![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgid | Structured version Visualization version GIF version |
Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
oppgid.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
oppgid | ⊢ 0 = (0g‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 453 | . . . . . 6 ⊢ (((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ((𝑦(+g‘𝑅)𝑥) = 𝑦 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑦)) | |
2 | eqid 2799 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | oppgbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppg‘𝑅) | |
4 | eqid 2799 | . . . . . . . . 9 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
5 | 2, 3, 4 | oppgplus 18091 | . . . . . . . 8 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑅)𝑥) |
6 | 5 | eqeq1i 2804 | . . . . . . 7 ⊢ ((𝑥(+g‘𝑂)𝑦) = 𝑦 ↔ (𝑦(+g‘𝑅)𝑥) = 𝑦) |
7 | 2, 3, 4 | oppgplus 18091 | . . . . . . . 8 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)𝑦) |
8 | 7 | eqeq1i 2804 | . . . . . . 7 ⊢ ((𝑦(+g‘𝑂)𝑥) = 𝑦 ↔ (𝑥(+g‘𝑅)𝑦) = 𝑦) |
9 | 6, 8 | anbi12i 621 | . . . . . 6 ⊢ (((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦) ↔ ((𝑦(+g‘𝑅)𝑥) = 𝑦 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑦)) |
10 | 1, 9 | bitr4i 270 | . . . . 5 ⊢ (((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦)) |
11 | 10 | ralbii 3161 | . . . 4 ⊢ (∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦)) |
12 | 11 | anbi2i 617 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
13 | 12 | iotabii 6086 | . 2 ⊢ (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
14 | eqid 2799 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
15 | oppgid.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
16 | 14, 2, 15 | grpidval 17575 | . 2 ⊢ 0 = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦))) |
17 | 3, 14 | oppgbas 18093 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑂) |
18 | eqid 2799 | . . 3 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
19 | 17, 4, 18 | grpidval 17575 | . 2 ⊢ (0g‘𝑂) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
20 | 13, 16, 19 | 3eqtr4i 2831 | 1 ⊢ 0 = (0g‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ℩cio 6062 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 +gcplusg 16267 0gc0g 16415 oppgcoppg 18087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-tpos 7590 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-plusg 16280 df-0g 16417 df-oppg 18088 |
This theorem is referenced by: oppggrp 18099 oppginv 18101 oppgsubm 18104 gsumwrev 18108 lsmdisj2r 18411 gsumzoppg 18659 tgpconncomp 22244 |
Copyright terms: Public domain | W3C validator |