Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppr1 | Structured version Visualization version GIF version |
Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
oppr1.2 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
oppr1 | ⊢ 1 = (1r‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | opprbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
5 | 1, 2, 3, 4 | opprmul 19865 | . . . . . . . 8 ⊢ (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥) |
6 | 5 | eqeq1i 2743 | . . . . . . 7 ⊢ ((𝑥(.r‘𝑂)𝑦) = 𝑦 ↔ (𝑦(.r‘𝑅)𝑥) = 𝑦) |
7 | 1, 2, 3, 4 | opprmul 19865 | . . . . . . . 8 ⊢ (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦) |
8 | 7 | eqeq1i 2743 | . . . . . . 7 ⊢ ((𝑦(.r‘𝑂)𝑥) = 𝑦 ↔ (𝑥(.r‘𝑅)𝑦) = 𝑦) |
9 | 6, 8 | anbi12ci 628 | . . . . . 6 ⊢ (((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
10 | 9 | ralbii 3092 | . . . . 5 ⊢ (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
11 | 10 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
12 | 11 | iotabii 6418 | . . 3 ⊢ (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
13 | eqid 2738 | . . . . 5 ⊢ (mulGrp‘𝑂) = (mulGrp‘𝑂) | |
14 | 3, 1 | opprbas 19869 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
15 | 13, 14 | mgpbas 19726 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑂)) |
16 | 13, 4 | mgpplusg 19724 | . . . 4 ⊢ (.r‘𝑂) = (+g‘(mulGrp‘𝑂)) |
17 | eqid 2738 | . . . 4 ⊢ (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑂)) | |
18 | 15, 16, 17 | grpidval 18345 | . . 3 ⊢ (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦))) |
19 | eqid 2738 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
20 | 19, 1 | mgpbas 19726 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
21 | 19, 2 | mgpplusg 19724 | . . . 4 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
22 | eqid 2738 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
23 | 20, 21, 22 | grpidval 18345 | . . 3 ⊢ (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
24 | 12, 18, 23 | 3eqtr4i 2776 | . 2 ⊢ (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑅)) |
25 | eqid 2738 | . . 3 ⊢ (1r‘𝑂) = (1r‘𝑂) | |
26 | 13, 25 | ringidval 19739 | . 2 ⊢ (1r‘𝑂) = (0g‘(mulGrp‘𝑂)) |
27 | oppr1.2 | . . 3 ⊢ 1 = (1r‘𝑅) | |
28 | 19, 27 | ringidval 19739 | . 2 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
29 | 24, 26, 28 | 3eqtr4ri 2777 | 1 ⊢ 1 = (1r‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ℩cio 6389 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 .rcmulr 16963 0gc0g 17150 mulGrpcmgp 19720 1rcur 19737 opprcoppr 19861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mgp 19721 df-ur 19738 df-oppr 19862 |
This theorem is referenced by: opprunit 19903 isdrngrd 20017 opprsubrg 20045 srng1 20119 issrngd 20121 fidomndrng 20579 rhmopp 31518 ldual1 37162 lduallmodlem 37166 ldualvsub 37169 lcd1 39623 lcdvsub 39631 |
Copyright terms: Public domain | W3C validator |