![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppr1 | Structured version Visualization version GIF version |
Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
oppr1.2 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
oppr1 | ⊢ 1 = (1r‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2731 | . . . . . . . . 9 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | opprbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | eqid 2731 | . . . . . . . . 9 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
5 | 1, 2, 3, 4 | opprmul 20229 | . . . . . . . 8 ⊢ (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥) |
6 | 5 | eqeq1i 2736 | . . . . . . 7 ⊢ ((𝑥(.r‘𝑂)𝑦) = 𝑦 ↔ (𝑦(.r‘𝑅)𝑥) = 𝑦) |
7 | 1, 2, 3, 4 | opprmul 20229 | . . . . . . . 8 ⊢ (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦) |
8 | 7 | eqeq1i 2736 | . . . . . . 7 ⊢ ((𝑦(.r‘𝑂)𝑥) = 𝑦 ↔ (𝑥(.r‘𝑅)𝑦) = 𝑦) |
9 | 6, 8 | anbi12ci 627 | . . . . . 6 ⊢ (((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
10 | 9 | ralbii 3092 | . . . . 5 ⊢ (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
11 | 10 | anbi2i 622 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
12 | 11 | iotabii 6528 | . . 3 ⊢ (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
13 | eqid 2731 | . . . . 5 ⊢ (mulGrp‘𝑂) = (mulGrp‘𝑂) | |
14 | 3, 1 | opprbas 20233 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
15 | 13, 14 | mgpbas 20035 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑂)) |
16 | 13, 4 | mgpplusg 20033 | . . . 4 ⊢ (.r‘𝑂) = (+g‘(mulGrp‘𝑂)) |
17 | eqid 2731 | . . . 4 ⊢ (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑂)) | |
18 | 15, 16, 17 | grpidval 18587 | . . 3 ⊢ (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦))) |
19 | eqid 2731 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
20 | 19, 1 | mgpbas 20035 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
21 | 19, 2 | mgpplusg 20033 | . . . 4 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
22 | eqid 2731 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
23 | 20, 21, 22 | grpidval 18587 | . . 3 ⊢ (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
24 | 12, 18, 23 | 3eqtr4i 2769 | . 2 ⊢ (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑅)) |
25 | eqid 2731 | . . 3 ⊢ (1r‘𝑂) = (1r‘𝑂) | |
26 | 13, 25 | ringidval 20078 | . 2 ⊢ (1r‘𝑂) = (0g‘(mulGrp‘𝑂)) |
27 | oppr1.2 | . . 3 ⊢ 1 = (1r‘𝑅) | |
28 | 19, 27 | ringidval 20078 | . 2 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
29 | 24, 26, 28 | 3eqtr4ri 2770 | 1 ⊢ 1 = (1r‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ℩cio 6493 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 .rcmulr 17203 0gc0g 17390 mulGrpcmgp 20029 1rcur 20076 opprcoppr 20225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-mulr 17216 df-0g 17392 df-mgp 20030 df-ur 20077 df-oppr 20226 |
This theorem is referenced by: opprunit 20269 rhmopp 20401 opprsubrg 20484 isdrngrd 20535 isdrngrdOLD 20537 srng1 20611 issrngd 20613 fidomndrng 21127 opprqusdrng 32882 qsdrngi 32884 ldual1 38322 lduallmodlem 38326 ldualvsub 38329 lcd1 40784 lcdvsub 40792 |
Copyright terms: Public domain | W3C validator |