Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppr1 | Structured version Visualization version GIF version |
Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
oppr1.2 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
oppr1 | ⊢ 1 = (1r‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2759 | . . . . . . . . 9 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | opprbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | eqid 2759 | . . . . . . . . 9 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
5 | 1, 2, 3, 4 | opprmul 19440 | . . . . . . . 8 ⊢ (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥) |
6 | 5 | eqeq1i 2764 | . . . . . . 7 ⊢ ((𝑥(.r‘𝑂)𝑦) = 𝑦 ↔ (𝑦(.r‘𝑅)𝑥) = 𝑦) |
7 | 1, 2, 3, 4 | opprmul 19440 | . . . . . . . 8 ⊢ (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦) |
8 | 7 | eqeq1i 2764 | . . . . . . 7 ⊢ ((𝑦(.r‘𝑂)𝑥) = 𝑦 ↔ (𝑥(.r‘𝑅)𝑦) = 𝑦) |
9 | 6, 8 | anbi12ci 631 | . . . . . 6 ⊢ (((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
10 | 9 | ralbii 3098 | . . . . 5 ⊢ (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
11 | 10 | anbi2i 626 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
12 | 11 | iotabii 6321 | . . 3 ⊢ (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
13 | eqid 2759 | . . . . 5 ⊢ (mulGrp‘𝑂) = (mulGrp‘𝑂) | |
14 | 3, 1 | opprbas 19443 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
15 | 13, 14 | mgpbas 19306 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑂)) |
16 | 13, 4 | mgpplusg 19304 | . . . 4 ⊢ (.r‘𝑂) = (+g‘(mulGrp‘𝑂)) |
17 | eqid 2759 | . . . 4 ⊢ (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑂)) | |
18 | 15, 16, 17 | grpidval 17930 | . . 3 ⊢ (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑂)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑂)𝑥) = 𝑦))) |
19 | eqid 2759 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
20 | 19, 1 | mgpbas 19306 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
21 | 19, 2 | mgpplusg 19304 | . . . 4 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
22 | eqid 2759 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
23 | 20, 21, 22 | grpidval 17930 | . . 3 ⊢ (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
24 | 12, 18, 23 | 3eqtr4i 2792 | . 2 ⊢ (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑅)) |
25 | eqid 2759 | . . 3 ⊢ (1r‘𝑂) = (1r‘𝑂) | |
26 | 13, 25 | ringidval 19314 | . 2 ⊢ (1r‘𝑂) = (0g‘(mulGrp‘𝑂)) |
27 | oppr1.2 | . . 3 ⊢ 1 = (1r‘𝑅) | |
28 | 19, 27 | ringidval 19314 | . 2 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
29 | 24, 26, 28 | 3eqtr4ri 2793 | 1 ⊢ 1 = (1r‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ℩cio 6293 ‘cfv 6336 (class class class)co 7151 Basecbs 16534 .rcmulr 16617 0gc0g 16764 mulGrpcmgp 19300 1rcur 19312 opprcoppr 19436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-tpos 7903 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-plusg 16629 df-mulr 16630 df-0g 16766 df-mgp 19301 df-ur 19313 df-oppr 19437 |
This theorem is referenced by: opprunit 19475 isdrngrd 19589 opprsubrg 19617 srng1 19691 issrngd 19693 fidomndrng 20141 rhmopp 31037 ldual1 36717 lduallmodlem 36721 ldualvsub 36724 lcd1 39178 lcdvsub 39186 |
Copyright terms: Public domain | W3C validator |