![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgid | Structured version Visualization version GIF version |
Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
oppgid.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
oppgid | ⊢ 0 = (0g‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 459 | . . . . . 6 ⊢ (((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ((𝑦(+g‘𝑅)𝑥) = 𝑦 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑦)) | |
2 | eqid 2725 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | oppgbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppg‘𝑅) | |
4 | eqid 2725 | . . . . . . . . 9 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
5 | 2, 3, 4 | oppgplus 19312 | . . . . . . . 8 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑅)𝑥) |
6 | 5 | eqeq1i 2730 | . . . . . . 7 ⊢ ((𝑥(+g‘𝑂)𝑦) = 𝑦 ↔ (𝑦(+g‘𝑅)𝑥) = 𝑦) |
7 | 2, 3, 4 | oppgplus 19312 | . . . . . . . 8 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)𝑦) |
8 | 7 | eqeq1i 2730 | . . . . . . 7 ⊢ ((𝑦(+g‘𝑂)𝑥) = 𝑦 ↔ (𝑥(+g‘𝑅)𝑦) = 𝑦) |
9 | 6, 8 | anbi12i 626 | . . . . . 6 ⊢ (((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦) ↔ ((𝑦(+g‘𝑅)𝑥) = 𝑦 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑦)) |
10 | 1, 9 | bitr4i 277 | . . . . 5 ⊢ (((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦)) |
11 | 10 | ralbii 3082 | . . . 4 ⊢ (∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦)) |
12 | 11 | anbi2i 621 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
13 | 12 | iotabii 6534 | . 2 ⊢ (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
14 | eqid 2725 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
15 | oppgid.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
16 | 14, 2, 15 | grpidval 18624 | . 2 ⊢ 0 = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑅)𝑥) = 𝑦))) |
17 | 3, 14 | oppgbas 19315 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑂) |
18 | eqid 2725 | . . 3 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
19 | 17, 4, 18 | grpidval 18624 | . 2 ⊢ (0g‘𝑂) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑂)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑂)𝑥) = 𝑦))) |
20 | 13, 16, 19 | 3eqtr4i 2763 | 1 ⊢ 0 = (0g‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ℩cio 6499 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 +gcplusg 17236 0gc0g 17424 oppgcoppg 19308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-0g 17426 df-oppg 19309 |
This theorem is referenced by: oppggrp 19323 oppginv 19325 oppgsubm 19328 gsumwrev 19332 lsmdisj2r 19652 gsumzoppg 19911 tgpconncomp 24061 |
Copyright terms: Public domain | W3C validator |