![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgid | Structured version Visualization version GIF version |
Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
oppgid.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
oppgid | ⊢ 0 = (0g‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 459 | . . . . . 6 ⊢ (((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ((𝑦(+g‘𝑅)𝑥) = 𝑦 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑦)) | |
2 | eqid 2730 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | oppgbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppg‘𝑅) | |
4 | eqid 2730 | . . . . . . . . 9 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
5 | 2, 3, 4 | oppgplus 19256 | . . . . . . . 8 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑅)𝑥) |
6 | 5 | eqeq1i 2735 | . . . . . . 7 ⊢ ((𝑥(+g‘𝑂)𝑦) = 𝑦 ↔ (𝑦(+g‘𝑅)𝑥) = 𝑦) |
7 | 2, 3, 4 | oppgplus 19256 | . . . . . . . 8 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)𝑦) |
8 | 7 | eqeq1i 2735 | . . . . . . 7 ⊢ ((𝑦(+g‘𝑂)𝑥) = 𝑦 ↔ (𝑥(+g‘𝑅)𝑦) = 𝑦) |
9 | 6, 8 | anbi12i 625 | . . . . . 6 ⊢ (((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦) ↔ ((𝑦(+g‘𝑅)𝑥) = 𝑦 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑦)) |
10 | 1, 9 | bitr4i 277 | . . . . 5 ⊢ (((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦)) |
11 | 10 | ralbii 3091 | . . . 4 ⊢ (∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦)) |
12 | 11 | anbi2i 621 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
13 | 12 | iotabii 6529 | . 2 ⊢ (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
14 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
15 | oppgid.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
16 | 14, 2, 15 | grpidval 18588 | . 2 ⊢ 0 = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦))) |
17 | 3, 14 | oppgbas 19259 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑂) |
18 | eqid 2730 | . . 3 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
19 | 17, 4, 18 | grpidval 18588 | . 2 ⊢ (0g‘𝑂) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
20 | 13, 16, 19 | 3eqtr4i 2768 | 1 ⊢ 0 = (0g‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ℩cio 6494 ‘cfv 6544 (class class class)co 7413 Basecbs 17150 +gcplusg 17203 0gc0g 17391 oppgcoppg 19252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-plusg 17216 df-0g 17393 df-oppg 19253 |
This theorem is referenced by: oppggrp 19267 oppginv 19269 oppgsubm 19272 gsumwrev 19276 lsmdisj2r 19596 gsumzoppg 19855 tgpconncomp 23839 |
Copyright terms: Public domain | W3C validator |