Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppr1 | Structured version Visualization version GIF version |
Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
oppr1.2 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
oppr1 | ⊢ 1 = (1r‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | opprbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
5 | 1, 2, 3, 4 | opprmul 19780 | . . . . . . . 8 ⊢ (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥) |
6 | 5 | eqeq1i 2743 | . . . . . . 7 ⊢ ((𝑥(.r‘𝑂)𝑦) = 𝑦 ↔ (𝑦(.r‘𝑅)𝑥) = 𝑦) |
7 | 1, 2, 3, 4 | opprmul 19780 | . . . . . . . 8 ⊢ (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦) |
8 | 7 | eqeq1i 2743 | . . . . . . 7 ⊢ ((𝑦(.r‘𝑂)𝑥) = 𝑦 ↔ (𝑥(.r‘𝑅)𝑦) = 𝑦) |
9 | 6, 8 | anbi12ci 627 | . . . . . 6 ⊢ (((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
10 | 9 | ralbii 3090 | . . . . 5 ⊢ (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
11 | 10 | anbi2i 622 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
12 | 11 | iotabii 6403 | . . 3 ⊢ (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
13 | eqid 2738 | . . . . 5 ⊢ (mulGrp‘𝑂) = (mulGrp‘𝑂) | |
14 | 3, 1 | opprbas 19784 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
15 | 13, 14 | mgpbas 19641 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑂)) |
16 | 13, 4 | mgpplusg 19639 | . . . 4 ⊢ (.r‘𝑂) = (+g‘(mulGrp‘𝑂)) |
17 | eqid 2738 | . . . 4 ⊢ (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑂)) | |
18 | 15, 16, 17 | grpidval 18260 | . . 3 ⊢ (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦))) |
19 | eqid 2738 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
20 | 19, 1 | mgpbas 19641 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
21 | 19, 2 | mgpplusg 19639 | . . . 4 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
22 | eqid 2738 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
23 | 20, 21, 22 | grpidval 18260 | . . 3 ⊢ (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
24 | 12, 18, 23 | 3eqtr4i 2776 | . 2 ⊢ (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑅)) |
25 | eqid 2738 | . . 3 ⊢ (1r‘𝑂) = (1r‘𝑂) | |
26 | 13, 25 | ringidval 19654 | . 2 ⊢ (1r‘𝑂) = (0g‘(mulGrp‘𝑂)) |
27 | oppr1.2 | . . 3 ⊢ 1 = (1r‘𝑅) | |
28 | 19, 27 | ringidval 19654 | . 2 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
29 | 24, 26, 28 | 3eqtr4ri 2777 | 1 ⊢ 1 = (1r‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ℩cio 6374 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 0gc0g 17067 mulGrpcmgp 19635 1rcur 19652 opprcoppr 19776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgp 19636 df-ur 19653 df-oppr 19777 |
This theorem is referenced by: opprunit 19818 isdrngrd 19932 opprsubrg 19960 srng1 20034 issrngd 20036 fidomndrng 20492 rhmopp 31420 ldual1 37089 lduallmodlem 37093 ldualvsub 37096 lcd1 39550 lcdvsub 39558 |
Copyright terms: Public domain | W3C validator |