MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgid Structured version   Visualization version   GIF version

Theorem oppgid 18959
Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
oppgid.2 0 = (0g𝑅)
Assertion
Ref Expression
oppgid 0 = (0g𝑂)

Proof of Theorem oppgid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ancom 461 . . . . . 6 (((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦) ↔ ((𝑦(+g𝑅)𝑥) = 𝑦 ∧ (𝑥(+g𝑅)𝑦) = 𝑦))
2 eqid 2740 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
3 oppgbas.1 . . . . . . . . 9 𝑂 = (oppg𝑅)
4 eqid 2740 . . . . . . . . 9 (+g𝑂) = (+g𝑂)
52, 3, 4oppgplus 18949 . . . . . . . 8 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑅)𝑥)
65eqeq1i 2745 . . . . . . 7 ((𝑥(+g𝑂)𝑦) = 𝑦 ↔ (𝑦(+g𝑅)𝑥) = 𝑦)
72, 3, 4oppgplus 18949 . . . . . . . 8 (𝑦(+g𝑂)𝑥) = (𝑥(+g𝑅)𝑦)
87eqeq1i 2745 . . . . . . 7 ((𝑦(+g𝑂)𝑥) = 𝑦 ↔ (𝑥(+g𝑅)𝑦) = 𝑦)
96, 8anbi12i 627 . . . . . 6 (((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦) ↔ ((𝑦(+g𝑅)𝑥) = 𝑦 ∧ (𝑥(+g𝑅)𝑦) = 𝑦))
101, 9bitr4i 277 . . . . 5 (((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦))
1110ralbii 3093 . . . 4 (∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦))
1211anbi2i 623 . . 3 ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦)))
1312iotabii 6416 . 2 (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦)))
14 eqid 2740 . . 3 (Base‘𝑅) = (Base‘𝑅)
15 oppgid.2 . . 3 0 = (0g𝑅)
1614, 2, 15grpidval 18341 . 2 0 = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) = 𝑦 ∧ (𝑦(+g𝑅)𝑥) = 𝑦)))
173, 14oppgbas 18952 . . 3 (Base‘𝑅) = (Base‘𝑂)
18 eqid 2740 . . 3 (0g𝑂) = (0g𝑂)
1917, 4, 18grpidval 18341 . 2 (0g𝑂) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑂)𝑦) = 𝑦 ∧ (𝑦(+g𝑂)𝑥) = 𝑦)))
2013, 16, 193eqtr4i 2778 1 0 = (0g𝑂)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1542  wcel 2110  wral 3066  cio 6387  cfv 6431  (class class class)co 7269  Basecbs 16908  +gcplusg 16958  0gc0g 17146  oppgcoppg 18945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-2nd 7823  df-tpos 8031  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-plusg 16971  df-0g 17148  df-oppg 18946
This theorem is referenced by:  oppggrp  18960  oppginv  18962  oppgsubm  18965  gsumwrev  18969  lsmdisj2r  19287  gsumzoppg  19541  tgpconncomp  23260
  Copyright terms: Public domain W3C validator