Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgid | Structured version Visualization version GIF version |
Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
oppgid.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
oppgid | ⊢ 0 = (0g‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 461 | . . . . . 6 ⊢ (((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ((𝑦(+g‘𝑅)𝑥) = 𝑦 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑦)) | |
2 | eqid 2740 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | oppgbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppg‘𝑅) | |
4 | eqid 2740 | . . . . . . . . 9 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
5 | 2, 3, 4 | oppgplus 18949 | . . . . . . . 8 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑅)𝑥) |
6 | 5 | eqeq1i 2745 | . . . . . . 7 ⊢ ((𝑥(+g‘𝑂)𝑦) = 𝑦 ↔ (𝑦(+g‘𝑅)𝑥) = 𝑦) |
7 | 2, 3, 4 | oppgplus 18949 | . . . . . . . 8 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)𝑦) |
8 | 7 | eqeq1i 2745 | . . . . . . 7 ⊢ ((𝑦(+g‘𝑂)𝑥) = 𝑦 ↔ (𝑥(+g‘𝑅)𝑦) = 𝑦) |
9 | 6, 8 | anbi12i 627 | . . . . . 6 ⊢ (((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦) ↔ ((𝑦(+g‘𝑅)𝑥) = 𝑦 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑦)) |
10 | 1, 9 | bitr4i 277 | . . . . 5 ⊢ (((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦)) |
11 | 10 | ralbii 3093 | . . . 4 ⊢ (∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦)) |
12 | 11 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
13 | 12 | iotabii 6416 | . 2 ⊢ (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
14 | eqid 2740 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
15 | oppgid.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
16 | 14, 2, 15 | grpidval 18341 | . 2 ⊢ 0 = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦))) |
17 | 3, 14 | oppgbas 18952 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑂) |
18 | eqid 2740 | . . 3 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
19 | 17, 4, 18 | grpidval 18341 | . 2 ⊢ (0g‘𝑂) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
20 | 13, 16, 19 | 3eqtr4i 2778 | 1 ⊢ 0 = (0g‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ℩cio 6387 ‘cfv 6431 (class class class)co 7269 Basecbs 16908 +gcplusg 16958 0gc0g 17146 oppgcoppg 18945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-2nd 7823 df-tpos 8031 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-sets 16861 df-slot 16879 df-ndx 16891 df-base 16909 df-plusg 16971 df-0g 17148 df-oppg 18946 |
This theorem is referenced by: oppggrp 18960 oppginv 18962 oppgsubm 18965 gsumwrev 18969 lsmdisj2r 19287 gsumzoppg 19541 tgpconncomp 23260 |
Copyright terms: Public domain | W3C validator |