MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgid Structured version   Visualization version   GIF version

Theorem oppgid 19266
Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
oppgid.2 0 = (0g𝑅)
Assertion
Ref Expression
oppgid 0 = (0g𝑂)

Proof of Theorem oppgid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ancom 459 . . . . . 6 (((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦) ↔ ((𝑦(+g𝑅)𝑥) = 𝑦 ∧ (𝑥(+g𝑅)𝑦) = 𝑦))
2 eqid 2730 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
3 oppgbas.1 . . . . . . . . 9 𝑂 = (oppg𝑅)
4 eqid 2730 . . . . . . . . 9 (+g𝑂) = (+g𝑂)
52, 3, 4oppgplus 19256 . . . . . . . 8 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑅)𝑥)
65eqeq1i 2735 . . . . . . 7 ((𝑥(+g𝑂)𝑦) = 𝑦 ↔ (𝑦(+g𝑅)𝑥) = 𝑦)
72, 3, 4oppgplus 19256 . . . . . . . 8 (𝑦(+g𝑂)𝑥) = (𝑥(+g𝑅)𝑦)
87eqeq1i 2735 . . . . . . 7 ((𝑦(+g𝑂)𝑥) = 𝑦 ↔ (𝑥(+g𝑅)𝑦) = 𝑦)
96, 8anbi12i 625 . . . . . 6 (((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦) ↔ ((𝑦(+g𝑅)𝑥) = 𝑦 ∧ (𝑥(+g𝑅)𝑦) = 𝑦))
101, 9bitr4i 277 . . . . 5 (((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦))
1110ralbii 3091 . . . 4 (∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦))
1211anbi2i 621 . . 3 ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦)))
1312iotabii 6529 . 2 (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦)))
14 eqid 2730 . . 3 (Base‘𝑅) = (Base‘𝑅)
15 oppgid.2 . . 3 0 = (0g𝑅)
1614, 2, 15grpidval 18588 . 2 0 = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦)))
173, 14oppgbas 19259 . . 3 (Base‘𝑅) = (Base‘𝑂)
18 eqid 2730 . . 3 (0g𝑂) = (0g𝑂)
1917, 4, 18grpidval 18588 . 2 (0g𝑂) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦)))
2013, 16, 193eqtr4i 2768 1 0 = (0g𝑂)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1539  wcel 2104  wral 3059  cio 6494  cfv 6544  (class class class)co 7413  Basecbs 17150  +gcplusg 17203  0gc0g 17391  oppgcoppg 19252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-2nd 7980  df-tpos 8215  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-2 12281  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-plusg 17216  df-0g 17393  df-oppg 19253
This theorem is referenced by:  oppggrp  19267  oppginv  19269  oppgsubm  19272  gsumwrev  19276  lsmdisj2r  19596  gsumzoppg  19855  tgpconncomp  23839
  Copyright terms: Public domain W3C validator