𝑂)
1917, 4, 18grpidval 18644 . 2 (0g𝑂) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦)))
2013, 16, 193eqtr4i 2769 1 0 = (0g𝑂)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3052  cio 6487  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  0gc0g 17458  oppgcoppg 19333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-oppg 19334
This theorem is referenced by:  oppggrp  19345  oppginv  19347  oppgsubm  19350  gsumwrev  19354  lsmdisj2r  19671  gsumzoppg  19930  tgpconncomp  24056  oppgoppcid  49436
  Copyright terms: Public domain W3C validator