|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > oppgid | Structured version Visualization version GIF version | ||
| Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) | 
| oppgid.2 | ⊢ 0 = (0g‘𝑅) | 
| Ref | Expression | 
|---|---|
| oppgid | ⊢ 0 = (0g‘𝑂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ancom 460 | . . . . . 6 ⊢ (((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ((𝑦(+g‘𝑅)𝑥) = 𝑦 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑦)) | |
| 2 | eqid 2737 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | oppgbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppg‘𝑅) | |
| 4 | eqid 2737 | . . . . . . . . 9 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 5 | 2, 3, 4 | oppgplus 19367 | . . . . . . . 8 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑅)𝑥) | 
| 6 | 5 | eqeq1i 2742 | . . . . . . 7 ⊢ ((𝑥(+g‘𝑂)𝑦) = 𝑦 ↔ (𝑦(+g‘𝑅)𝑥) = 𝑦) | 
| 7 | 2, 3, 4 | oppgplus 19367 | . . . . . . . 8 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)𝑦) | 
| 8 | 7 | eqeq1i 2742 | . . . . . . 7 ⊢ ((𝑦(+g‘𝑂)𝑥) = 𝑦 ↔ (𝑥(+g‘𝑅)𝑦) = 𝑦) | 
| 9 | 6, 8 | anbi12i 628 | . . . . . 6 ⊢ (((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦) ↔ ((𝑦(+g‘𝑅)𝑥) = 𝑦 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑦)) | 
| 10 | 1, 9 | bitr4i 278 | . . . . 5 ⊢ (((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦)) | 
| 11 | 10 | ralbii 3093 | . . . 4 ⊢ (∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦)) | 
| 12 | 11 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) | 
| 13 | 12 | iotabii 6546 | . 2 ⊢ (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) | 
| 14 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 15 | oppgid.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 16 | 14, 2, 15 | grpidval 18674 | . 2 ⊢ 0 = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦))) | 
| 17 | 3, 14 | oppgbas 19370 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑂) | 
| 18 | eqid 2737 | . . 3 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
| 19 | 17, 4, 18 | grpidval 18674 | . 2 ⊢ (0g‘𝑂) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) | 
| 20 | 13, 16, 19 | 3eqtr4i 2775 | 1 ⊢ 0 = (0g‘𝑂) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ℩cio 6512 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 0gc0g 17484 oppgcoppg 19363 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-0g 17486 df-oppg 19364 | 
| This theorem is referenced by: oppggrp 19376 oppginv 19378 oppgsubm 19381 gsumwrev 19385 lsmdisj2r 19703 gsumzoppg 19962 tgpconncomp 24121 oppgoppcid 49189 | 
| Copyright terms: Public domain | W3C validator |